1
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Hassanin AAI, Ramos KS. Modulation of the Oncogenic LINE-1 Regulatory Network in Non-Small Cell Lung Cancer by Exosomal miRNAs. Int J Mol Sci 2024; 25:10674. [PMID: 39409003 PMCID: PMC11477113 DOI: 10.3390/ijms251910674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Several microRNAs (miRNAs), including miR-221-5p, Let-7b-5p, miR-21-5p, miR-9-5p, miR-126-3p, and miR-222-3p, were recently found to be enriched in circulating exosomes of patients with non-small cell lung cancers (NSCLCs). These miRNAs distinguished cancer cases from controls with high precision and were predicted to modulate the expression of genes within the oncogenic LINE-1 regulatory network. To test this hypothesis, plasma exosomes from controls, early, and late-stage NSCLC patients were co-cultured with non-tumorigenic lung epithelial cells for 72 h and processed for measurements of gene expression. Exosomes from late-stage NSCLC patients markedly increased the mRNA levels of LINE-1 ORF1 and ORF2, as well as the levels of target miRNAs in naïve recipient cells compared to saline or control exosomes. Late-stage exosomes also modulated the expression of oncogenic targets within the LINE-1 regulatory network, namely, ICAM1, AGL, RGS3, RGS13, VCAM1, and TGFβ1. In sharp contrast, exosomes from controls or early-stage NSCLC patients inhibited LINE-1 expression, along with many of the genetic targets within the LINE-1 regulatory network. Thus, late-stage NSCLC exosomes activate LINE-1 and miRNA-regulated oncogenic signaling in non-tumorigenic, recipient lung bronchial epithelial cells. These findings raise important questions regarding lung cancer progression and metastasis and open the door for the exploration of new therapeutic interventions.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas Medical Center, Texas A&M Institute of Biosciences and Technology, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Cazzato G, Sgarro N, Casatta N, Lupo C, Ingravallo G, Ribatti D. Epigenetics and Control of Tumor Angiogenesis in Melanoma: An Update with Therapeutic Implications. Cancers (Basel) 2024; 16:2843. [PMID: 39199614 PMCID: PMC11352434 DOI: 10.3390/cancers16162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma. DNA methylation, a key epigenetic modification, can silence angiogenesis inhibitors such as thrombospondin-1 and TIMP3 while promoting pro-angiogenic factors like vascular endothelial growth factor (VEGF). Histone modifications, including methylation and acetylation, also play a pivotal role in regulating the expression of angiogenesis-related genes. For instance, the acetylation of histones H3 and H4 is associated with the upregulation of pro-angiogenic genes, whereas histone methylation patterns can either enhance or repress angiogenic signals, depending on the specific histone mark and context. Non-coding RNAs, particularly microRNAs (miRNAs) further modulate angiogenesis. miRNAs, such as miR-210, have been identified as key regulators, with miR-9 promoting angiogenesis by targeting E-cadherin and enhancing the expression of VEGF. This review also discusses the therapeutic potential of targeting epigenetic modifications to inhibit angiogenesis in melanoma. Epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., 5-azacytidine) and histone deacetylase inhibitors (e.g., Vorinostat), have shown promise in preclinical models by reactivating angiogenesis inhibitors and downregulating pro-angiogenic factors. Moreover, the modulation of miRNAs and lncRNAs presents a novel approach for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nicoletta Sgarro
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
- Engineering and Applied Science Department, University of Bergamo, 24127 Bergamo, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Domenico Ribatti
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
4
|
Genova C, Marconi S, Chiorino G, Guana F, Ostano P, Santamaria S, Rossi G, Vanni I, Longo L, Tagliamento M, Zullo L, Dal Bello MG, Dellepiane C, Alama A, Rijavec E, Ludovini V, Barletta G, Passiglia F, Metro G, Baglivo S, Chiari R, Rivoltini L, Biello F, Baraibar I, Gil-Bazo I, Novello S, Grossi F, Coco S. Extracellular vesicles miR-574-5p and miR-181a-5p as prognostic markers in NSCLC patients treated with nivolumab. Clin Exp Med 2024; 24:182. [PMID: 39105937 PMCID: PMC11303437 DOI: 10.1007/s10238-024-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced non-small cell lung cancer (NSCLC), although patient survival is still unsatisfactory. Accurate predictive markers capable of personalizing the treatment of patients with NSCLC are still lacking. Circulating extracellular vesicles involved in cell-to-cell communications through miRNAs (EV-miRs) transfer are promising markers. Plasma from 245 patients with advanced NSCLC who received nivolumab as second-line therapy was collected and analyzed. EV-miRnome was profiled on 174/245 patients by microarray platform, and selected EV-miRs were validated by qPCR. A prognostic model combining EV-miR and clinical variables was built using stepwise Cox regression analysis and tested on an independent patient cohort (71/245). EV-PD-L1 gene copy number was assessed by digital PCR. For 54 patients with disease control, EV-miR changes at best response versus baseline were investigated by microarray and validated by qPCR. EV-miRNome profiling at baseline identified two EV-miRs (miR-181a-5p and miR-574-5p) that, combined with performance status, are capable of discriminating patients unlikely from those that are likely to benefit from immunotherapy (median overall survival of 4 months or higher than 9 months, respectively). EV-PD-L1 digital evaluation reported higher baseline copy number in patients at increased risk of mortality, without improving the prognostic score. Best response EV-miRNome profiling selected six deregulated EV-miRs (miR19a-3p, miR-20a-5p, miR-142-3p, miR-1260a, miR-1260b, and miR-5100) in responding patients. Their longitudinal monitoring highlighted a significant downmodulation already in the first treatment cycles, which lasted more than 6 months. Our results demonstrate that EV-miRs are promising prognostic markers for NSCLC patients treated with nivolumab.
Collapse
Affiliation(s)
- Carlo Genova
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Silvia Marconi
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy.
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo Ed Elvo Tempia, Via Malta, 3, 13900, Biella, Italy
| | - Sara Santamaria
- UOC Clinica Di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Giovanni Rossi
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Irene Vanni
- Genetica Oncologica, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Luca Longo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Marco Tagliamento
- Dipartimento Di Medicina Interna E Specialità Mediche (DiMI), Università Degli Studi Di Genova, Viale Benedetto XV, 6, 16132, Genoa, Italy
| | - Lodovica Zullo
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Maria Giovanna Dal Bello
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Chiara Dellepiane
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Angela Alama
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Erika Rijavec
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 35, 20122, Milan, Italy
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Giulia Barletta
- UOC Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria Della Misericordia Hospital, Piazzale Giorgio Menghini, 3, 06129, Perugia, Italy
| | - Rita Chiari
- Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Piazzale Cinelli 4, 61126, Pesaro, PU, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Giacomo Venezian, 1, 20133, Milan, Italy
| | - Federica Biello
- Oncology Unit, Azienda Ospedaliera Universitaria Maggiore Della Carità, Largo Bellini, 28100, Novara, Italy
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Av. de Pío XII, 36, 31008, Pamplona, Spain
- Program in Solid Tumors, Center for Applied Medical Research and Navarra Institute for Health Research, Av. de Pío XII, 55, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Regione Gonzole, 10, 10043, Orbassano, TO, Italy
| | - Francesco Grossi
- Division of Medical Oncology, Department of Medicine and Surgery, Ospedale Di Circolo E Fondazione Macchi, ASST Dei Sette Laghi, Via Lazio, 36, 21100, Varese, Italy
| | - Simona Coco
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
5
|
Shao W, Wang Y, Liu L, Ren Y, Wang J, Cui Y, Liu J, Zhang X, Zhang S, Liu S, Jiang E, Feng S, Pei X. Combining serum microRNAs and machine learning algorithms for diagnosing infectious fever after HSCT. Ann Hematol 2024; 103:2089-2102. [PMID: 38691145 DOI: 10.1007/s00277-024-05755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yixuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yiran Ren
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuqing Cui
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuangjie Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
6
|
Wang Y, Yang Y, Xie L, An X, Zhang L. MiR-24-3p enhances the Treg/Th17 balance to improve cerebral ischemic injury by suppressing acetyl-CoA carboxylase 1 expression. J Neuroimmunol 2024; 390:578344. [PMID: 38640826 DOI: 10.1016/j.jneuroim.2024.578344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology, The PLA Strategic Support Force Characteristic Medical Center, No.9 Anxiang Beili, Chaoyang District, Beijing 100101, China
| | - Yan Yang
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Lijun Xie
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Xiaona An
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China
| | - Lu Zhang
- Department of Anesthesiology, Zibo Central Hospital, No.54 Gongqingtuanxi Road, Zhangdian District, Zibo 255020, China.
