1
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing Cisplatin Efficacy in Hepatocellular Carcinoma with Selenocystine: The Suppression of DNA Repair and Inhibition of Proliferation in Hepatoma Cells. Chem Biol Interact 2024:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Zhu M, Rovella V, Scimeca M, Mauriello A, Shi Y, Bischof J, Woodsmith J, Anselmo A, Melino G, Tisone G, Agostini M. Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype. Discov Oncol 2024; 15:10. [PMID: 38228856 DOI: 10.1007/s12672-023-00850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Mengting Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Alessandro Anselmo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
4
|
Ghionescu AV, Sorop A, Dima SO. The pivotal role of EMT-related noncoding RNAs regulatory axes in hepatocellular carcinoma. Front Pharmacol 2023; 14:1270425. [PMID: 37767397 PMCID: PMC10520284 DOI: 10.3389/fphar.2023.1270425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a major health problem worldwide, being the leading cause of cancer-related deaths, with limited treatment options, especially in its advanced stages. Tumor resistance is closely associated with the activation of the EMT phenomenon and its reversal, being modulated by different molecules, including noncoding RNAs (ncRNAs). Noncoding RNAs have the potential to function as both tumor suppressors and oncogenic molecules, controlling the malignant potential of HCC cells. Basically, these molecules circulate in the tumor microenvironment, encapsulated in exosomes. Their impact on cell biology is more significant than originally expected, which makes related research rather complex. The temporal and spatial expression patterns, precise roles and mechanisms of specific ncRNAs encapsulated in exosomes remain primarily unknown in different stages of the disease. This review aims to highlight the recent advances in ncRNAs related to EMT and classifies the described mechanism as direct and indirect, for a better summarization. Moreover, we provide an overview of current research on the role of ncRNAs in several drug resistance-related pathways, including the emergence of resistance to sorafenib, doxorubicin, cisplatin and paclitaxel therapy. Nevertheless, we comprehensively discuss the underlying regulatory mechanisms of exosomal ncRNAs in EMT-HCC via intercellular communication pathways.
Collapse
Affiliation(s)
| | - Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Yu Y, Sun Y, Li Z, Li J, Tian D. Systematic analysis identifies XRCC4 as a potential immunological and prognostic biomarker associated with pan-cancer. BMC Bioinformatics 2023; 24:44. [PMID: 36765282 PMCID: PMC9921312 DOI: 10.1186/s12859-023-05165-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND XRCC4 is a NHEJ factor identified recently that plays a vital role in repairing DNA double-stranded breaks. Studies have reported the associations between abnormal expression of XRCC4 and tumor susceptibility and radiosensitivity, but the potential biological mechanisms by which XRCC4 exerts effects on tumorigenesis are not fully understood. This study aimed to systematically investigate the role of XRCC4 across cancer types. METHODS The TIMER, GTEX and Xiantao Academic database were used to interpret the expression of XRCC4. Genomic alterations and protein expression in human organic and tumor tissues were applied in cBioPortal and the Human Protein Atlas databases. Correlations between XRCC4 expression and immune and molecular subtypes were analyzed by using the TISIDB database. Protein-protein interactions, GO and KEGG enrichment were also applied for XRCC4-related genes. The TIMER and the Tumor Immune Single Cell Hub (TISCH) online databases were used to explore the relationship between XRCC4 and tumor immune microenvironment. Drug sensitivity information was acquired from the CellMiner database to analyze the effect of XRCC4 on sensitivity analysis. RESULTS The XRCC4 expression was significantly upregulated in 15 tumor types and downregulated in two tumor types compared with the normal tissues, most of which were validated by the results of Xiantao academic platform. XRCC4 was expressed at intermediate level in malignant cells. The XRCC4 expression was related to the molecular and immune subtypes of human cancers, and the survival outcome of 11 types of cancers, including KIRC, STAD and LIHC. The main type of frequent genetic alteration is amplification. Strong correlations were also found between XRCC4 and immune checkpoint genes in 33 human cancers. Furthermore, the abnormal expression of XRCC4 was related to immune cell infiltration and drug sensitivity. Enrichment analysis showed that XRCC4 was significantly correlated with DNA damage response. CONCLUSIONS This comprehensive pan-cancer analysis suggested that XRCC4 may play a vital role in the prognosis and immunotherapy response in cancer patients, and it is a promising therapy target in the future.
