1
|
Wang H, Wang R, Yang J, Feng Y, Xu S, Pei QG. Interactions of Fibroblast Subtypes Influence Osteoclastogenesis and Alveolar Bone Destruction in Periodontitis. J Inflamm Res 2023; 16:3143-3156. [PMID: 37520667 PMCID: PMC10386858 DOI: 10.2147/jir.s418099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Background To analyze the fibroblasts subtypes in the gingival tissues of healthy controls, gingivitis and periodontitis patients, as well as the effects of interaction between subtypes on alveolar bone destruction. Methods Gingival tissues were divided into three groups according to clinical and radiographic examination, and the immunostaining of EDA+FN was assessed. Fibroblasts from gingiva developed colony formation units (CFUs) and induced Trap+MNCs. The expression of osteoclastogenesis-related genes was assessed by real-time PCR. Variances in the gene profiles of CFUs were identified by principal component analysis, and cluster analysis divided CFUs into subtypes. The induction of Trap+MNCs and gene expression were compared among individual or cocultured subtypes. The fibroblast subtypes exerted critical effect on Trap+MNCs formation were selected and edited by CRISPR/Cas to investigate the influence on osteoclastogenesis in the periodontitis in mice. Results Most periodontitis samples exhibited intensive EDA+FN staining (P < 0.05), and these fibroblasts also induced most Trap+MNCs among three groups; consistently, fibroblasts from periodontitis highly expressed genes facilitating osteoclastogenesis. According to gene profiles and osteoclastogenic induction, four clusters of CFUs were identified. The proportion of clusters was significantly different (P < 0.05) among three groups, and their interaction influenced osteoclastogenic induction. Although Cluster 4 induced less osteoclasts, it enhanced the effects of Clusters 1 and 3 on Trap+MNCs formation (P < 0.05). EDA knockout in Cluster 4 abrogated this promotion (P < 0.05), and decreased osteoclasts and alveolar bone destruction in experimental periodontitis (P < 0.05). Conclusion Heterogeneous fibroblast subtypes affect the switch or development of periodontitis. A subtype (Cluster 4) played important role during alveolar bone destruction, by regulating other subtypes via EDA+FN paracrine.
Collapse
Affiliation(s)
- Haicheng Wang
- Department of Pathology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Renbin Wang
- Department of Gastroenterology, The People’s Hospital of Zhongjiang, Zhongjiang, Sichuan Province, 618100, People’s Republic of China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People’s Republic of China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, 100081, People’s Republic of China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, People’s Republic of China
| | - Yuan Feng
- Department of Oral Implantology, School of & Hospital Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Shuyu Xu
- Department of Oral Implantology, School of & Hospital Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People’s Republic of China
| | - Qing-Guo Pei
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People’s Republic of China
| |
Collapse
|
2
|
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A, Mirian M. CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol 2023; 102:151299. [PMID: 36809688 DOI: 10.1016/j.ejcb.2023.151299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Drug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR's role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.