| |
Collapse
|
7
|
He J, Yang L. [Advances in salivary exosomal miRNAs in head and neck squamous carcinoma]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:261-266. [PMID: 38433699 PMCID: PMC11233219 DOI: 10.13201/j.issn.2096-7993.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 03/05/2024]
Abstract
Salivary exosomes are extracellular vesicles of 30-150 nm in diameter that exist in saliva and play an important role in substance exchange and signal transduction between cells, delivering the lipids, proteins and nucleic acids they carry to the recipient cells and regulating the physiological and pathological processes of the recipient cells. miRNA, as an important "cargo" in exosomes, is transported to the recipient cells and regulates the signaling pathways of the recipient cells, thus playing a regulatory role in disease progression. The miRNAs are transported to the recipient cells and regulate the signaling pathways of the recipient cells, thus playing a regulatory role in the progression of diseases. With the development of technological tools this year, numerous studies have revealed the important role of salivary exosomal miRNAs in the development of head and neck squamous carcinoma and the role of salivary exosomal miRNAs in the diagnosis and treatment of head and neck squamous carcinoma. This paper reviews the occurrence, treatment and prognosis of salivary exosomal miRNA in head and neck squamous carcinoma, and discusses the potential prospects and importance of salivary exosomal miRNA as a biomarker in the diagnosis of head and neck squamous carcinoma.
Collapse
Affiliation(s)
- Jinyi He
- West China School of Clinical Medicine,Sichuan University,Chengdu,610041,China
| | - Liu Yang
- Department of Otolaryngology Head & Neck Surgery,West China Hospital,Sichuan University
| |
Collapse
|
8
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
9
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
10
|
Wang J, Jiang W, Liu S, Shi K, Zhang Y, Chen Y, Shan J, Wang Y, Xu X, Li C, Li X. Exosome-derived miR-182-5p promoted cholangiocarcinoma progression and vasculogenesis by regulating ADK/SEMA5a/PI3K pathway. Liver Int 2024; 44:370-388. [PMID: 37950359 DOI: 10.1111/liv.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Increasing evidence suggested that miRNAs regulated the expression of pivotal genes involved in oncogenesis and malignant phenotype. In this project, the purpose was to make an inquiry to the effect and mechanism of miR-182-5p in the progression of cholangiocarcinoma. METHODS By analysing TCGA and GEO databases, combined with tissue expression levels, miR-182-5p was identified as one of the most valuable miRNAs for research. The function and relationships between miR-182-5p and downstream target genes were both verified by in vitro and in vivo experiments. Methylation-specific PCR and bisulphite sequencing were used to detect the methylation level changes of downstream gene promoter. RESULTS We found that miR-182-5p could be taken up by exosomes secreted from cholangiocarcinoma. Moreover, exosomal derived miR-182-5p promoted vascular endothelial cell proliferation and migration and induced angiogenesis by targeting ADK/SEMA5a. Subsequently, the PI3K/AKT/mTOR signalling pathway was activated and ultimately caused resistance to gemcitabine and cisplatin. CONCLUSIONS Our findings suggested that the miR-182-5p/ADK/SEMA5a axis might serve as a potential therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jifei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuochen Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuangheng Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yananlan Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jijun Shan
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
- NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK, Gangopadhyay M, Jha SK, Liu Q. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer 2024; 23:18. [PMID: 38243280 PMCID: PMC10797874 DOI: 10.1186/s12943-024-01932-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
The production and release of tumor-derived small extracellular vesicles (TDSEVs) from cancerous cells play a pivotal role in the propagation of cancer, through genetic and biological communication with healthy cells. TDSEVs are known to orchestrate the invasion-metastasis cascade via diverse pathways. Regulation of early metastasis processes, pre-metastatic niche formation, immune system regulation, angiogenesis initiation, extracellular matrix (ECM) remodeling, immune modulation, and epithelial-mesenchymal transition (EMT) are among the pathways regulated by TDSEVs. MicroRNAs (miRs) carried within TDSEVs play a pivotal role as a double-edged sword and can either promote metastasis or inhibit cancer progression. TDSEVs can serve as excellent markers for early detection of tumors, and tumor metastases. From a therapeutic point of view, the risk of cancer metastasis may be reduced by limiting the production of TDSEVs from tumor cells. On the other hand, TDSEVs represent a promising approach for in vivo delivery of therapeutic cargo to tumor cells. The present review article discusses the recent developments and the current views of TDSEVs in the field of cancer research and clinical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Moumita Gangopadhyay
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, 700126, West Bengal, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, New Delhi, Delhi, 110008, India.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- The Institute of Skull Base Surgery and Neuro-Oncology at Hunan Province, Changsha, 410008, China.
| |
Collapse
|
12
|
Lefebvre A, Trioën C, Renaud S, Laine W, Hennart B, Bouchez C, Leroux B, Allorge D, Kluza J, Werkmeister E, Grolez GP, Delhem N, Moralès O. Extracellular vesicles derived from nasopharyngeal carcinoma induce the emergence of mature regulatory dendritic cells using a galectin-9 dependent mechanism. J Extracell Vesicles 2023; 12:e12390. [PMID: 38117000 PMCID: PMC10731827 DOI: 10.1002/jev2.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Nasopharyngeal carcinoma-derived small extracellular vesicles (NPCSEVs) have an immunosuppressive impact on the tumour microenvironment. In this study, we investigated their influence on the generation of tolerogenic dendritic cells and the potential involvement of the galectin-9 (Gal9) they carry in this process. We analysed the phenotype and immunosuppressive properties of NPCSEVs and explored the ability of DCs exposed to NPCSEVs (NPCSEV-DCs) to regulate T cell proliferation. To assess their impact at the pathophysiological level, we performed real-time fluorescent chemoattraction assays. Finally, we analysed phenotype and immunosuppressive functions of NPCSEV-DCs using a proprietary anti-Gal9 neutralising antibody to assess the role of Gal9 in this effect. We described that NPCSEV-DCs were able to inhibit T cell proliferation despite their mature phenotype. These mature regulatory DCs (mregDCs) have a specific oxidative metabolism and secrete high levels of IL-4. Chemoattraction assays revealed that NPCSEVs could preferentially recruit NPCSEV-DCs. Finally, and very interestingly, the reduction of the immunosuppressive function of NPCSEV-DCs using an anti-Gal9 antibody clearly suggested an important role for vesicular Gal9 in the induction of mregDCs. These results revealed for the first time that NPCSEVs promote the emergence of mregDCs using a galectin-9 dependent mechanism and open new perspectives for antitumour immunotherapy targeting NPCSEVs.
