1
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Rashid S, Rashid S, Das P, Malik N, Dash NR, Singh N, Pandey RM, Kumar L, Chauhan SS, Chosdol K, Gupta S, Saraya A. Elucidating the Role of miRNA-326 Modulating Hedgehog Signaling in Pancreatic Carcinoma. Pancreas 2024; 53:e42-e48. [PMID: 38019614 DOI: 10.1097/mpa.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIM Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal malignancies worldwide characterized by poor prognosis. MicroRNAs (miRNAs) function as the key regulators in carcinogenesis and may act as noninvasive biomarkers in various malignancies including PDAC. The present study aimed to elucidate the role of miR-326, a known modulator of hedgehog (Hh) pathway in PDAC. MATERIALS AND METHODS miR-326 circulating levels were assessed in 105 PDAC patients, 31 with chronic pancreatitis (CP) and 36 healthy controls by quantitative Polymerase chain reaction. The expression of miR-326 and smoothened (SMO) was checked in surgical PDAC tissue. SMO protein expression was analyzed by immunohistochemistry in different groups. Finally, the role of miR-326 as a modulator of Hh pathway was assessed in vitro. RESULTS Our results demonstrate that miR-326 is downregulated in both blood and tissue of PDAC patients as compared with controls. In contrast, the target gene/protein expression of SMO is upregulated in PDAC. Moreover, the tumor stromal expression of SMO was found to be clinically associated with lymph-node metastasis and vascular encasement in PDAC. Overexpression of miR-326 in Panc1 cell line was found to induce downregulation of SMO suggesting the tumor suppressor role of miR-326 in PDAC. CONCLUSIONS Taken together, miR-326 acts as a tumor suppressor in PDAC by modulating Hh pathway. It may be a promising target for the development of efficient drug therapies for the treatment of PDAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Nidhi Singh
- From the Departments of Gastroenterology and HNU
| | | | | | | | | | - Surabhi Gupta
- Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- From the Departments of Gastroenterology and HNU
| |
Collapse
|
3
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Pal D, Samadder S, Dutta P, Roychowdhury A, Chakraborty B, Dutta S, Roy A, Mandal RK, Panda CK. Differential association of hedgehog pathway in development of cervical carcinoma and its chemo-tolerance. Pathol Res Pract 2023; 248:154696. [PMID: 37516000 DOI: 10.1016/j.prp.2023.154696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Cervical carcinoma (CACX) is still a dreadful threat to women in developing countries. Available conventional chemo-radiation therapies are not sufficient to restrict the disease recurrence. To unravel the mechanism of the disease recurrence, alteration of hedgehog self-renewal pathway was evaluated during development of CACX and in chemo-tolerance of the tumor. We have analyzed the alterations (expression/methylation/deletion) of some key regulatory genes (HHIP/SUFU/SHH/ SMO/GLI1) of hedgehog self-renewal pathway in cervical lesions at different clinical stages and compared with different datasets, followed by their clinico-pathological correlations. The changes in expression/methylation of the genes were then evaluated in two CACX cell lines (SiHa/HeLa) after treatment with chemotherapeutic drug cisplatin at different concentrations. Down regulation (mRNA/protein) of the antagonists HHIP and SUFU due to promoter methylation and/or deletion along with upregulation (protein) of agonists SHH, SMO and GLI1 was seen in early invasive lesions and subsequent clinical stages. Reduced protein expression of HHIP and SUFU showed significant association with high/intermediate expression of agonists SHH, SMO, GLI1 in the tumors and also poor prognosis of the patients. It was evident that cisplatin could restrict the growth of HeLa and SiHa cells through significant upregulation of antagonists HHIP and SUFU due to their promoter hypomethylation and down regulation of SHH in a concentration dependent manner without any significant changes in expression of SMO and GLI1, leading to the tumor cells in a dormant state. Thus, interplay of the agonists and antagonists has important role in activation of hedgehog pathway during development of CACX, whereas inactivation of the pathway due to upregulation of the antagonists is an important phenomenon in chemo-tolerance of the tumor. This suggests importance of epigenetic modification in chemo-resistance of CACX.
