1
|
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep 2023; 56:618-623. [PMID: 37605615 PMCID: PMC10689085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Most cancer cells utilize glucose at a high rate to produce energyand precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly. [BMB Reports 2023; 56(11): 618-623].
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
2
|
Ma Y, Hou J, Huang D, Zhang Y, Liu Z, Tian M. Expression of protein phosphatase 4 in different tissues under hypoxia. INDIAN J PATHOL MICR 2023; 66:577-583. [PMID: 37530343 DOI: 10.4103/ijpm.ijpm_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.
Collapse
Affiliation(s)
- Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Zhe Liu
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
3
|
A Human Endogenous Bornavirus-Like Nucleoprotein Encodes a Mitochondrial Protein Associated with Cell Viability. J Virol 2021; 95:e0203020. [PMID: 33952640 DOI: 10.1128/jvi.02030-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endogenous retroviruses (ERVs) are sequences in animal genomes that originated from ancient retrovirus infections; they provide genetic novelty in hosts by being coopted as functional genes or elements during evolution. Recently, we demonstrated that endogenous elements from not only from retroviruses but also nonretroviral RNA viruses are a possible source of functional genes in host animals. The remnants of ancient bornavirus infections, called endogenous bornavirus-like elements (EBLs), are present in the genomes of a wide variety of vertebrate species, and some express functional products in host cells. Previous studies have predicted that the human EBL locus derived from bornavirus nucleoprotein, termed hsEBLN-2, expresses mRNA encoding a protein, suggesting that hsEBLN-2 has acquired a cellular function during evolution. However, the detailed function of the hsEBLN-2-derived product remains to be elucidated. In this study, we show that the hsEBLN-2-derived protein E2 acts as a mitochondrial protein that interacts with mitochondrial host factors associated with apoptosis, such as HAX-1. We also demonstrate that knockdown of hsEBLN-2-derived RNA increased the levels of PARP and caspase-3 cleavage and markedly decreased cell viability. In contrast, overexpression of E2 enhanced cell viability, as well as the intracellular stability of HAX-1, under stress conditions. Our results suggest that hsEBLN-2 has been coopted as a host gene, the product of which is involved in cell viability by interacting with mitochondrial proteins. IMPORTANCE Our genomes contain molecular fossils of ancient viruses, called endogenous virus elements (EVEs). Mounting evidence suggests that EVEs derived from nonretroviral RNA viruses have acquired functions in host cells during evolution. Previous studies have revealed that a locus encoding a bornavirus-derived EVE, hsEBLN-2, which was generated approximately 43 million years ago in a human ancestor, may be linked to the development of some tumors. However, the function of hsEBLN-2 has not been determined. In this study, we found that the E2 protein, an expression product of hsEBLN-2, interacts with apoptosis-related host proteins as a mitochondrial protein and affects cell viability. This study suggests that nonretroviral RNA viral EVEs have been coopted by hosts with more diverse functions than previously thought, showing a pivotal role for RNA virus infection in evolution.
Collapse
|
4
|
Zhang Q, Fan Z, Zhang L, You Q, Wang L. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer. J Med Chem 2021; 64:8916-8938. [PMID: 34156850 DOI: 10.1021/acs.jmedchem.1c00631] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among numerous posttranslational regulation patterns, phosphorylation is reversibly controlled by the balance of kinases and phosphatases. The major form of cellular signaling involves the reversible phosphorylation of proteins on tyrosine, serine, or threonine residues. However, altered phosphorylation levels are found in diverse diseases, including cancer, making kinases and phosphatases ideal drug targets. In contrast to the success of prosperous kinase inhibitors, design of small molecules targeting phosphatase is struggling due to past bias and difficulty. This is especially true for serine/threonine phosphatases, one of the largest phosphatase families. From this perspective, we aim to provide insights into serine/threonine phosphatases and the small molecules targeting these proteins for drug development, especially in cancer. Through highlighting the modulation strategies, we aim to provide basic principles for the design of small molecules and future perspectives for the application of drugs targeting serine/threonine phosphatases.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongjiao Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lianshan Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Park J, Lee DH. Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe. BMB Rep 2021. [PMID: 32192570 PMCID: PMC7196183 DOI: 10.5483/bmbrep.2020.53.4.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.