Collapse
Affiliation(s)
- Anthony Lefebvre
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Camille Trioën
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Sarah Renaud
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - William Laine
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | | | - Clément Bouchez
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | | | - Jérôme Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| | - Elisabeth Werkmeister
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 – UAR 2014 – PLBSLilleFrance
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille U1189 – ONCO‐THAI – Assisted Laser Therapy and Immunotherapy for OncologyLilleFrance
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020‐U1277 ‐ CANTHER ‐ Cancer Heterogeneity Plasticity and Resistance to TherapiesLilleFrance
| |
Collapse
|
13
|
Asleh K, Dery V, Taylor C, Davey M, Djeungoue-Petga MA, Ouellette RJ. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark Res 2023; 11:99. [PMID: 37978566 PMCID: PMC10655470 DOI: 10.1186/s40364-023-00540-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
While the field of precision oncology is rapidly expanding and more targeted options are revolutionizing cancer treatment paradigms, therapeutic resistance particularly to immunotherapy remains a pressing challenge. This can be largely attributed to the dynamic tumor-stroma interactions that continuously alter the microenvironment. While to date most advancements have been made through examining the clinical utility of tissue-based biomarkers, their invasive nature and lack of a holistic representation of the evolving disease in a real-time manner could result in suboptimal treatment decisions. Thus, using minimally-invasive approaches to identify biomarkers that predict and monitor treatment response as well as alert to the emergence of recurrences is of a critical need. Currently, research efforts are shifting towards developing liquid biopsy-based biomarkers obtained from patients over the course of disease. Liquid biopsy represents a unique opportunity to monitor intercellular communication within the tumor microenvironment which could occur through the exchange of extracellular vesicles (EVs). EVs are lipid bilayer membrane nanoscale vesicles which transfer a plethora of biomolecules that mediate intercellular crosstalk, shape the tumor microenvironment, and modify drug response. The capture of EVs using innovative approaches, such as microfluidics, magnetic beads, and aptamers, allow their analysis via high throughput multi-omics techniques and facilitate their use for biomarker discovery. Artificial intelligence, using machine and deep learning algorithms, is advancing multi-omics analyses to uncover candidate biomarkers and predictive signatures that are key for translation into clinical trials. With the increasing recognition of the role of EVs in mediating immune evasion and as a valuable biomarker source, these real-time snapshots of cellular communication are promising to become an important tool in the field of precision oncology and spur the recognition of strategies to block resistance to immunotherapy. In this review, we discuss the emerging role of EVs in biomarker research describing current advances in their isolation and analysis techniques as well as their function as mediators in the tumor microenvironment. We also highlight recent lung cancer and melanoma studies that point towards their application as predictive biomarkers for immunotherapy and their potential clinical use in precision immuno-oncology.
Collapse
Affiliation(s)
- Karama Asleh
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.
| | - Valerie Dery
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | | | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Dr Georges L. Dumont University Hospital, Vitalite Health Network, Moncton, New Brunswick, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Mizuhara K, Shimura Y, Tsukamoto T, Kanai A, Kuwahara-Ota S, Yamaguchi J, Muramatsu A, Okamoto H, Taminishi-Katsuragawa Y, Kawaji-Kanayama Y, Isa R, Mizutani S, Inaba T, Kuroda J. Tumour-derived exosomes promote the induction of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells by delivering miR-106a-5p and miR-146a-5p in multiple myeloma. Br J Haematol 2023; 203:426-438. [PMID: 37584109 DOI: 10.1111/bjh.19049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
The shift of the tumour immune microenvironment to a suppressive state promotes not only the development and progression of the disease in multiple myeloma (MM) but also the development of resistance to immunotherapy. We previously demonstrated that myeloma cells can induce monocytic myeloid-derived suppressor cells (M-MDSCs) from healthy peripheral blood mononuclear cells (PBMCs) via the concomitant secretion of CC motif chemokine ligand 5 (CCL5) and macrophage migration inhibitory factor (MIF), but an unknown mediator also promotes M-MDSC induction. This study demonstrates that miR-106a-5p and miR-146a-5p delivered by tumour-derived exosomes (TEXs) from myeloma cells play essential roles in M-MDSC induction in MM. MiR-106a-5p and miR-146a-5p upregulate various immunosuppressive/inflammatory molecules in PBMCs, such as IDO1, CD38, programmed death-ligand 1, CCL5 or MYD88, which are involved in interferon (IFN)-α response, IFN-γ response, inflammatory response, tumour necrosis factor-α signalling and Interleukin-6-JAK-STAT3 signalling. These molecular features mirror the increases in myeloid cellular compartments of PBMCs when co-cultured with myeloma cells. MiR-106a-5p and miR-146a-5p have a compensatory relationship, and these two miRNAs collaborate with CCL5 and MIF to promote M-MDSC induction. Collectively, novel therapeutic candidates may be involved in TEX-mediated sequential cellular and molecular events underlying M-MDSC induction, potentially improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Kentaro Mizuhara
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akinori Kanai
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Hematology, Japan Community Health Care Organization, Kyoto Kuramaguchi Medical Center, Kyoto, Japan
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Ayako Muramatsu
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Haruya Okamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Taminishi-Katsuragawa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuka Kawaji-Kanayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Weng HP, Ke CH, Tung CW, Tani A, Wang CC, Yang WY, Wang YS, Han W, Liao CH, Tomiyasu H, Lin CS. Canine diffuse large b-cell lymphoma downregulates the activity of CD8 + T-cells through tumor-derived extracellular vesicles. Cancer Cell Int 2023; 23:252. [PMID: 37884996 PMCID: PMC10601183 DOI: 10.1186/s12935-023-03104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Tumor-derived extracellular vesicles (EVs) have been proposed as the essential mediator between host immunity and cancer development. These EVs conduct cellular communication to facilitate tumor growth, enable invasion and metastasis, and shape the favorable tumor microenvironment. Lymphoma is one of the most common hematological malignancies in humans and dogs. Effective T-cell responses are required for the control of these malignancies. However, the immune crosstalk between CD8 + T-cells, which dominates anti-tumor responses, and canine lymphoma has rarely been described. METHODS This study investigates the immune manipulating effects of EVs, produced from the clinical cases and cell line of canine B cell lymphoma, on CD8 + T-cells isolated from canine donors. RESULTS Lymphoma-derived EVs lead to the apoptosis of CD8 + T-cells. Furthermore, EVs trigger the overexpression of CTLA-4 on CD8 + T-cells, which indicates that EV blockade could serve as a potential therapeutic strategy for lymphoma patients. Notably, EVs transform the CD8 + T-cells into regulatory phenotypes by upregulating their PD-1, PD-L1, and FoxP3 mRNA expression. The regulatory CD8 + T-cells secret the panel of inhibitory cytokines and angiogenic factors and thus create a pro-tumorigenic microenvironment. CONCLUSION In summary, the current study demonstrated that the EVs derived from canine B cell lymphoma impaired the anti-tumor activity of CD8 + T-cells and manipulated the possible induction of regulatory CD8 + T-cells to fail the activation of host cellular immunity.
