1
|
Wang J, Li K, Jia Y, Song T, Xu J, Sun X, Liu M, Li P, Fan Y. Biomimetic superparamagnetic gelatin/chitosan asymmetric fibrous membrane for accelerating wound healing under static magnetic field. Carbohydr Polym 2025; 347:122717. [PMID: 39486951 DOI: 10.1016/j.carbpol.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 11/04/2024]
Abstract
The single structure, poor mechanical properties, and low biological activity of wound dressings usually lead to unsatisfactory treatment effects. Gelatin and chitosan possess excellent biofunction, but they lack sufficient mechanical support. Magnetic biomaterials and magnetic fields have shown surprising tissue repair potential. Herein, inspired by the skin structure and considering the bioactive composition, a superparamagnetic asymmetric membrane was constructed by incorporating gelatin, chitosan, and magnetic Fe3O4 nanoparticles. The proposed membrane exhibited a high degree of asymmetry, achieving functional diversification. The surface of the top layer was highly hydrophobic as an isolation barrier. The top layer consisted of dense fibrous chitosan with high mechanical strength and excellent antibacterial properties. The bottom layer was composed of gelatin sponge with distributed magnetic nanoparticles, possessing high porosity and swelling ratio to effectively absorb tissue exudates and support cell growth. Furthermore, the membrane demonstrated significant promotion of human dermal fibroblast proliferation under a static magnetic field. In a full-thickness mouse skin wound model, the membrane effectively accelerated wound healing with reduced wound area, abundant collagen disposition, and enhanced vascularization. Therefore, the superparamagnetic gelatin/chitosan asymmetric membrane with a biomimetic structure and function exhibits remarkable superiority and provides a promising approach to effective wound healing.
Collapse
Affiliation(s)
- Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Kun Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yunxue Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Tianran Song
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuemei Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; School of Medical Science and Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Lou W, Xie L, Xu L, Xu M, Xu F, Zhao Q, Jiang T. Present and future of metal nanoparticles in tumor ablation therapy. NANOSCALE 2023; 15:17698-17726. [PMID: 37917010 DOI: 10.1039/d3nr04362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is an important factor affecting the quality of human life as well as causing death. Tumor ablation therapy is a minimally invasive local treatment modality with unique advantages in treating tumors that are difficult to remove surgically. However, due to its physical and chemical characteristics and the limitation of equipment technology, ablation therapy cannot completely kill all tumor tissues and cells at one time; moreover, it inevitably damages some normal tissues in the surrounding area during the ablation process. Therefore, this technology cannot be the first-line treatment for tumors at present. Metal nanoparticles themselves have good thermal and electrical conductivity and unique optical and magnetic properties. The combination of metal nanoparticles with tumor ablation technology, on the one hand, can enhance the killing and inhibiting effect of ablation technology on tumors by expanding the ablation range; on the other hand, the ablation technology changes the physicochemical microenvironment such as temperature, electric field, optics, oxygen content and pH in tumor tissues. It helps to stimulate the degree of local drug release of nanoparticles and increase the local content of anti-tumor drugs, thus forming a synergistic therapeutic effect with tumor ablation. Recent studies have found that some specific ablation methods will stimulate the body's immune response while physically killing tumor tissues, generating a large number of immune cells to cause secondary killing of tumor tissues and cells, and with the assistance of metal nanoparticles loaded with immune drugs, the effect of this anti-tumor immunotherapy can be further enhanced. Therefore, the combination of metal nanoparticles and ablative therapy has broad research potential. This review covers common metallic nanoparticles used for ablative therapy and discusses in detail their characteristics, mechanisms of action, potential challenges, and prospects in the field of ablation.
Collapse
Affiliation(s)
- Wenjing Lou
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Lei Xu
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Min Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Fan Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Qiyu Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 31000, P. R. China.
- Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| |
Collapse
|
4
|
Dolganova IN, Zotov AK, Safonova LP, Aleksandrova PV, Reshetov IV, Zaytsev KI, Tuchin VV, Kurlov VN. Feasibility test of a sapphire cryoprobe with optical monitoring of tissue freezing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200288. [PMID: 36510652 DOI: 10.1002/jbio.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
This article describes a sapphire cryoprobe as a promising solution to the significant problem of modern cryosurgery that is the monitoring of tissue freezing. This probe consists of a sapphire rod manufactured by the edge-defined film-fed growth technique from Al2 O3 melt and optical fibers accommodated inside the rod and connected to the source and the detector. The probe's design enables detection of spatially resolved diffuse reflected intensities of tissue optical response, which are used for the estimation of tissue freezing depth. The current type of the 12.5-mm diameter sapphire probe cooled down by the liquid nitrogen assumes a superficial cryoablation. The experimental test made by using a gelatin-intralipid tissue phantom shows the feasibility of such concept, revealing the capabilities of monitoring the freezing depth up to 10 mm by the particular instrumentation realization of the probe. This justifies a potential of sapphire-based instruments aided by optical diagnosis in modern cryosurgery.