Collapse
Affiliation(s)
- Jaehong Park
- School of Biological Sciences and Biotechnology Graduate School, Chonnam National University, Gwangju 61186, Korea
| | - Dong-Hyun Lee
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 61186; Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
6
|
Kang JW, Kim Y, Lee Y, Myung K, Kim YH, Oh CK. AML poor prognosis factor, TPD52, is associated with the maintenance of haematopoietic stem cells through regulation of cell proliferation. J Cell Biochem 2020; 122:403-412. [PMID: 33166425 DOI: 10.1002/jcb.29869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 11/05/2022]
Abstract
Acute myeloid leukaemia (AML) is a blood cancer where undifferentiated myeloid cells are increased in the bone marrow and peripheral blood. As AML is dangerous and shows poor prognosis, many researchers categorised the relevant cytogenetic factors according to risk and prognosis. However, the specific reasons for poor cytogenetic factors remain unknown. We analysed a large data set from AML patients and found that TPD52 expression is elevated in patient groups with poor cytogenetic factors. As the amino acid sequence of TPD52 is evolutionally conserved in vertebrates, zebrafish embryos were used to investigate the function of TPD52. Since myeloid-biased haematopoietic stem cells (HSCs) are relevant to AML, the function of TPD52 in the development of HSCs was investigated. We determined that the zebrafish paralog, tpd52, is important for the maintenance of HSCs through regulation of cell proliferation. As tpd52 is linked to cell proliferation in zebrafish embryos, the proliferation-related gene, CD59, was correlated to TPD52 in every AML cohort with a high correlation coefficient. We suggest that TPD52 can be a novel therapeutic target for AML patients with poor cytogenetic factors. Additionally, more studies between TPD52 and CD59 will further increase the value of TPD52 as a novel target.
Collapse
Affiliation(s)
- Ji Wan Kang
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Youngjoo Kim
- Interdisplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Chang-Kyu Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, Republic of Korea
| |
Collapse
|
7
|
Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD. Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 2020; 169:235-245. [PMID: 31059574 DOI: 10.1093/toxsci/kfz037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Mosquera Orgueira A, Antelo Rodríguez B, Alonso Vence N, Díaz Arias JÁ, Díaz Varela N, Pérez Encinas MM, Allegue Toscano C, Goiricelaya Seco EM, Carracedo Álvarez Á, Bello López JL. The association of germline variants with chronic lymphocytic leukemia outcome suggests the implication of novel genes and pathways in clinical evolution. BMC Cancer 2019; 19:515. [PMID: 31142279 PMCID: PMC6542042 DOI: 10.1186/s12885-019-5628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Lymphocytic Leukemia (CLL) is the most frequent lymphoproliferative disorder in western countries and is characterized by a remarkable clinical heterogeneity. During the last decade, multiple genomic studies have identified a myriad of somatic events driving CLL proliferation and aggressivity. Nevertheless, and despite the mounting evidence of inherited risk for CLL development, the existence of germline variants associated with clinical outcomes has not been addressed in depth. METHODS Exome sequencing data from control leukocytes of CLL patients involved in the International Cancer Genome Consortium (ICGC) was used for genotyping. Cox regression was used to detect variants associated with clinical outcomes. Gene and pathways level associations were also calculated. RESULTS Single nucleotide polymorphisms in PPP4R2 and MAP3K4 were associated with earlier treatment need. A gene-level analysis evidenced a significant association of RIPK3 with both treatment need and survival. Furthermore, germline variability in pathways such as apoptosis, cell-cycle, pentose phosphate, GNα13 and Nitric oxide was associated with overall survival. CONCLUSION Our results support the existence of inherited conditionants of CLL evolution and points towards genes and pathways that may results useful as biomarkers of disease outcome. More research is needed to validate these findings.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain. .,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain. .,University of Santiago de Compostela, Santiago, Spain.
| | - Beatriz Antelo Rodríguez
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,University of Santiago de Compostela, Santiago, Spain
| | - Natalia Alonso Vence
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - José Ángel Díaz Arias
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - Nicolás Díaz Varela
- Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain
| | - Manuel Mateo Pérez Encinas
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,University of Santiago de Compostela, Santiago, Spain
| | | | | | - Ángel Carracedo Álvarez
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,Fundación Pública de Medicina Xenómica, A Coruña, Spain
| | - José Luis Bello López
- Clinical University Hospital of Santiago de Compostela, Service of Hematology and Hemotherapy, 1st floor, Avenida da Choupana s/n, Santiago de Compostela, 15706, Spain.,Division of Hematology, SERGAS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago, Spain.,University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|