Collapse
Affiliation(s)
- Hsin-Pei Weng
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 106, Taipei, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Akiyoshi Tani
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Chia-Chi Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Shan Wang
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Winston Han
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC.
| |
Collapse
|
16
|
Kumar S, Dhar R, Kumar LBSS, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol 2023; 40:321. [PMID: 37798480 DOI: 10.1007/s12032-023-02176-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023]
Abstract
Cancer is the most challenging global health crisis. In the recent times, studies on extracellular vesicles (EVs) are adding a new chapter to cancer research and reports on EVs explores cancer in a new dimension. Exosomes are a group of subpopulations of EVs. It originates from the endosomes and carries biologically active molecules to the neighboring cells which in turn transforms the recipient cell activity. In general, it plays a role in cellular communication. The correlation between exosomes and cancer is fascinating. Tumor-derived exosomes (TEXs) play a dynamic role in cancer progression and are associated with uncontrolled cell growth, angiogenesis, immune suppression, and metastasis. Its molecular cargo is an excellent source of cancer biomarkers. Several advanced molecular profiling approaches assist in exploring the TEXs in depth. This paves the way for a strong foundation for identifying and detecting more specific and efficient biomarkers. TEXs are also gaining importance in scientific society for its role in cancer therapy and several clinical trials based on TEXs is a proof of its significance. In this review, we have highlighted the role of TEXs in mediating immune cell reprogramming, cancer development, metastasis, EMT, organ-specific metastasis, and its clinical significance in cancer theranostics. TEXs profiling is an effective method to understand the complications associated with cancer leading to good health and well-being of the individual and society as a whole.
Collapse
Affiliation(s)
- Samruti Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Lokesh Babu Sirkali Suresh Kumar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Gauresh Gurudas Shivji
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, 28, Sonipat, 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT, 0909, Australia
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
17
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
18
|
Nail HM, Chiu CC, Leung CH, Ahmed MMM, Wang HMD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci 2023; 30:69. [PMID: 37605155 PMCID: PMC10440907 DOI: 10.1186/s12929-023-00964-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Extracellular communication, in other words, crosstalk between cells, has a pivotal role in the survival of an organism. This communication occurs by different methods, one of which is extracellular vesicles. Exosomes, which are small lipid extracellular vesicles, have recently been discovered to have a role in signal transduction between cells inside the body. These vesicles contain important bioactive molecules including lipids, proteins, DNA, mRNA, and noncoding RNAs such as microRNAs (miRNAs). Exosomes are secreted by all cells including immune cells (macrophages, lymphocytes, granulocytes, dendritic cells, mast cells) and tumor cells. The tumor microenvironment (TME) represents a complex network that supports the growth of tumor cells. This microenvironment encompasses tumor cells themselves, the extracellular matrix, fibroblasts, endothelial cells, blood vessels, immune cells, and non-cellular components such as exosomes and cytokines. This review aims to provide insights into the latest discoveries concerning how the immune system communicates internally and with other cell types, with a specific focus on research involving exosomal miRNAs in macrophages, dendritic cells, B lymphocytes, and T lymphocytes. Additionally, we will explore the role of exosomal miRNA in the TME and the immunomodulatory effect.
Collapse
Affiliation(s)
- Howida M Nail
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Mahmoud M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, 404, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
19
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
20
|
Kan CM, Pei XM, Yeung MHY, Jin N, Ng SSM, Tsang HF, Cho WCS, Yim AKY, Yu ACS, Wong SCC. Exploring the Role of Circulating Cell-Free RNA in the Development of Colorectal Cancer. Int J Mol Sci 2023; 24:11026. [PMID: 37446204 DOI: 10.3390/ijms241311026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Circulating tumor RNA (ctRNA) has recently emerged as a novel and attractive liquid biomarker. CtRNA is capable of providing important information about the expression of a variety of target genes noninvasively, without the need for biopsies, through the use of circulating RNA sequencing. The overexpression of cancer-specific transcripts increases the tumor-derived RNA signal, which overcomes limitations due to low quantities of circulating tumor DNA (ctDNA). The purpose of this work is to present an up-to-date review of current knowledge regarding ctRNAs and their status as biomarkers to address the diagnosis, prognosis, prediction, and drug resistance of colorectal cancer. The final section of the article discusses the practical aspects involved in analyzing plasma ctRNA, including storage and isolation, detection technologies, and their limitations in clinical applications.
Collapse
Affiliation(s)
- Chau-Ming Kan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Nana Jin
- Codex Genetics Limited, Shatin, Hong Kong SAR, China
| | - Simon Siu Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | | | | | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
21
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal 2023; 21:150. [PMID: 37349803 PMCID: PMC10286389 DOI: 10.1186/s12964-023-01111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023] Open
Abstract
Multiple studies have shown that extracellular vesicles (EVs) play a key role in the process of information transfer and material transport between cells. EVs are classified into different types according to their sizes, which includes the class of exosomes. In comparison to normal EVs, tumor-derived EVs (TDEs) have both altered components and quantities of contents. TDEs have been shown to help facilitate an environment conducive to the occurrence and development of tumor by regulation of glucose, lipids and amino acids. Furthermore, TDEs can also affect the host metabolism and immune system. EVs have been shown to have multiple clinically useful properties, including the use of TDEs as biomarkers for the early diagnosis of diseases and using the transport properties of exosomes for drug delivery. Targeting the key bioactive cargoes of exosomes could be applied to provide new strategies for the treatment of tumors. In this review, we summarize the finding of studies focused on measuring the effects of TDE on tumor-related microenvironment and systemic metabolism. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Junlong Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Wei Yan
- School of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Bradley M. Downs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231 USA
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| | - Juanjuan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei China
| |
Collapse
|
23
|
Li R, Zhou Y, Zhang M, Xie R, Duan N, Liu H, Qin Y, Ma J, Li Z, Ye P, Wang W, Wang X. Oral squamous cell carcinoma-derived EVs promote tumor progression by regulating inflammatory cytokines and the IL-17A-induced signaling pathway. Int Immunopharmacol 2023; 118:110094. [PMID: 37030119 DOI: 10.1016/j.intimp.2023.110094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Inflammatory cytokines in the tumor microenvironment (TME) contribute to tumor growth, proliferation, and invasion, and tumor-derived extracellular vesicles (EVs) act as critical "messengers" of communication in the tumor microenvironment. The effects of EVs derived from oral squamous cell carcinoma (OSCC) cells on tumor progression and the inflammatory microenvironment are still unclear. Our study aims to investigate the role of OSCC-derived EVs in tumor progression, the imbalanced TME, and immunosuppression and their effect on the IL-17A-induced signaling pathway. METHODS EVs were isolated from the supernatant of a mouse OSCC cell line, SCC7. The effects of SCC7-EVs and the EV release-specific inhibitor GW4869 on the proliferation and migration of SCC7 cells were investigated in vitro by using CCK-8 and scratch wound healing assays. RT-qPCR and ELISA were performed to examine the alterations in cytokine levels. Then, a mouse xenograft model of OSCC was established by submucosal injection of SCC7 cells with or without SCC7-EV and GW4869 treatment. The effects of GW4869 and SCC7-EVs on xenograft tumor proliferation and invasion were investigated by tumor volume determination and histopathological examination. ELISA was used to investigate the changes in serum cytokine levels. Immunohistochemistry was adopted to analyze the alterations in the levels of inflammatory cytokines, immune factors, and crucial molecules in the IL-17A signaling pathway. RESULTS SCC7-derived EVs increased the supernatant and serum levels of IL-17A, IL-10, IL-1β, and PD-L1, while GW4869 decreased those of TNF-α and IFN-γ. SCC7-EV treatment significantly increased xenograft tumor growth and invasion in mice but resulted in little liquefactive necrosis in tumors. However, GW4869 treatment significantly inhibited xenograft tumor growth but resulted in more liquefactive necrosis. SCC7-derived EVs decreased the expression level of PTPN2, suppressing the immune responses of CD8 + T cells in vivo. Moreover, SCC7-EV treatment significantly enhanced the tumor expression levels of crucial molecules in the IL-17A pathway, including IL-17A, TRAF6 and c-FOS, whereas GW4869 treatment significantly reduced those levels in tumor tissues. CONCLUSION Our results indicated that OSCC-derived EVs can promote tumor progression by altering the TME, causing an inflammatory cytokine imbalance, inducing immunosuppression, and contributing to overactivation of the IL-17A-induced signaling pathway. Our study might provide novel insights into the role of OSCC-derived EVs in tumor biological behavior and immune dysregulation.