Collapse
Affiliation(s)
- Irina N Dolganova
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsen K Zotov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | | | - Polina V Aleksandrova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Igor V Reshetov
- Institute for Cluster Oncology, Sechenov University, Moscow, Russia
| | - Kirill I Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Institute of Precision Mechanics and Control, FRC "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
- Tomsk State University, Tomsk, Russia
| | - Vladimir N Kurlov
- Osipyan Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| |
Collapse
|
5
|
Zotov AK, Gavdush AA, Katyba GM, Safonova LP, Chernomyrdin NV, Dolganova IN. In situ terahertz monitoring of an ice ball formation during tissue cryosurgery: a feasibility test. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200372SSR. [PMID: 33506657 PMCID: PMC7839928 DOI: 10.1117/1.jbo.26.4.043003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE Uncontrolled cryoablation of tissues is a strong reason limiting the wide application of cryosurgery and cryotherapy due to the certain risks of unpredicted damaging of healthy tissues. The existing guiding techniques are unable to be applied in situ or provide insufficient spatial resolution. Terahertz (THz) pulsed spectroscopy (TPS) based on sensitivity of THz time-domain signal to changes of tissue properties caused by freezing could form the basis of an instrument for observation of the ice ball formation. AIM The ability of TPS for in situ monitoring of tissue freezing depth is studied experimentally. APPROACH A THz pulsed spectrometer operated in reflection mode and equipped with a cooled sample holder and ex vivo samples of bovine visceral adipose tissue is applied. Signal spectrograms are used to analyze the changes of THz time-domain signals caused by the interface between frozen and unfrozen tissue parts. RESULTS Experimental observation of TPS signals reflected from freezing tissue demonstrates the feasibility of TPS to detect ice ball formation up to 657-μm depth. CONCLUSIONS TPS could become the promising instrument for in situ control of cryoablation, enabling observation of the freezing front propagation, which could find applications in various fields of oncology, regenerative medicine, and THz biophotonics.
Collapse
Affiliation(s)
- Arsen K. Zotov
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
| | - Arsenii A. Gavdush
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Gleb M. Katyba
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | - Nikita V. Chernomyrdin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
| | - Irina N. Dolganova
- Institute of Solid State Physics of the Russian Academy of Sciences, Chernogolovka, Russia
- Bauman Moscow State Technical University, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Institute for Regenerative Medicine, Moscow, Russia
- Address all correpsondence to Irina N. Dolganova,
| |
Collapse
|
6
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
7
|
He Z, Liu P, Zhang S, Yan J, Wang M, Cai Z, Wang J, Dong Y. A Freezing-Induced Turn-On Imaging Modality for Real-Time Monitoring of Cancer Cells in Cryosurgery. Angew Chem Int Ed Engl 2019; 58:3834-3837. [PMID: 30600879 DOI: 10.1002/anie.201813239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/23/2018] [Indexed: 11/07/2022]
Abstract
Cryosurgery has attracted much attention for the treatment of tumors owing to its clear advantages. However, determining the volume of frozen tissues in real-time remains a challenge, which greatly lowers the therapeutic efficacy of cryosurgery and hinders its broad application for the treatment of cancers. Herein, we report a freezing-induced turn-on strategy for the selective real-time imaging of frozen cancer cells. As a type of aggregation-induced emission (AIE) fluorogen, TABD-Py molecules interact specifically with ice crystals and form aggregates at the ice/water interface. Consequently, bright fluorescent emission appears upon freezing. TABD-Py molecules are enriched mostly in the cancer cells and exhibit high biocompatibility as well as low cytotoxicity; therefore, a freezing-induced turn-on imaging modality for cryosurgery is developed, which will certainly maximize the therapeutic efficacy of cryosurgery in treating tumors.
Collapse
Affiliation(s)
- Zhiyuan He
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Pai Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Shizhong Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University, Third Hospital, Beijing, 100081, China
| | - Mengni Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianjun Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
8
|
He Z, Liu P, Zhang S, Yan J, Wang M, Cai Z, Wang J, Dong Y. A Freezing‐Induced Turn‐On Imaging Modality for Real‐Time Monitoring of Cancer Cells in Cryosurgery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhiyuan He
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Pai Liu
- School of Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Shizhong Zhang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jie Yan
- Center for Reproductive MedicineDepartment of Obstetrics and GynecologyPeking University Third Hospital Beijing 100081 China
| | - Mengni Wang
- School of Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Zhengxu Cai
- School of Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| | - Jianjun Wang
- Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yuping Dong
- School of Materials Science and EngineeringBeijing Institute of Technology 5 South Zhongguancun Street Beijing 100081 China
| |
Collapse
|
9
|
Panhwar F, Chen Z, Hossain SMC, Wang M, Haider Z, Memon K, Chen P, Zhao G. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. NANOSCALE 2018; 10:11760-11774. [PMID: 29770427 DOI: 10.1039/c8nr01349g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets (NSs) have been widely used as photothermal agents and as potential carriers of antitumor drugs. Their spatial thermal effects have been extensively explored for use at physiological and hyperthermic temperatures (37 to 46 °C). Furthermore, the modulation of the spatial thermal distributions with these NSs may have even more profound applications in the microstructural control of biomaterials at cryogenic temperatures (-196 to 37 °C). These applications include bioinspired microfabrication via freezing, food and drug freeze-drying, and biomaterial cryopreservation. However, such thermal effects of NSs and their applications at cryogenic temperatures had never been fully explored. Therefore, in this study, we have utilized the near-infrared laser induced photothermal effects of GO and MoS2 NSs to suppress the ice nucleation and ice crystal growth during warming of the biosamples. Using this approach, biological cells subjected to fast cooling to a deeply frozen state (-196 °C) were successfully recovered with high survival rates and full biological functionality. Thus, we provide a NS based effective approach to control the crystallization behaviors of water during warming at cryogenic temperatures, as NSs may have wide applications in both materials science and bioengineering.
Collapse
Affiliation(s)
- Fazil Panhwar
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | | | | | | | | | | | | | | |
Collapse
|