Collapse
Affiliation(s)
- Yang Yu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Yanyan Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Zhaoxian Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Jiang Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Dazhi Tian
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190, China.
| |
Collapse
|
7
|
Association of Polymorphisms in NHEJ Pathway Genes with HIV-1 Infection and AIDS Progression in a Northern Chinese MSM Population. DISEASE MARKERS 2022; 2022:5126867. [PMID: 36312587 PMCID: PMC9605847 DOI: 10.1155/2022/5126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining (NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Methods A total of 481 HIV-1 seropositive men and 493 HIV-1 seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed using the SNPscan™ Kit. Results Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503 genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis, XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked to the clinical phases of AIDS patients. Conclusions NHEJ gene polymorphisms can be considered to be risk factors of HIV-1 infection and AIDS progression in the northern Chinese MSM population.
Collapse
|
8
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
9
|
DNA Repair Genes and Chronic Myeloid Leukemia: ERCC2 (751), XRCC1 (399), XRCC4-Intron 3, XRCC4 (-1394) Gene Polymorphisms. Mediterr J Hematol Infect Dis 2021; 13:e2021020. [PMID: 33747401 PMCID: PMC7938920 DOI: 10.4084/mjhid.2021.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
|
10
|
Marin JJ, Macias RI, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061663. [PMID: 32585893 PMCID: PMC7352164 DOI: 10.3390/cancers12061663] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.
Collapse
Affiliation(s)
- Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Alvaro G. Temprano
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Ricardo Espinosa-Escudero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Laura H. Bohorquez
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| |
Collapse
|
11
|
Zhang XY, Wei XH, Wang BJ, Yao J. The XRCC4rs1805377 polymorphism is not associated with the risk of cancer: An updated meta-analysis. J Int Med Res 2020; 48:300060520926364. [PMID: 32493081 PMCID: PMC7273771 DOI: 10.1177/0300060520926364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectivesA growing number of studies have reported that genes involved in the repair of DNA double-strand breaks might be cancer-susceptibility genes. The x-ray cross-complementing group 4 gene ( XRCC4) encodes a protein that functions in the repair of DNA double-strand breaks, and this meta-analysis aimed to investigate the relationship between the XRCC4 rs1805377 polymorphism and cancer occurrence.MethodsWe retrieved case–control studies that met the inclusion criteria from PubMed, Web of Science, Embase, and China National Knowledge Infrastructure databases. Associations between rs1805377 and cancer risk were evaluated by odds ratios (ORs) using a random effects model and 95% confidence intervals (CIs) as well as sensitivity and subgroup analyses.ResultsAfter inclusion criteria were met, the meta-analysis involved 24 studies that included 9,633 cancer patients and 10,544 healthy controls. No significant association was found between rs1805377 and the risk of cancer (pooled OR = 1.107; 95% CI = 0.955–1.284) in the dominant genetic model. Similarly, no significant association was observed in the subgroup analysis.ConclusionsThrough this meta-analysis, we found no association between the rs1805377 polymorphism and cancer occurrence. This may provide useful information for relevant future studies into the etiology of cancer.
Collapse
Affiliation(s)
- Xin-yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Xiao-han Wei
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
12
|
Yao C, Ruan JW, Zhu YR, Liu F, Wu HM, Zhang Y, Jiang Q. The therapeutic value of the SphK1-targeting microRNA-3677 in human osteosarcoma cells. Aging (Albany NY) 2020; 12:5399-5410. [PMID: 32203055 PMCID: PMC7138565 DOI: 10.18632/aging.102961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Sphingosine kinase 1 (SphK1) is a potential therapeutic target for human osteosarcoma (OS). SphK1-targeting microRNAs (miRNAs) could have important therapeutic value for OS. We discovered that micorRNA-3677 (miR-3677) is a SphK1-targeting miRNA, inhibiting OS cell progression. The results of RNA-Pull down assay confirmed direct binding between biotinylated-miR-3677 and SphK1 mRNA in primary human OS cells. In established and primary human OS cells forced overexpression of miR-3677, by a lentiviral construct, decreased SphK1 3’-UTR (untranslated region) activity and downregulated SphK1 expression. Both were however enhanced with miR-3677 inhibition in OS cells. Function studies demonstrated that OS cell growth, proliferation and migration were inhibited with miR-3677 overexpression, but augmented with miR-3677 inhibition. MiR-3677 overexpression-induced anti-OS cell activity was reversed with re-expression of the 3’-UTR-depleted SphK1. Additionally, in SphK1 knockout OS cells (by CRISPR/Cas9 strategy), altering miR-3677 expression failed to further alter cell functions. Finally, we show that miR-3677 expression was significantly downregulated in primary human OS tissues, correlating with SphK1 mRNA upregulation. We conclude that targeting SphK1 by miR-3677 inhibits human OS cell progression.
