1
|
Genetic and evolutionary characterization of avian paramyxovirus type 4 in China. INFECTION GENETICS AND EVOLUTION 2021; 91:104777. [PMID: 33631368 DOI: 10.1016/j.meegid.2021.104777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 01/11/2023]
Abstract
As an economically important poultry pathogen, avian paramyxovirus serotype 4 (APMV-4) frequently reported and isolated from domestic and wild birds particularly waterfowls worldwide. However, evolutionary dynamics of APMV-4 based on genomic characteristics is lacking. In this study, APMV-4 strain designated JX-G13 was isolated from oropharyngeal and cloacal swab samples of wild birds in China. Phylogenetic analysis revealed APMV-4 strains were divided into four genetic genotypes and China isolates were mainly clustered into Genotype I. The MCMC tree indicated that APMV-4 diverged about 104 years ago with the evolutionary rate of 1.2927 × 10-3 substitutions/site/year. BSP analysis suggested that the effective population size of APMV-4 exhibited a steady state and decreased slowly after 2013. The F gene of APMV-4 was considered relatively conserved among isolates based on nucleotide diversity analysis. Although the F gene was under purifying selection, two positions (5 and 21) located in 3'-UTR were subject to positive selection. Our study firstly presented the evolutionary assessments on the genetic diversity of circulating APMV-4 from wild birds and domestic poultry.
Collapse
|
2
|
Jadhav A, Zhao L, Liu W, Ding C, Nair V, Ramos-Onsins SE, Ferretti L. Genomic Diversity and Evolution of Quasispecies in Newcastle Disease Virus Infections. Viruses 2020; 12:v12111305. [PMID: 33202558 PMCID: PMC7698180 DOI: 10.3390/v12111305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Newcastle disease virus (NDV) infections are well known to harbour quasispecies, due to the error-prone nature of the RNA polymerase. Quasispecies variants in the fusion cleavage site of the virus are known to significantly change its virulence. However, little is known about the genomic patterns of diversity and selection in NDV viral swarms. We analyse deep sequencing data from in vitro and in vivo NDV infections to uncover the genomic patterns of diversity and the signatures of selection within NDV swarms. Variants in viruses from in vitro samples are mostly localised in non-coding regions and 3′ and 5′ untranslated regions (3′UTRs or 5′UTRs), while in vivo samples contain an order of magnitude more variants. We find different patterns of genomic divergence and diversity among NDV genotypes, as well as differences in the genomic distribution of intra-host variants among in vitro and in vivo infections of the same strain. The frequency spectrum shows clear signatures of intra-host purifying selection in vivo on the matrix protein (M) coding gene and positive or diversifying selection on nucleocapsid (NP) and haemagglutinin-neuraminidase (HN). The comparison between within-host polymorphisms and phylogenetic divergence reveals complex patterns of selective pressure on the NDV genome at between- and within-host level. The M sequence is strongly constrained both between and within hosts, fusion protein (F) coding gene is under intra-host positive selection, and NP and HN show contrasting patterns: HN RNA sequence is positively selected between hosts while its protein sequence is positively selected within hosts, and NP is under intra-host positive selection at the RNA level and negative selection at the protein level.
Collapse
Affiliation(s)
- Archana Jadhav
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking GU24 0NF, Surrey, UK; (A.J.); (V.N.)
| | - Lele Zhao
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford OX3 7LF, UK;
| | - Weiwei Liu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (W.L.); (C.D.)
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (W.L.); (C.D.)
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Pirbright, Woking GU24 0NF, Surrey, UK; (A.J.); (V.N.)
- UK-China Centre of Excellence on Avian Disease Research, Pirbright, Woking GU24 0NF, Surrey, UK
| | - Sebastian E. Ramos-Onsins
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB, 08193 Bellaterra, Spain
- Correspondence: (S.E.R.-O.); (L.F.)
| | - Luca Ferretti
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, Oxford OX3 7LF, UK;
- Correspondence: (S.E.R.-O.); (L.F.)
| |
Collapse
|
3
|
Du J, Xia J, Li S, Shen Y, Chen W, Luo Y, Zhao Q, Wen Y, Wu R, Yan Q, Huang X, Cao S, Han X, Cui M, Huang Y. Evolutionary dynamics and transmission patterns of Newcastle disease virus in China through Bayesian phylogeographical analysis. PLoS One 2020; 15:e0239809. [PMID: 32991628 PMCID: PMC7523974 DOI: 10.1371/journal.pone.0239809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
The Chinese poultry industry has experienced outbreaks of Newcastle disease (ND) dating back to the 1920s. However, the epidemic has exhibited a downtrend in recent years. In this study, both observational and genetic data [fusion (F) and haemagglutinin-neuraminidase genes (HN)] were analyzed, and phylogeographic analysis based on prevalent genotypes of Newcastle disease virus (NDV) was conducted for better understanding of the evolution and spatiotemporal dynamics of ND in China. In line with the observed trend of epidemic outbreaks, the effective population size of F and HN genes of circulating NDV is no longer growing since 2000, which is supported by 95% highest posterior diversity (HPD) intervals. Phylogeographic analysis indicated that the two eastern coastal provinces, Shandong and Jiangsu were the most relevant hubs for NDV migration, and the geographical regions with active NDV diffusion seemed to be constrained to southern and eastern China. The live poultry trade may play an important role in viral spread. Interestingly, no migration links from wild birds to poultry received Bayes factor support (BF > 3), while the migration links from poultry to wild birds accounted for 64% in all effective migrations. This may indicate that the sporadic cases of ND in wild bird likely spillover events from poultry. These findings contribute to predictive models of NDV transmission, and potentially help in the prevention of future outbreaks.
Collapse
Affiliation(s)
- Jiteng Du
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jing Xia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shuyun Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuxi Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Wen Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yuwen Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Rui Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Qigui Yan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Xinfeng Han
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yong Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
4
|
Nath B, Sharma K, Ahire K, Goyal A, Kumar S. Structure analysis of the nucleoprotein of Newcastle disease virus: An insight towards its multimeric form in solution. Int J Biol Macromol 2020; 151:402-411. [PMID: 32061852 DOI: 10.1016/j.ijbiomac.2020.02.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Newcastle disease virus (NDV) has been explored to a great extent to understand the biology of negative-sense RNA viruses. Nucleoprotein (N) is the most abundant protein in the virus particles, and its primary function is to encapsidate the virus genome for its transcription, replication, and packaging. Here, we report the structural investigations of the N protein of NDV (NDV-N) in solution. The N gene of NDV was cloned and expressed in E. coli as a soluble protein of ~53 kDa in size. The FE-TEM imaging of the purified NDV-N displayed a nearly spherical shape with a diameter of 28 nm and the DLS analysis of the purified NDV-N displayed a monodispersed nature, with averaged hydrodynamic radius, 26.5 nm. The conformational behavior of the NDV-N in solution was studied by SAXS analysis, which suggested two ring structures of NDV-N formed by thirteen monomeric units each. Each ring interacts with RNA molecules and forms a large molecule with a size of ~1450 kDa and are stacked on each other in a spiral arrangement. More profound knowledge of the N protein structure will help us in deciphering the control of viral RNA synthesis at the early stage of NDV life-cycle.
Collapse
Affiliation(s)
- Barnali Nath
- Viral Immunology Lab, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Komal Ahire
- Viral Immunology Lab, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Sachin Kumar
- Viral Immunology Lab, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|