Collapse
|
24
|
Pan Y, Liu Y, Wei W, Yang X, Wang Z, Xin W. Extracellular Vesicles as Delivery Shippers for Noncoding RNA-Based Modulation of Angiogenesis: Insights from Ischemic Stroke and Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205739. [PMID: 36592424 DOI: 10.1002/smll.202205739] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ischemic stroke and systemic cancer are two of the leading causes of mortality. Hypoxia is a central pathophysiological component in ischemic stroke and cancer, representing a joint medical function. This function includes angiogenesis regulation. Vascular remodeling coupled with axonal outgrowth following cerebral ischemia is critical in improving poststroke neurological functional recovery. Antiangiogenic strategies can inhibit cancer vascularization and play a vital role in impeding cancer growth, invasion, and metastasis. Although there are significant differences in the cause of angiogenesis across both pathophysiological conditions, emerging evidence states that common signaling structures, such as extracellular vesicles (EVs) and noncoding RNAs (ncRNAs), are involved in this context. EVs, heterogeneous membrane vesicles encapsulating proteomic genetic information from parental cells, act as multifunctional regulators of intercellular communication. Among the multifaceted roles in modulating biological responses, exhaustive evidence shows that ncRNAs are selectively sorted into EVs, modulating common specific aspects of cancer development and stroke prognosis, namely, angiogenesis. This review will discuss recent advancements in the EV-facilitated/inhibited progression of specific elements of angiogenesis with a particular concern about ncRNAs within these vesicles. The review is concluded by underlining the clinical opportunities of EV-derived ncRNAs as diagnostic, prognostic, and therapeutic agents.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wei Wei
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, 621000, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, 37075, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Neurological Institute, Tianjin, 300052, China
| |
Collapse
|
25
|
Roi A, Boia S, Rusu LC, Roi CI, Boia ER, Riviș M. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines 2023; 11:biomedicines11030965. [PMID: 36979943 PMCID: PMC10046112 DOI: 10.3390/biomedicines11030965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Oral cancer is currently challenging the healthcare system, with a high incidence among the population and a poor survival rate. One of the main focuses related to this malignancy is the urge to implement a viable approach for improving its early diagnosis. By introducing the use of liquid biopsy and the identification of potential biomarkers, aiming for a noninvasive approach, new advancements offer promising perspectives in the diagnosis of oral cancer. The present review discusses the potential of circulating miRNAs as oral cancer biomarkers identified in body fluids such as serum, plasma, and saliva samples of oral cancer patients. Existing results reveal an important implication of different miRNA expressions involved in the initiation, development, progression, and metastasis rate of oral malignancy. Liquid biomarkers can play a crucial role in the development of the concept of personalized medicine, providing a wide range of clinical applications and future targeted therapies.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ciprian Ioan Roi
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| | - Eugen Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mircea Riviș
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| |
Collapse
|
26
|
The Long Noncoding RNA Cytoskeleton Regulator RNA (CYTOR)/miRNA-24-3p Axis Facilitates Nasopharyngeal Carcinoma Progression by Modulating GAD1 Expression. JOURNAL OF ONCOLOGY 2023; 2023:6027860. [PMID: 36814556 PMCID: PMC9940962 DOI: 10.1155/2023/6027860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck epithelial carcinoma that is unusually prevalent in Southeast Asia. Noncoding RNAs, including lncRNA and miRNA, and their target genes are considered vital regulators of tumorigenesis and the progression of NPC. However, the detailed underlying mechanisms of GAD1 involved in the regulation of NPC need to be further elucidated. In the present study, we identified that GAD1 was significantly upregulated in NPC tissues. GAD1 overexpression is promoted, while genetic knockdown of GAD1 suppresses proliferation, colony formation, migration, and invasion of NPC cells. Bioinformatics analysis and a luciferase reporter assay demonstrated that GAD1 is a direct target gene of miR-24-3p. In NPC tissues, miR-24-3p was downregulated and the lncRNA CYTOR was upregulated. CYTOR was sponged to suppress the function of miR-24-3p. CYTOR regulates GAD1 expression via modulating miR-24-3p. The CYTOR/miR-24-3p/GAD1 axis is converged to modulate the growth, migration, and invasion of NPC cells. In conclusion, the study identified a novel axis for the regulation of NPC cell growth, providing new insights into the understanding of NPC.
Collapse
|
27
|
Sharma A, Singh AP, Singh S. Shaping Up the Tumor Microenvironment: Extracellular Vesicles as Important Intermediaries in Building a Tumor-Supportive Cellular Network. Cancers (Basel) 2023; 15:cancers15020501. [PMID: 36672450 PMCID: PMC9856954 DOI: 10.3390/cancers15020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
A tumor is not just comprised of cancer cells but also a heterogeneous group of infiltrating and resident host cells, as well as their secreted factors that form the extracellular matrix [...].
Collapse
Affiliation(s)
- Amod Sharma
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
| | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Correspondence: (A.P.S.); seem (S.S.); Tel.: +1-251-445-9843 (A.P.S.); +1-251-445-9844 (S.S.)
| |
Collapse
|
28
|
Gao YN, Wang ZW, Yang X, Wang JQ, Zheng N. Aflatoxin M1 and ochratoxin A induce a competitive endogenous RNA regulatory network of intestinal immunosuppression by whole-transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158777. [PMID: 36115400 DOI: 10.1016/j.scitotenv.2022.158777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are common mycotoxins in cereal foods and milk products, and may cause serious negative impacts on human health. The intestine is crucial for immune regulation as it protects host homeostatic health from external contaminants; however, the underlying mechanisms of AFM1 and OTA mediated intestinal immunotoxicity remain unclear. In this study, whole transcriptome analysis was used to characterize BALB/c mouse intestines exposed to individual and combined AFM1 and OTA [3.0 mg/kg body weight (BW)] for 28 days to screen for key intestinal immunotoxicity-related differentially expressed mRNAs (DEmRNAs), differentially expressed microRNAs (DEmiRNAs), differentially expressed long non-coding RNAs (DElncRNAs), and associated enriched signaling pathways. Functional validation was then conducted in intestinal differentiated Caco-2 cells using different inhibitor assays to verify the accuracy of transcriptome and the importance of the key screened regulatory factors. In vivo data revealed that AFM1 and OTA exposure disrupted the intestines and exerted intestinal immunosuppression effects. When compared with AFM1, OTA had stronger intestinal toxicity in combined treatments. Further analyses of competitive endogenous RNA (ceRNA) regulatory networks in mice showed that AFM1 and OTA mediated-intestinal immunosuppression was putatively explained as follows: (i) toxins affected DEmRNAs regarding transfer and transduction mechanisms between cells (Csf1, Csf1r, Cxcl10, Cx3cr1, and Irf1), which were regulated by key DEmiRNAs (miR-106-x, miR-107-y, and miR-124-y) and the DElncRNA Rian, and (ii) toxins inhibited transforming growth factor-β-activated kinase 1 (TAK1)/I-kappaB kinase (IKK)/inhibitor of kappa Bα (IκBα)/p65 nuclear factor-κB (NF-κB) signaling phosphorylation levels, which was validated in differentiated Caco-2 cells using the TAK1 inhibitor (5Z-7-oxozeaenol). In conclusion, we evaluated the risk of co-exposure to AFM1 and OTA and associated health hazards from a whole transcriptome perspective.