Collapse
Affiliation(s)
- Chen Yao
- Department of Orthopedics, Nanjing Drum Tower Hospital of Nanjing Medical University, Nanjing, China.,Department of Orthopedics, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Jian-Wei Ruan
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, China
| | - Yun-Rong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Fei Liu
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Ming Wu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Yan Zhang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Qing Jiang
- Department of Orthopedics, Nanjing Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Evaluation of X-Ray Repair Cross-Complementing Family Members as Potential Biomarkers for Predicting Progression and Prognosis in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5751939. [PMID: 32258128 PMCID: PMC7103035 DOI: 10.1155/2020/5751939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
The X-ray repair cross-complementing (XRCC) gene family has been revealed to participate in the carcinogenesis and development of numerous cancers. However, the expression profiles and prognostic values of XRCCs (XRCC1-6) in hepatocellular carcinoma (HCC) have not been explored up to now. The transcriptional levels of XRCCs in primary HCC tissues were analyzed by UALCAN and GEPIA. The relationship between XRCCs expression and HCC clinical characteristics was evaluated using UALCAN. Moreover, the prognostic values of XRCCs expression and mutations in HCC patients were investigated via the GEPIA and cBioPortal, respectively. Last but not least, the functions and pathways of XRCCs in HCC were also predicted by cBioPortal and DVAID. The transcriptional levels of all XRCCs in HCC tissues were notably elevated compared with normal liver tissues. Meanwhile, upregulated XRCCs expression was positively associated with clinical stages and tumor grades of HCC patients. Survival analysis using the GEPIA database revealed that high transcription levels of XRCC2/3/4/5/6 were associated with lower overall survival (OS) and high transcription levels of XRCC1/2/3/6 were correlated with poor disease-free survival (DFS) in HCC patients. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) demonstrated the possible mechanisms of XRCCs and their associated genes participating in the oncogenesis of HCC. Our findings systematically elucidate the expression profiles and distinct prognostic values of XRCCs in HCC, which might provide promising therapeutic targets and novel prognostic biomarkers for HCC patients.
Collapse
|
14
|
Felgendreff P, Raschzok N, Kunze K, Leder A, Lippert S, Klunk S, Tautenhahn HM, Hau HM, Schmuck RB, Reutzel-Selke A, Sauer IM, Bartels M, Morgül MH. Tissue-based miRNA mapping in alcoholic liver cirrhosis: different profiles in cirrhosis with or without hepatocellular carcinoma. Biomarkers 2019; 25:62-68. [DOI: 10.1080/1354750x.2019.1691267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Philipp Felgendreff
- Department of General, Visceral, and Vascular Surgery, University of Jena, Jena, Germany
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
- “Else Kröner-Forschungskolleg AntiAge”, Jena University Hospital, Jena, Germany
| | - Nathanael Raschzok
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
- Experimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Kerstin Kunze
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Annekatrin Leder
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
| | - Steffen Lippert
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
- Experimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sergej Klunk
- Department of Traumatology, Hand and Orthopedic Surgery, Harzklinikum Dorothea Christiane Erxleben GmbH, Quedlinberg, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral, and Vascular Surgery, University of Jena, Jena, Germany
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Hans-Michael Hau
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
| | - Rosa Bianca Schmuck
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
- Experimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
- Experimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Charité Mitte
- Campus Virchow-Klinikum, Berlin, Germany
- Experimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Bartels
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
- Department of General Visceral, Thoracic, and Vascular Surgery, Helios Park-Klinikum Leipzig, Leipzig, Germany
| | - Mehmet Haluk Morgül
