1
|
Wang Y, Zhu M, Guo F, Song Y, Fan X, Qin G. Identification of Tumor Microenvironment-Related Prognostic Biomarkers in Luminal Breast Cancer. Front Genet 2020; 11:555865. [PMID: 33329695 PMCID: PMC7735391 DOI: 10.3389/fgene.2020.555865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The tumor microenvironment (TME) has been reported to have significant value in the diagnosis and prognosis of cancers. This study aimed to identify key biomarkers in the TME of luminal breast cancer (BC). Methods: We obtained immune scores (ISs) and stromal scores (SSs) for The Cancer Genome Atlas (TCGA) luminal BC cohort from the online ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) portal. The relationships between ISs and SSs and the overall survival of luminal BC patients were assessed by the Kaplan-Meier method. The differentially expressed messenger RNAs (DEmRNAs) related to the ISs and SSs were subjected to functional enrichment analysis. Additionally, a competing endogenous RNA (ceRNA) network was constructed with differentially expressed microRNAs (DEmiRNAs) and long noncoding RNAs (DElncRNAs). Furthermore, a protein–protein interaction (PPI) network was established to analyze the DEmRNAs in the ceRNA network. Then, survival analysis of biomarkers involved in the ceRNA network was carried out to explore their prognostic value. Finally, these biomarkers were validated using the luminal BC dataset from the Gene Expression Omnibus (GEO) database. Results: The results showed that ISs were significantly associated with longer survival times of luminal BC patients. Functional enrichment analysis showed that the DEmRNAs were mainly associated with immune response, antigen binding, and the extracellular region. In the PPI network, the top 10 DEmRNAs were identified as hub genes that affected the TME of luminal BC. Finally, two DEmiRNAs, two DElncRNAs, and 17 DEmRNAs of the ceRNA network associated with the TME were shown to have prognostic value. Subsequently, the expression of 15 prognostic biomarkers was validated in one additional dataset (GSE81002). In particular, one lncRNA (GVINP1) and five mRNAs (CCDC69, DOCK2, IKZF1, JCHAIN, and NCKAP1L) were novel biomarkers. Conclusions: Our studies demonstrated that ISs were associated with the survival of luminal BC patients, and a set of novel biomarkers that might play a prognostic role in the TME of luminal BC was identified.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xunjie Fan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in Metastatic Cancer. Front Cell Dev Biol 2020; 8:201. [PMID: 32322580 PMCID: PMC7156542 DOI: 10.3389/fcell.2020.00201] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The Rho family GTPases Rho, Rac, and Cdc42 have emerged as key players in cancer metastasis, due to their essential roles in regulating cell division and actin cytoskeletal rearrangements; and thus, cell growth, migration/invasion, polarity, and adhesion. This review will focus on the close homologs Rac and Cdc42, which have been established as drivers of metastasis and therapy resistance in multiple cancer types. Rac and Cdc42 are often dysregulated in cancer due to hyperactivation by guanine nucleotide exchange factors (GEFs), belonging to both the diffuse B-cell lymphoma (Dbl) and dedicator of cytokinesis (DOCK) families. Rac/Cdc42 GEFs are activated by a myriad of oncogenic cell surface receptors, such as growth factor receptors, G-protein coupled receptors, cytokine receptors, and integrins; consequently, a number of Rac/Cdc42 GEFs have been implicated in metastatic cancer. Hence, inhibiting GEF-mediated Rac/Cdc42 activation represents a promising strategy for targeted metastatic cancer therapy. Herein, we focus on the role of oncogenic Rac/Cdc42 GEFs and discuss the recent advancements in the development of Rac and Cdc42 GEF-interacting inhibitors as targeted therapy for metastatic cancer, as well as their potential for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Maria Del Mar Maldonado
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Julia Isabel Medina
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Luis Velazquez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
3
|
Castillo D, Galvez JM, Herrera LJ, Rojas F, Valenzuela O, Caba O, Prados J, Rojas I. Leukemia multiclass assessment and classification from Microarray and RNA-seq technologies integration at gene expression level. PLoS One 2019; 14:e0212127. [PMID: 30753220 PMCID: PMC6372182 DOI: 10.1371/journal.pone.0212127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
In more recent years, a significant increase in the number of available biological experiments has taken place due to the widespread use of massive sequencing data. Furthermore, the continuous developments in the machine learning and in the high performance computing areas, are allowing a faster and more efficient analysis and processing of this type of data. However, biological information about a certain disease is normally widespread due to the use of different sequencing technologies and different manufacturers, in different experiments along the years around the world. Thus, nowadays it is of paramount importance to attain a correct integration of biologically-related data in order to achieve genuine benefits from them. For this purpose, this work presents an integration of multiple Microarray and RNA-seq platforms, which has led to the design of a multiclass study by collecting samples from the main four types of