Collapse
Affiliation(s)
- Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
29
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
30
|
The emerging roles of exosome-derived noncoding RNAs in the tumor immune microenvironment and their future applications. Biomed Pharmacother 2022; 156:113863. [DOI: 10.1016/j.biopha.2022.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
|
31
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
32
|
Exploration of the Simple and Green Synthetic Route of Hollow Titanium Dioxide Microspheres for In-Depth Analysis of Phosphopeptides in the Serum of Nasopharyngeal Carcinoma Patients. Chromatographia 2022. [DOI: 10.1007/s10337-022-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
34
|
Xu Z, Chen Y, Ma L, Chen Y, Liu J, Guo Y, Yu T, Zhang L, Zhu L, Shu Y. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther 2022; 30:3133-3154. [PMID: 35405312 PMCID: PMC9552915 DOI: 10.1016/j.ymthe.2022.01.046] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.
Collapse
Affiliation(s)
- Zijie Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ling Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yizhang Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jingya Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuchen Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ting Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lianghui Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Oncology, The Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211112, China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
35
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. miR-1908: a microRNA with diverse functions in cancers and non-malignant conditions. Cancer Cell Int 2022; 22:281. [PMID: 36100870 PMCID: PMC9469614 DOI: 10.1186/s12935-022-02709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are small-sized transcripts with about 22 nucleotide length. They have been shown to influence almost every aspect of cellular functions through regulation of expression of target genes. miR-1908 is a miRNA with diverse roles in human disorders. This miRNA is encoded by MIR1908 gene on chr11:61,815,161-61,815,240, minus strand. Expression assays have confirmed dysregulation of miR-1908 in cancer-derived cell lines in addition to biological samples obtained from patients affected with cancer. In most assessed cell lines, miR-1908 has an oncogenic role. However, this miRNA has been shown to act as a tumor suppressor in chordoma, lung cancer and ovarian cancer. In addition, several lines of evidence have shown involvement of this miRNA in the pathoetiology of bipolar disorder, myocardial infarction, obesity, renal fibrosis, rheumatoid arthritis and scar formation. In the current review, we elucidate the results of diverse studies which evaluated participation of miR-1908 in these conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Tian Y, Liu Y, Wang Q, Wen J, Wu Y, Han J, Man C. Stress-Induced Immunosuppression Affects Immune Response to Newcastle Disease Virus Vaccine via Circulating miRNAs. Animals (Basel) 2022; 12:ani12182376. [PMID: 36139236 PMCID: PMC9495071 DOI: 10.3390/ani12182376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Circulating miRNAs play important roles in immune response and stress-induced immunosuppression, but the function and mechanism of stress-induced immunosuppression affecting the NDV vaccine immune response remain unknown. In our study, key timepoints, functions, mechanisms, and potential biomarkers of circulating miRNAs involved in immune response and immunosuppression were discovered, providing a theoretical basis for studying the roles of circulating miRNAs in immune regulation. Abstract Studies have shown that circulating microRNAs (miRNAs) are important players in the immune response and stress-induced immunosuppression. However, the function and mechanism of stress-induced immunosuppression affecting the immune response to the Newcastle disease virus (NDV) vaccine remain largely unknown. This study analyzed the changes of 15 NDV-related circulating miRNAs at different immune stages by qRT-PCR, aiming to explore the key timepoints, potential biomarkers, and mechanisms for the functional regulation of candidate circulating miRNAs under immunosuppressed conditions. The results showed that stress-induced immunosuppression induced differential expressions of the candidate circulating miRNAs, especially at 2 days post immunization (dpi), 14 dpi, and 28 dpi. In addition, stress-induced immunosuppression significantly affected the immune response to NDV vaccine, which was manifested by significant changes in candidate circulating miRNAs at 2 dpi, 5 dpi, and 21 dpi. The featured expressions of candidate circulating miRNAs indicated their potential application as biomarkers in immunity and immunosuppression. Bioinformatics analysis revealed that the candidate circulating miRNAs possibly regulated immune function through key targeted genes, such as Mg2+/Mn2+-dependent 1A (PPM1A) and Nemo-like kinase (NLK), in the MAPK signaling pathway. This study provides a theoretical reference for studying the function and mechanism of circulating miRNAs in immune regulation.
Collapse
|
38
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
39
|
Stress-induced immunosuppression affecting avian influenza virus vaccine immune response through miR-20a-5p/NR4A3 pathway in chicken. Vet Microbiol 2022; 273:109546. [PMID: 35994844 DOI: 10.1016/j.vetmic.2022.109546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
Stress-induced immunosuppression is one of the most common hazards in poultry intensive production, which often leads to vaccination failure and severe economic losses. At present, there is no report about the function and mechanism of circulating miRNA on stress-induced immunosuppression affecting immune response. In this study, the changes of circulating miR-20a-5p under stress-induced immunosuppressive condition were analyzed by qRT-PCR, and the key time points, tissues and mechanisms for functional regulation of miR-20a-5p in the process of stress-induced immunosuppression affecting avian influenza virus (AIV) vaccine immune response were identified. The results showed that stress-induced immunosuppression down-regulated miR-20a-5p and further affected AIV vaccine immune response, in which 5 day post immunization (dpi) was a key time point, and the heart, lung, and proventriculus were the important tissues. The game relationship analysis between miR-20a-5p and its target nuclear receptor subfamily 4 group A member 3 (NR4A3) gene showed that "miR-20a-5p/NR4A3" pathway was the potential key mechanism of this process, especially for heart and lung. This study provides insights into the molecular mechanisms of stress-induced immunosuppression affecting immune response.