- Department of Thoracic and Vascular Surgery, University of Leipzig, Leipzig, Germany
- Department of General, Visceral- and Transplantation Surgery, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Zhu GQ, Zhou YJ, Qiu LX, Wang B, Yang Y, Liao WT, Luo YH, Shi YH, Zhou J, Fan J, Dai Z. Prognostic alternative mRNA splicing signature in hepatocellular carcinoma: a study based on large-scale sequencing data. Carcinogenesis 2019; 40:1077-1085. [PMID: 31099827 DOI: 10.1093/carcin/bgz073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023] Open
Abstract
Most genes are alternatively spliced and increasing number of evidences show that alternative splicing (AS) is modified and related to tumor progression. Systematic profiles of AS signature in hepatocellular carcinoma (HCC) is absent and urgently needed. Here, differentially spliced AS transcripts between HCC and non-HCC tissues were compared, prognosis-associated AS events by using univariate Cox regression analysis were selected. Our gene functional enrichment analysis demonstrated the potential pathways enriched by survival-associated AS. Prognostic AS signatures were then constructed for HCC prognosis prediction by Lasso regression model. We also analyzed splicing factors (SFs) regulating underlying mechanisms by Pearson correlation and then built corresponding regulatory networks. In addition, we explored the performance of AS signature in the mutated HCC samples. Genome-wide AS events in 377 HCC patients from TCGA were profiled. Among 34 163 AS events in 8985 genes, 3950 AS events in 2403 genes associated with overall survival (OS) significantly for HCC were detected. In addition, computational algorithm results showed that metabolic and ribosome pathways may be the potential molecular mechanisms regulating the poor prognosis. More importantly, survival-associated AS signatures revealed high performance in predicting HCC prognosis. The area under curve for AS signature was 0.806 in all HCC and 0.944 in TP53 mutated HCC samples at 2000 days of OS. We submitted prognostic SFs to build the AS regulatory network, from which we found prognostic AS events were significantly enriched in metabolism-related pathways. A robust AS signature for HCC patients and revealed the regulatory splicing networks contributing to the potential significantly enriched metabolism-related pathways.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yu-Jie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Xin Qiu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Wang
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi Yang
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Wei-Ting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Hong Luo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital.,State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Sun L, He M, Xu N, Xu DH, Ben-David Y, Yang ZY, Li YJ. Regulation of RAB22A by mir-193b inhibits breast cancer growth and metastasis mediated by exosomes. Int J Oncol 2018; 53:2705-2714. [PMID: 30272274 DOI: 10.3892/ijo.2018.4571] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the main types of cancer affecting the health of females worldwide. Despite improvements in therapeutic approaches, cancer patients succumb to the disease due to metastasis itself, rather than the primary tumor from which metastases arise, emphasizing the need for the better understanding of the biological bases that contribute to disease progression. RAB22A, a member of the proto-oncogene RAS family, plays an important role in the formation, trafficking and metabolism of exosomes, and is associated with the occurrence and development of multiple human cancers. In this study, we demonstrate that the upregulation of RAB22A is associated with breast cancer progression and lymph node metastasis. We identified a signature of RAB22A and miR-193b that exhibited a negative association in metastatic as opposed to the surrounding normal cells, and RAB22A was identified as the target gene of miR-193b. While RAB22A was found to regulate exosomes-mediated breast cancer cell proliferation, invasion and migration, these biological characteristics were diminished in the breast cancer cells in which the RAB22A gene was knocked down or in the cells in which the exosomes were dissolved by proteinase K/RNase treatment. On the whole, the findings of this study demonstrate the critical role that miR-193b plays in the regulation of RAB22A-mediated exosome function during cancer growth and metastasis, which may have significant implications on cancer therapy.