leukemia, quantified at gene expression. Subsequently, in order to find a set of differentially expressed genes with the highest discernment capability among different types of leukemia, an innovative parameter referred to as coverage is presented here. This parameter allows assessing the number of different pathologies that a certain gen is able to discern. It has been evaluated together with other widely known parameters under assessment of an ANOVA statistical test which corroborated its filtering power when the identified genes are subjected to a machine learning process at multiclass level. The optimal tuning of gene extraction evaluated parameters by means of this statistical test led to the selection of 42 highly relevant expressed genes. By the use of minimum-Redundancy Maximum-Relevance (mRMR) feature selection algorithm, these genes were reordered and assessed under the operation of four different classification techniques. Outstanding results were achieved by taking exclusively the first ten genes of the ranking into consideration. Finally, specific literature was consulted on this last subset of genes, revealing the occurrence of practically all of them with biological processes related to leukemia. At sight of these results, this study underlines the relevance of considering a new parameter which facilitates the identification of highly valid expressed genes for simultaneously discerning multiple types of leukemia.
Collapse
Affiliation(s)
- Daniel Castillo
- Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| | - Juan Manuel Galvez
- Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| | - Luis J. Herrera
- Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| | - Fernando Rojas
- Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| | - Olga Valenzuela
- Department of Applied Mathematics, University of Granada, Granada, Spain
| | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Computer Technology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Araújo T, Khayat A, Quintana L, Calcagno D, Mourão R, Modesto A, Paiva J, Lima A, Moreira F, Oliveira E, Souza M, Othman M, Liehr T, Abdelhay E, Gomes R, Santos S, Assumpção P. Piwi like RNA-mediated gene silencing 1 gene as a possible major player in gastric cancer. World J Gastroenterol 2018; 24:5338-5350. [PMID: 30598579 PMCID: PMC6305533 DOI: 10.3748/wjg.v24.i47.5338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a permanent piwi like RNA-mediated gene silencing 1 (PIWIL1) gene knockout in AGP01 gastric cancer cell line using CRISPR-Cas9 system and analyze phenotypic modifications as well as gene expression alterations.
METHODS CRISPR-Cas9 system used was purchased from Dharmacon GE Life Sciences (Lafayette, CO, United States) and permanent knockout was performed according to manufacturer’s recommendations. Wound-healing assay was performed to investigate the effect of PIWIL1 knockout on migration capability of cells and Boyden chamber invasion assay was performed to investigate the effect on invasion capability. For the gene expression analysis, a one-color microarray-based gene expression analysis kit (Agilent Technologies, Santa Clara, CA, United States) was used according to the protocol provided by the manufacturer.
RESULTS PIWIL1 gene knockout caused a significant decrease in AGP01 migration capacity as well as a significant decrease in cell invasiveness. Moreover, functional analysis based on grouping of all differentially expressed mRNAs identified a total of 35 genes (5 up-regulated and 30 down-regulated) encoding proteins involved in cellular invasion and migration. According to current literature, 9 of these 35 genes (DOCK2, ZNF503, PDE4D, ABL1, ABL2, LPAR1, SMAD2, WASF3 and DACH1) are possibly related to the mechanisms used by PIWIL1 to promote carcinogenic effects related to migration and invasion, since their functions are consistent with the changes observed (being up- or down-regulated after knockout).
CONCLUSION Taken together, these data reinforce the idea that PIWIL1 plays a crucial role in the signaling pathway of gastric cancer, regulating several genes involved in migration and invasion processes; therefore, its use as a therapeutic target may generate promising results in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Taíssa Araújo
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - André Khayat
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Luciana Quintana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Danielle Calcagno
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Ronald Mourão
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Antônio Modesto
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Juliana Paiva
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Adhara Lima
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Fabiano Moreira
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Edivaldo Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Michel Souza
- Laboratório de Cultura de Tecidos e Citogenética, Instituto Evandro Chagas, Belém 66087-082, Brazil
| | - Moneeb Othman
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Universitätsklinikum Jena, Jena 07747, Germany
| | - Eliana Abdelhay
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Renata Gomes
- Laboratório de Célula Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Sidney Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| | - Paulo Assumpção
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-000, Brazil
| |
Collapse
|