Collapse
|
40
|
Zhang T, Yu H, Dai X, Zhang X. CMTM6 and CMTM4 as two novel regulators of PD-L1 modulate the tumor microenvironment. Front Immunol 2022; 13:971428. [PMID: 35958549 PMCID: PMC9359082 DOI: 10.3389/fimmu.2022.971428] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) plays crucial roles in regulating tumor occurrence, progress, metastasis and drug resistance. However, it remains largely elusive how the components of TME are regulated to govern its functions in tumor biology. Here, we discussed how the two novel functional proteins, chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing 6 (CMTM6) and CMTM4, which involved in the post-translational regulation of PD-L1, modulate the TME functions. The roles of CMTM6 and CMTM4 in regulating TME components, including immune cells and tumor cells themselves were discussed in this review. The potential clinical applications of CMTM6 and CMTM4 as biomarkers to predict therapy efficacy and as new or combined immunotherapy targets are also highlighted. Finally, the current hot topics for the biological function of CMTM6/4 and several significant research directions for CMTM6/4 are also briefly summarized in the review.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital, Jilin University, Changchun, China
- *Correspondence: Xiangpeng Dai, ; Xiaoling Zhang,
| |
Collapse
|
41
|
Gholipour E, Kahroba H, Soltani N, Samadi P, Sarvarian P, Vakili-Samiani S, Hosein Pour Feizi AA, Soltani-Zangbar MS, Baghersalimi A, Darbandi B, Movassaghpour A, Talebi M, Motavalli R, Mehdizadeh A, Kazemi A, Yousefi M. Paediatric pre-B acute lymphoblastic leukaemia-derived exosomes regulate immune function in human T cells. J Cell Mol Med 2022; 26:4566-4576. [PMID: 35822529 PMCID: PMC9357647 DOI: 10.1111/jcmm.17482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022] Open
Abstract
Exosomes derived from solid tumour cells are involved in immune suppression, angiogenesis and metastasis; however, the role of leukaemia‐derived exosomes has less been investigated. Hence, changes in immune response‐related genes and human T cells apoptosis co‐incubated with exosomes isolated from patients' pre‐B cell acute lymphoblastic leukaemia were evaluated in this in vitro study. Vein blood sample was obtained from each newly diagnosed acute lymphoblastic leukaemia (ALL) patient prior any therapy. ALL serum exosomes were isolated by ultrafiltration and characterized using Western blotting and transmission electron microscopy. Exosomes were then co‐incubated with T lymphocytes and the gene expressions, as well as functions of human T cells were quantified by qRT‐PCR. Apoptosis and caspase‐3 and caspase‐9 protein expression were also evaluated by flowcytometry and Western blotting analysis, respectively. Exosomes isolated from ALL patients affected T lymphocytes and elevated the apoptosis. Moreover, these exosomes altered the T cells profile into regulatory type by increasing the expression of FOXP3 and Tregs‐related cytokines, including TGF‐B and IL‐10. The expression level of Th17‐related transcription factors (RoRγt) and interleukins (IL‐17 and IL‐23) decreased after this treatment. According to our findings, exosomes derived from ALL patients' sera carry immunosuppressive molecules, indicating the possible effect of exosomes as liquid biomarkers for cancer staging.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Departments of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Nasim Soltani
- Master of Science Neonatal Intensive Care Nursing, Faculity of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Adel Baghersalimi
- Pediatric Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Bahram Darbandi
- Pediatric Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolhassan Kazemi
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Dhar R, Mallik S, Devi A. Exosomal microRNAs (exoMIRs): micromolecules with macro impact in oral cancer. 3 Biotech 2022; 12:155. [DOI: 10.1007/s13205-022-03217-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
|
43
|
Gulati R, Nandi D, Sarkar K, Venkataraman P, Ramkumar KM, Ranjan P, Janardhanan R. Exosomes as Theranostic Targets: Implications for the Clinical Prognosis of Aggressive Cancers. Front Mol Biosci 2022; 9:890768. [PMID: 35813829 PMCID: PMC9260243 DOI: 10.3389/fmolb.2022.890768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes are extracellular vesicles produced by various cell types and extensively distributed in physiological fluids. Because of their significant role in cancer progression, they have been a focal point for the novel cancer therapy approach. Exosomes are highly efficient at transporting proteins, RNAs, and small drugs into cancer cells for therapeutic purposes. In addition to their prominent role as potential biomarkers for transporting targeted information from their progenitor cells, exosomes have also emerged as a new avenue for developing more effective clinical diagnostics and therapeutic techniques, also known as exosome theranostics. Lipids, proteins, and nucleic acids transported by exosomes were investigated as potential biomarkers for cancer diagnosis, prognosis, and future cancer treatment targets. The unique mechanism of exosomes and their therapeutic as well as diagnostic uses, also known as theranostic applications of exosomes in malignancies, are discussed in this review.
Collapse
Affiliation(s)
- Richa Gulati
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Dhruva Nandi
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - Koustav Sarkar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - P. Venkataraman
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - K. M. Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Priya Ranjan
- Bhubaneswar Institute of Technology, Rourkela, India
| | - Rajiv Janardhanan
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
- *Correspondence: Rajiv Janardhanan,
| |
Collapse
|
44
|
Li Y, Gao S, Hu Q, Wu F. Functional Properties of Cancer Epithelium and Stroma-Derived Exosomes in Head and Neck Squamous Cell Carcinoma. Life (Basel) 2022; 12:life12050757. [PMID: 35629423 PMCID: PMC9145061 DOI: 10.3390/life12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Stroma–cancer cell crosstalk involves a complex signaling network that contributes to tumor progression, including carcinogenesis, angiogenesis, migration, invasion, and therapy resistance in cancers. Exosomes, as extracellular membranous nanovesicles released by almost all types of cells, including tumor cells and stromal cells, play a critical role in signal delivery and material communication, in which the characteristics of their parent cells are reflected. The tumor or stroma-derived exosomes mediate cell–cell communication in the tumor microenvironment by transporting DNA, RNA, proteins, lipids, and metabolites. Recent studies on head and neck squamous cell carcinoma (HNSCC) have demonstrated that tumor-derived exosomes support various tumor biological behaviors, whereas the functional roles of stroma-derived exosomes remain largely unknown. Although these exosomes are emerging as promising targets in early diagnosis, prognostic prediction, and pharmaceutical carriers for antitumor therapy, there are still multiple hurdles to be overcome before they can be used in clinical applications. Herein, we systematically summarize the promotive roles of the epithelium and stroma-derived exosomes in HNSCC and highlight the potential clinical applications of exosomes in the treatment of HNSCC.
Collapse
Affiliation(s)
- Yang Li
- Department of Oral Pathology, College of Stomatology, Ningxia Medical University, South Sheng Li Street 804, Yinchuan 750004, China;
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, Yang Qiao Middle Road 246, Fuzhou 350004, China
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, South Renmin Road, Sec. 3, No. 14, Chengdu 610041, China;
| | - Qi Hu
- College of Public Health and Management, Ningxia Medical University, South Sheng Li Street 1160, Yinchuan 750004, China;
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, South Renmin Road, Sec. 3, No. 14, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
45
|
Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in ovarian cancer. Mol Cancer 2022; 21:114. [PMID: 35545786 PMCID: PMC9092780 DOI: 10.1186/s12943-022-01588-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. One of the main challenges in the management of OC is the late clinical presentation of disease that results in poor survival. Conventional tissue biopsy methods and serological biomarkers such as CA-125 have limited clinical applications. Liquid biopsy is a novel sampling method that analyzes distinctive tumour components released into the peripheral circulation, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs) and exosomes. Increasing evidence suggests that liquid biopsy could enhance the clinical management of OC by improving early diagnosis, predicting prognosis, detecting recurrence, and monitoring response to treatment. Capturing the unique tumour genetic landscape can also guide treatment decisions and the selection of appropriate targeted therapies. Key advantages of liquid biopsy include its non-invasive nature and feasibility, which allow for serial sampling and longitudinal monitoring of dynamic tumour changes over time. In this review, we outline the evidence for the clinical utility of each liquid biopsy component and review the advantages and current limitations of applying liquid biopsy in managing ovarian cancer. We also highlight future directions considering the current challenges and explore areas where more studies are warranted to elucidate its emerging clinical potential.