Collapse
Affiliation(s)
- Liang Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Ning Xu
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Da-Hai Xu
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - You-Jun Li
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
17
|
Zhang TQ, Su QQ, Huang XY, Yao JG, Wang C, Xia Q, Long XD, Ma Y. Micro RNA-4651 Serves as a Potential Biomarker for Prognosis When Selecting Hepatocellular Carcinoma Patients for Postoperative Adjuvant Transarterial Chemoembolization Therapy. Hepatol Commun 2018; 2:1259-1273. [PMID: 30288479 PMCID: PMC6167067 DOI: 10.1002/hep4.1245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
Our previous reports have shown that microRNA-4651 is a potential early diagnostic and prognostic marker for hepatocellular carcinoma. We aimed to investigate whether microRNA-4651 modified postoperative adjuvant transarterial chemoembolization (pa-TACE) to improve the prognosis of hepatocellular carcinoma. A hospital-based retrospective study, including 302 patients with advanced-stage hepatocellular carcinoma who received tumor resection or tumor resection plus pa-TACE as an initial therapy, was conducted to assess the effects of microRNA-4651 on pa-TACE treatment. MicroRNA-4651 expression in tumor tissues was tested using the TaqMan-PCR technique. The sensitivity of tumor cells to doxorubicin (an anticancer drug used in pa-TACE procedure) was analyzed by the half-maximal inhibitory concentration (IC50). Upregulated microRNA-4651 expression in tumor tissues can improve the therapeutic response of patients with hepatocellular carcinoma on pa-TACE (hazard ratios [95% confidence intervals] = 0.32 [0.22-0.46] for death risk and 0.39 [0.28-0.56] for tumor-recurrence risk, respectively), but downregulated expression cannot. Functional analyses-displayed microRNA-4651 mimics decreased while its inhibitor increased the IC50 of tumor cells to doxorubicin (0.65 [0.61-0.69] versus 2.17 [1.98-2.37] µM). Cytochrome P450 2W1 was shown as a possible target of microRNA-4651. Additionally, dysregulation of microRNA-4651 also affected the clinical pathological features of hepatocellular carcinoma and was an independent prognostic factor for this cancer. Conclusion: These results indicate that increasing microRNA-4651 expression may be beneficial for pa-TACE in improving hepatocellular carcinoma prognosis.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Department of Pathology the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China
| | - Qun-Qing Su
- Department of Pathology the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China
| | - Xiao-Ying Huang
- Department of Pathology the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China
| | - Jin-Guang Yao
- Department of Pathology the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China.,Department of Medicine Guangxi Science and Technology University Liuzhou China
| | - Chao Wang
- Department of Medicine the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China
| | - Qiang Xia
- Department of Liver Surgery Ren Ji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Xi-Dai Long
- Department of Pathology the Affiliated Hospital of Youjiang Medical University for Nationalities Baise China.,Department of Liver Surgery Ren Ji Hospital School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Yun Ma
- Department of Pathology the Affiliated Tumor Hospital, Guangxi Medical University Nanning China
| |
Collapse
|
18
|
Zhu R, Lin W, Zhao W, Fan F, Tang L, Hu Y. A 4-microRNA signature for survival prognosis in pediatric and adolescent acute myeloid leukemia. J Cell Biochem 2018; 120:3958-3968. [PMID: 30242879 DOI: 10.1002/jcb.27679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with significant molecular heterogeneity. MicroRNAs (miRNAs) play a critical role in AML diagnosis, pathogenesis, and prognosis of AML. Little has been done to identify a miRNA signature in pediatric and adolescent patients for predicting overall survival. This study aims to identify a panel of miRNA signature that could predict the prognosis of all younger AML patients with all subtypes of AML by analyzing data from The Cancer Genome Atlas (TCGA). A total of 229 patients under 23 years with miRNA data and corresponding clinical data from TCGA database were enrolled in this study. Through conducting multivariate analysis in the training test, it was identified that the high expression of hsa-miR-509 and hsa-miR-542 were independent poor prognostic factors, whereas that of hsa-miR-146a and hsa-miR-3667 had a trend to be favorable factors. A 4-miRNA signature was constructed by these miRNAs considering the weight of each. In testing group and all 229 patients' cohort as well as 59 cytogenetically normal AML (CN-AML) patients' cohort, higher risk score was associated with shorter overall survival (OS). All results were confidential by using powerful statistical analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis were carried out to further develop leukemia-relevant mechanisms supporting the model. The results indicate that the 4-miRNA-based signature is a reliable prognostic biomarker for pediatric and adolescent AML patients.