Collapse
Affiliation(s)
- Shiva Shirani-Bidabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aliye Tabatabaee
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nazita Tavazohi
- Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Sciences, Xsphera Biosciences Inc., Boston, MA 02215, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| |
Collapse
|
3
|
Martín-Otal C, Lasarte-Cia A, Serrano D, Casares N, Conde E, Navarro F, Sánchez-Moreno I, Gorraiz M, Sarrión P, Calvo A, De Andrea CE, Echeveste J, Vilas A, Rodriguez-Madoz JR, San Miguel J, Prosper F, Hervas-Stubbs S, Lasarte JJ, Lozano T. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J Immunother Cancer 2022; 10:jitc-2021-004479. [PMID: 35918123 PMCID: PMC9351345 DOI: 10.1136/jitc-2021-004479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Diego Serrano
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Marta Gorraiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Patricia Sarrión
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Alfonso Calvo
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - José Echeveste
- Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Amaia Vilas
- Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Jesús San Miguel
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Jose Lasarte
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Teresa Lozano
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
4
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
5
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
6
|
Yang J, Xu S, Wang HC. Heterogeneity of fibroblasts from radicular cyst influenced osteoclastogenesis and bone destruction. Oral Dis 2020; 26:983-997. [PMID: 32112663 DOI: 10.1111/odi.13317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/17/2023]
Abstract
AIM To analyze the heterogeneity of fibroblasts isolated from the fibrous capsules of radicular cysts and explore the effects of fibroblast subsets on bone destruction. METHODOLOGY Radicular cysts were divided into groups according to varying perilesional sclerosis identified by radiograph. Colony-forming units (CFUs) were isolated from the fibrous capsules of cysts, by which Trap + MNCs were induced, and the expression of osteoclastogenesis-related genes was compared among groups by real-time PCR. The variances in gene profiles of CFUs were identified by principal component analysis, and then, CFUs were divided into subsets using cluster analysis. The induction of Trap + MNCs and related gene expression was compared among subsets, and osteoclastogenic induction was blocked by IST-9 or bevacizumab. The fibroblast subsets in cysts were investigated by retrospective immunostaining with IST-9, VEGF-A, and CD34. A fibroblast subset that underwent gene editing by CRISPR/Cas was injected into the site of bone defects in animal models, and the in vivo effects on osteoclastogenesis were investigated. RESULTS The fibroblast CFUs isolated from radicular cysts with perilesional unsclerotized cysts induced more Trap + MNCs than those with perilesional sclerotic cysts (p < .05). Most fibroblast CFUs from unsclerotized cysts belonged to Cluster 2, which induced more Trap + MNCs (p < .05) and highly expressed genes facilitating osteoclastogenesis; these results were different from those of Cluster 1 (p < .05), in which most CFUs were isolated from perilesional sclerotic cysts or controls (p < .05). The high expression of EDA + FN and VEGF-A was investigated in both the fibroblasts of Cluster 2 and the fibrous capsules of unsclerotized cysts (p < .05), and the number of Trap + MNCs induced by Cluster 2 was decreased by treatment with IST-9 and bevacizumab (p < .05). Consistently, EDA exon exclusion significantly decreased the osteoclastogenic induction of fibroblasts from Cluster 2 in vivo (p < .05). CONCLUSION The fibrous capsules of radicular cysts contain heterogeneous fibroblasts that can form subsets exhibiting different effects on osteoclastogenesis. The subset, which depending on the autocrine effects of EDA + FN on VEGF-A, mainly contributes to the osteoclastogenesis and bone destruction of radicular cysts. The regulation of the proportion of subsets is a possible strategy for artificially interfering with osteoclastogenesis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shuyu Xu
- Department of Oral Implant, School & Hospital Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Hai-Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Yang JW, Jiang JH, Wang HC, Li CY. The extra domain A of fibronectin facilitates osteoclastogenesis in radicular cysts through vascular endothelial growth factor. Int Endod J 2019; 53:478-491. [PMID: 31654436 DOI: 10.1111/iej.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Abstract
AIM To analyse the effects of the alternatively spliced fibronectin (FN) gene and its isoforms on osteoclastogenesis in radicular cysts. METHODOLOGY Specimens of radicular cysts were collected surgically from 22 patients whose radiolucent periapical areas were measured on digital panoramic radiographs before surgery. The associations between the radiolucent areas and FN isoforms, vascular endothelial growth factor (VEGF) expression or micro-vessel density, as well as the relationships amongst them, were analysed by immunohistochemical staining using the antibodies IST-9, BC-1, P1F11, VEGF and CD34. Fibroblasts isolated from those specimens were used to induce Trap + MNCs, and the effects of induction were assessed by blocking FN containing extra domain A (EDA + FN), COX-2 or VEGF in vitro. The effects of EDA exon knockout using CRISPR/Cas system were also assessed. Quantitative PCR was used to analyse relative expression of FN isoforms and osteoclastogenic genes. Data were analysed using linear regression, Spearman's rank correlation analysis, chi-square test and Student's t-test; P < 0.05 was considered significant. RESULTS Micro-vessel density and EDA + FN staining were positively associated with the size of radiolucent periapical areas (mm2 ; P < 0.05), consistent with a positive association between Trap + MNCs and VEGF expression in fibroblasts (P < 0.05). Blocking the interaction between EDA + FN and fibroblasts inhibited Trap + MNC formation. In addition, EDA exon knockout decreased VEGF expression and inhibited Trap + MNC formation to the extent of blocking VEGF by bevacizumab, but osteoclastogenic induction was restored by recombinant VEGF. Using retrospective clinicopathological data, VEGF staining was shown to be positively associated with EDA + FN staining, micro-vessel density and the size of radiolucent areas (P < 0.05). CONCLUSION In fibrous capsules of radicular cysts, the alternatively spliced isoform EDA + FN generated by fibroblasts stimulated VEGF expression via an autocrine effect and then facilitated osteoclastogenesis. Both blockage of VEGF and EDA exon knockout could be used to inhibit bone destruction.