Collapse
Affiliation(s)
- Jie Wei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Devvanshi H, Kachhwaha R, Manhswita A, Bhatnagar S, Kshetrapal P. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes. Front Pharmacol 2022; 13:895254. [PMID: 35517798 PMCID: PMC9065684 DOI: 10.3389/fphar.2022.895254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stringent balance of the immune system is a key regulatory factor in defining successful implantation, fetal development, and timely parturition. Interference in these primary regulatory mechanisms, either at adolescence or prenatal state led to adverse pregnancy outcomes. Fertility restoration with the help of injectable gonadotrophins/progesterone, ovulation-inducing drugs, immunomodulatory drugs (corticosteroids), and reproductive surgeries provides inadequate responses, which manifest its own side effects. The development of a potential diagnostic biomarker and an effectual treatment for adverse pregnancy outcomes is a prerequisite to maternal and child health. Parent cell originated bi-layered-intraluminal nano-vesicles (30-150 nm) also known as exosomes are detected in all types of bodily fluids like blood, saliva, breast milk, urine, etc. Exosomes being the most biological residual structures with the least cytotoxicity are loaded with cargo in the form of RNAs (miRNAs), proteins (cytokines), hormones (estrogen, progesterone, etc.), cDNAs, and metabolites making them chief molecules of cell-cell communication. Their keen involvement in the regulation of biological processes has portrayed them as the power shots of cues to understand the disease's pathophysiology and progression. Recent studies have demonstrated the role of immunexosomes (immunomodulating exosomes) in maintaining unwavering immune homeostasis between the mother and developing fetus for a healthy pregnancy. Moreover, the concentration and size of the exosomes are extensively studied in adverse pregnancies like preeclampsia, gestational diabetes mellitus (GDM), and preterm premature rupture of membrane (pPROMs) as an early diagnostic marker, thus giving in-depth information about their pathophysiology. Exosomes have also been engineered physically as well as genetically to enhance their encapsulation efficiency and specificity in therapy for cancer and adverse pregnancies. Successful bench to bedside discoveries and interventions in cancer has motivated developmental biologists to investigate the role of immunexosomes and their active components. Our review summarizes the pre-clinical studies for the use of these power-shots as therapeutic agents. We envisage that these studies will pave the path for the use of immunexosomes in clinical settings for reproductive problems that arise due to immune perturbance in homeostasis either at adolescence or prenatal state.
Collapse
Affiliation(s)
- Himadri Devvanshi
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Rohit Kachhwaha
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Anima Manhswita
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD, Australia
| | - Shinjini Bhatnagar
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| | - Pallavi Kshetrapal
- Maternal and Child Health, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
47
|
Li X, Li X, Zhang B, He B. The Role of Cancer Stem Cell-Derived Exosomes in Cancer Progression. Stem Cells Int 2022; 2022:9133658. [PMID: 35571530 PMCID: PMC9095362 DOI: 10.1155/2022/9133658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small portion of tumor cells with self-renewal ability in tumor tissues and are a key factor in tumor resistance, recurrence, and metastasis. CSCs produce a large number of exosomes through various mechanisms, such as paracrine and autocrine signaling. Studies have shown that CSC-derived exosomes (CSC-Exos) carry a variety of gene mutations and specific epigenetic modifications indicative of unique cell phenotypes and metabolic pathways, enabling exchange of information in the tumor microenvironment (TME) to promote tumor invasion and metastasis. In addition, CSC-Exos carry a variety of metabolites, especially proteins and miRNAs, which can activate signaling pathways to further promote tumor development. CSC-Exos have dual effects on cancer development. Due to advances in liquid biopsy technology for early cancer detection, CSCs-Exos may become an important tool for early cancer diagnosis and therapeutic drug delivery. In this article, we will review how CSC-Exos exert the above effects based on the above two aspects and explore their mechanism of action.
Collapse
Affiliation(s)
- Xueting Li
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
48
|
Shan Y, Zhou P, Zhou Q, Yang L. Extracellular Vesicles in the Progression and Therapeutic Resistance of Nasopharyngeal Carcinoma. Cancers (Basel) 2022; 14:2289. [PMID: 35565418 PMCID: PMC9101631 DOI: 10.3390/cancers14092289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy largely associated with Epstein-Barr virus (EBV) infection, which is frequently reported in east and southeast Asia. Extracellular vesicles (EVs) originate from the endosome or plasma membrane, which plays a critical role in tumor pathogenesis for their character of cell-cell communication and its cargos, including proteins, RNA, and other molecules that can target recipient cells and affect their progression. To date, numerous studies have indicated that EVs have crucial significance in the progression, metastasis, and therapeutic resistance of NPC. In this review, we not only summarize the interaction of NPC cells and the tumor microenvironment (TME) through EVs, but also explain the role of EVs in radiation and drug resistance of NPC, which poses a severe threat to cancer therapy. Therefore, EVs may show great potential as biomarkers in the early diagnosis of interfered targets of NPC therapy.
Collapse
Affiliation(s)
- Yunhan Shan
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| | - Qin Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China; (Y.S.); (P.Z.); (Q.Z.)
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Changsha 410078, China
| |
Collapse
|
49
|
Shen J, Wu Y, Ruan W, Zhu F, Duan S. miR-1908 Dysregulation in Human Cancers. Front Oncol 2022; 12:857743. [PMID: 35463352 PMCID: PMC9021824 DOI: 10.3389/fonc.2022.857743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
MiR-1908 is a miRNA located in the intron of the fatty acid desaturase 1 (FADS1) gene. The expression level of miR-1908 is abnormal in many diseases such as cancer. miR-1908 can inhibit the expression of at least 27 target genes by binding to the 3’ untranslated region (3’ UTR) of target genes. miR-1908 is involved in the biological processes of cell proliferation, cell differentiation, cell apoptosis, cancer cell invasion, and metastasis. The expression of miR-1908 is regulated by 11 factors, including lncRNA HOTTIP, adipokines (TNF-α, leptin, and resistin), NF-κB, free fatty acid (FFA), cholesterol, stearoyl-CoA desaturase (SCD1), immune-related transcription factors (STAT1, RB1, and IRF1). The expression of miR-1908 is also affected by the anticancer drug OSW-1, growth hormone (GH), and the anticonvulsant drug sodium valproate. In addition, the aberrant expression of miR-1908 is also related to the prognosis of a variety of cancers, including non-small cell lung cancer (NSCLC), ovarian cancer (OC), breast cancer, cervical cancer, glioma, high-grade serous ovarian carcinoma (HGSOC), osteosarcoma, etc. This article summarizes the abnormal expression pattern of miR-1908 in various diseases and its molecular regulation mechanisms. Our work will provide potential hints and direction for future miR-1908-related research.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wenjing Ruan
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhu
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Gurudas Shivji G, Dhar R, Devi A. Role of Exosomes and its emerging therapeutic applications in the pathophysiology of Non-Infectious disease. Biomarkers 2022; 27:534-548. [PMID: 35451890 DOI: 10.1080/1354750x.2022.2067233] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exosomes are a type of small Extracellular Vesicles (EVs) and play crucial roles in cancer and other diseases. Exosomes role in various diseases has been studied as they regulate intercellular communication and are obtained from almost any part of the body. Exosomes use is complicated in diseases as they promote pathogenesis but also act as a very good therapeutic agent in most diseases. The presence of a complex molecular cargo consisting of nucleic acids (DNA, RNA, miRNA, siRNA, etc.,) makes it a very good delivery agent and acts as a biomarker for many cancers, cardiovascular and neurodegenerative diseases. They can be used to selectively target cells and activate immune cell responses depending on the source obtained. Exosomes based immunotherapy is an area of gaining importance due to the proteins present in them and their specificity to the targeted cells. The role of exosomes in the diagnosis and treatment of non-infectious diseases is discussed in detail in this article.
Collapse
Affiliation(s)
- Gauresh Gurudas Shivji
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Rajib Dhar
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Potheri, Kattankulathur, Chengalpattu District, Tamilnadu 603203, India
| |
Collapse
|