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenyi Lin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Zhang H, Wang Z, Ma R, Wu J, Feng J. MicroRNAs as biomarkers for the progression and prognosis of colon carcinoma. Int J Mol Med 2018; 42:2080-2088. [PMID: 30066832 PMCID: PMC6108873 DOI: 10.3892/ijmm.2018.3792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Early detection is critical for the treatment of colon carcinoma. However, current biomarkers for its diagnosis and prognosis are insufficient and improvement is required. Aberrantly expressed microRNAs (miRNAs/miRs) in colon carcinoma have been identified to function as potential diagnostic and prognostic biomarkers. In the present study, 245 differentially expressed miRNAs between colon carcinoma and normal tissues were identified by a bioinformatics analysis of a dataset from The Cancer Genome Atlas. A six-miRNA (miR-149, miR-3189, miR-3677, miR-3917, miR-4999 and miR-6854) prognostic prediction system was established, which is able to independently and effectively predict the prognosis of colon carcinoma patients [P<0.001, area under the receiver operating characteristic curve (AUC)=0.763]. Furthermore, the six miRNAs were highly correlated with the tumor-nodes-metastasis (TNM) stage and were able to distinguish between different stages (high vs. low TNM stage, P<0.001). Of note, combination of the six-miRNA signature and TNM stage provides an improved prediction of the patient's prognosis (AUC=0.797). Functional enrichment analysis revealed the possible mechanistic involvement of these predictive miRNAs in cancer-associated biological processes and pathways. Taken together, the present study demonstrated the promising potential of the novel six-miRNA model as an independent factor for the prediction of the progression and prognosis of colon carcinoma.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Zhuo Wang
- Laboratory of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Rong Ma
- Laboratory of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jianzhong Wu
- Laboratory of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
20
|
Ghodousi ES, Rahgozar S. MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem 2018; 119:6024-6032. [PMID: 29630744 DOI: 10.1002/jcb.26800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is considered as the major obstacle for treating pediatric acute lymphoblastic leukemia (ALL). MicroRNAs (miRNAs) are small non coding RNAs which may potentially regulate response to chemotherapy. In this study, total RNA was isolated from bone marrow samples of 46 children with de novo ALL and 16 controls. Quantitative reverse transcriptase polymerase chain reaction was used to investigate the expression profile of the predicted miRNAs; miR-326 and miR-200c, and their predicted targets ABCA2, and ABCA3 transporters. The presence of minimal residual disease was studied using PCR-SSCP (single-strand conformation polymorphism) 1 year after treatment. The association between the miRNA expression and drug resistance was analyzed statistically. Results showed a significant down-regulation of both miR-326 and miR-200c expressions in ALL patients compared with non-cancer controls (P = 0.0002, AUC = 0.813 and P = 0.035, AUC = 0.79, respectively). A considerable negative association between miR-326 expression and MDR was identified which could raise the risk of chemoresistance by 4.8- fold. The expression profiles of miR-326 and ABCA2 transporter were inversely correlated. Data revealed, a novel diagnostic role for miR-326 and miR-200c as potential biomarkers of pediatric ALL. Down-regulation of miR-326 was introduced, for the first time, as a prognostic factor for drug resistance in childhood ALL. To the best of our knowledge, this is the first time that ABCA2 transporter is proposed as a target gene for miR-326, through which it can exert its impact on drug resistance. These data may provide novel approaches to new therapeutics and diagnostics.