Collapse
Affiliation(s)
- J W Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - J H Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - H C Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - C Y Li
- The Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
8
|
Wang HC, Wang P, Chen YW, Zhang Y. Bevacizumab or fibronectin gene editing inhibits the osteoclastogenic effects of fibroblasts derived from human radicular cysts. Acta Pharmacol Sin 2019; 40:949-956. [PMID: 30382180 DOI: 10.1038/s41401-018-0172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023] Open
Abstract
Fibronectin (FN) is a main component of extracellular matrix (ECM) in most adult tissues. Under pathological conditions, particularly inflammation, wound healing and tumors, an alternatively spliced exon extra domain A (EDA) is included in the FN protein (EDA+FN), which facilitates cellular proliferation, motility, and aggressiveness in different lesions. In this study we investigated the effects of EDA+FN on bone destruction in human radicular cysts and explored the possibility of editing FN gene or blocking the related paracrine signaling pathway to inhibit the osteoclastogenesis. The specimens of radicular cysts were obtained from 20 patients. We showed that the vessel density was positively associated with both the lesion size (R = 0.49, P = 0.001) and EDA+FN staining (R = 0.26, P = 0.022) in the specimens. We isolated fibroblasts from surgical specimens, and used the CRISPR/Cas system to knockout the EDA exon, or used IST-9 antibody and bevacizumab to block EDA+FN and VEGF, respectively. Compared to control fibroblasts, the fibroblasts from radicular cysts exhibited significantly more Trap+MNCs, the relative expression level of VEGF was positively associated with both the ratio of EDA+FN/total FN (R = 0.271, P = 0.019) and with the number of Trap+MNCs (R = 0.331, P = 0.008). The knockout of the EDA exon significantly decreased VEGF expression in the fibroblasts derived from radicular cysts, leading to significantly decreased osteoclastogenesis; similar results were observed using bevacizumab to block VEGF, but block of EDA+FN with IST-9 antibody had no effect. Furthermore, the inhibitory effects of gene editing on Trap+MNC development were restored by exogenous VEGF. These results suggest that EDA+FN facilitates osteoclastogenesis in the fibrous capsule of radicular cysts, through a mechanism mediated by VEGF via an autocrine effect on the fibroblasts. Bevacizumab inhibits osteoclastogenesis in radicular cysts as effectively as the exclusion of the EDA exon by gene editing.
Collapse
|
9
|
Liu C, Wang H. The fibroblast of radicular cyst facilitate osteoclastogenesis via the autocrine of Fibronectin containing extra domain A. Oral Dis 2019; 25:1136-1146. [PMID: 30770599 DOI: 10.1111/odi.13064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Chun‐yan Liu
- Department of Endodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Tongji University Shanghai China
| | - Hai‐Cheng Wang
- Department of Pathology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration Tongji University Shanghai China
| |
Collapse
|