Collapse
Affiliation(s)
- Elaheh S Ghodousi
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
21
|
Wang XZ, Huang XY, Yao JG, Wang C, Xia Q, Long XD. Genetic polymorphisms in ataxin-3 and liver cirrhosis risk related to aflatoxin B1. Oncotarget 2018; 9:27321-27332. [PMID: 29937988 PMCID: PMC6007954 DOI: 10.18632/oncotarget.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 01/17/2023] Open
Abstract
Background Altered expression of ataxin-3 (AT3) can modify DNA repair capacity and is observed in human diseases. The genetic polymorphisms of this gene in aflatoxin B1 (AFB1)–related liver cirrhosis (LC) have not yet been elucidated. Materials and Methods We conducted a hospital-based case–control study, including 384 patients with LC and 851 controls without any liver diseases, to assess the association between 264 polymorphisms in AT3 and AFB1-related LC risk. Genotype were tested using TaqMan-PCR or sequencing technique. Results We found three differentially distributed SNPs (rs8021276, rs7158733, and rs10146249) via the screening analysis; however, only rs8021276 polymorphism was further identified to modify the risk of LC. Compared with the homozygote of rs8021276 A alleles (rs8021276-AA), the genotypes of rs8021276 G alleles (rs8021276-AG or -GG) increased LC risk (OR: 2.48 and 6.98; 95% CI: 1.84–3.33 and 4.35–11.22, respectively). Significant interactive effects between risk genotypes and AFB1 exposure status were also observed in the joint effects analysis. Additionally, rs8021276 polymorphism was also associated with down-regulation of AT3 mRNA expression and increasing AFB1-DNA adducts in liver tissues with cirrhosis. Conclusions These results suggest AT3 polymorphisms may be risk biomarkers of AFB1-related LC, and rs8021276 is a potential candidate.
Collapse
Affiliation(s)
- Xing-Zhizi Wang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chao Wang
- Department of Digestive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Guangxi Clinic Research Center of Hepatobiliary Diseases, Baise 533000, China
| |
Collapse
|
22
|
Martínez-Rivera V, Negrete-García MC, Ávila-Moreno F, Ortiz-Quintero B. Secreted and Tissue miRNAs as Diagnosis Biomarkers of Malignant Pleural Mesothelioma. Int J Mol Sci 2018; 19:ijms19020595. [PMID: 29462963 PMCID: PMC5855817 DOI: 10.3390/ijms19020595] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare but aggressive tumor that originates in the pleura, is diagnosed in advanced stages and has a poor prognosis. Accurate diagnosis of MPM is often difficult and complex, and the gold standard diagnosis test is based on qualitative analysis of markers in pleural tissue by immunohistochemical staining. Therefore, it is necessary to develop quantitative and non-subjective alternative diagnostic tools. MicroRNAs are non-coding RNAs that regulate essential cellular mechanisms at the post-transcriptional level. Recent evidence indicates that miRNA expression in tissue and body fluids is aberrant in various tumors, revealing miRNAs as promising diagnostic biomarkers. This review summarizes evidence regarding secreted and tissue miRNAs as biomarkers of MPM and the biological characteristics associated with their potential diagnostic value. In addition to studies regarding miRNAs with potential diagnostic value for MPM, studies that aimed to identify the miRNAs involved in molecular mechanisms associated with MPM development are described with an emphasis on relevant aspects of the experimental designs that may influence the accuracy, consistency and real diagnostic value of currently reported data.
Collapse
Affiliation(s)
- Vanessa Martínez-Rivera
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| | - María Cristina Negrete-García
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina (UBIMED), Cancer Epigenomics and Lung Disease Laboratory 12, Facultad de Estudios Superiores (FES)-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios #1 Colonia los Reyes Iztacala, 54090 Mexico City, Mexico.
| | - Blanca Ortiz-Quintero
- Research Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Calzada de Tlalpan 4502, Colonia Sección XVI, 14080 Mexico City, Mexico.
| |
Collapse
|
23
|
Javani A, Javadi-Zarnaghi F, Rasaee MJ. A multiplex protein-free lateral flow assay for detection of microRNAs based on unmodified molecular beacons. Anal Biochem 2017; 537:99-105. [PMID: 28911984 DOI: 10.1016/j.ab.2017.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 12/11/2022]
Abstract
Lateral flow assays (LFAs) have promising potentials for point-of-care applications. Recently, many LFAs have been reported that are based on hybridization of oligonucleotide strands. Mostly, biotinylated capture DNAs are immobilized on the surface of a nitrocellulose membrane via streptavidin interactions. During the assay, stable colorful complexes get formed that are visible by naked eyes. Here, we present an inexpensive and unique design of LFA that applies unmodified oligonucleotides at capture lines. The presented LFA do not utilize streptavidin or any other affinity protein. We employ structural switch of molecular beacons (MB) in combination with base stacking hybridization (BSH) phenomenon. The unique design of the reported LFA provided high selectivity for target oligonucleotides. We validated potential applications of the system for detection of DNA mimics of two microRNAs in multiplex assays.
Collapse
Affiliation(s)
- Atefeh Javani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|