Collapse
Affiliation(s)
- Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India; Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, MasseyCancer Center, Virginia Commonwealth University, Richmond, USA
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Sankhadeep Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Anup Roy
- Department of Pathology, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | - Ranajit Kumar Mandal
- Department of Gynecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India.
| |
Collapse
|
5
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
6
|
Gene expression profile of high PD-L1 non-small cell lung cancers refractory to pembrolizumab. Cancer Immunol Immunother 2022; 71:2791-2799. [DOI: 10.1007/s00262-022-03206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
7
|
Kandel N, Wang C. Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery. Front Mol Biosci 2022; 9:900560. [PMID: 35669560 PMCID: PMC9163320 DOI: 10.3389/fmolb.2022.900560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development. In adults, Hh signaling is mostly turned off but its abnormal activation is involved in many types of cancer. Hh signaling is initiated by the Hh ligand, generated from the Hh precursor by a specialized autocatalytic process called Hh autoprocessing. The Hh precursor consists of an N-terminal signaling domain (HhN) and a C-terminal autoprocessing domain (HhC). During Hh autoprocessing, the precursor is cleaved between N- and C-terminal domain followed by the covalent ligation of cholesterol to the last residue of HhN, which subsequently leads to the generation of Hh ligand for Hh signaling. Hh autoprocessing is at the origin of canonical Hh signaling and precedes all downstream signaling events. Mutations in the catalytic residues in HhC can lead to congenital defects such as holoprosencephaly (HPE). The aim of this review is to provide an in-depth summary of the progresses and challenges towards an atomic level understanding of the structural mechanisms of Hh autoprocessing. We also discuss drug discovery efforts to inhibit Hh autoprocessing as a new direction in cancer therapy.
Collapse
Affiliation(s)
- Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- *Correspondence: Chunyu Wang,
| |
Collapse
|
8
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
9
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Nakamura Y, Onodera S, Takano M, Katakura A, Nomura T, Azuma T. Development of a targeted gene panel for the diagnosis of Gorlin syndrome. Int J Oral Maxillofac Surg 2022; 51:1431-1444. [DOI: 10.1016/j.ijom.2022.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
12
|
Mehlman C, Takam Kamga P, Costantini A, Julié C, Dumenil C, Dumoulin J, Ouaknine J, Giraud V, Chinet T, Emile JF, Giroux Leprieur E. Baseline Hedgehog Pathway Activation and Increase of Plasma Wnt1 Protein Are Associated with Resistance to Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13051107. [PMID: 33807552 PMCID: PMC7962040 DOI: 10.3390/cancers13051107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
Hedgehog (Hh) and Wingless-type (Wnt) pathways are associated with resistance to immune checkpoint inhibitors (ICIs) in preclinical studies. This study aimed to assess the association between expression and activation levels of Wnt and Sonic Hedgehog (Shh) pathways and resistance to ICIs in advanced NSCLC patients treated with ICI. Hh and Wnt pathways activation was assessed by immunohistochemistry (Gli1 and beta-catenin) on corresponding tumor tissues, and by plasma concentrations of Shh and Wnt (Wnt1, Wnt2 and Wnt3) at ICI introduction and at the first clinical evaluation. Sixty-three patients were included, with 36 patients (57.1%) with available tissue. Response rate was lower in Gli1+ NSCLC (20.0%) compared to Gli1 negative (Gli-) NSCLC (55.6%) (p = 0.015). Rate of primary resistance was 69.8%, vs. 31.2%, respectively (p = 0.04), and median progression-free survival (PFS) was 1.9 months (interquartile range (IQR) 1.2-5.7) vs. 6.1 months (1.6-26.0), respectively (p = 0.08). Median PFS and overall survival were shorter in case of increase of Wnt1 concentration during ICI treatment compared to other patients: 3.9 months vs. 11.2 months (p = 0.008), and 15.3 months vs. not reached (p = 0.003). In conclusion, baseline activation of Hh pathway and increase of Wnt1 concentrations during ICI treatment were associated with poor outcome in NSCLC patients treated with ICIs.
Collapse
Affiliation(s)
- Camille Mehlman
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
| | - Adrien Costantini
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Catherine Julié
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Julia Ouaknine
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Thierry Chinet
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Pathology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- EA 4340 BECCOH, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France; (C.M.); (P.T.K.); (A.C.); (C.J.); (T.C.); (J.-F.E.)
- Department of Respiratory Diseases and Thoracic Oncology, APHP—Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France; (C.D.); (J.D.); (J.O.); (V.G.)
- Correspondence: ; Tel.: +33-149-095-802; Fax: +33-149-095-806
| |
Collapse
|
13
|
Martin-Hurtado A, Lastres-Becker I, Cuadrado A, Garcia-Gonzalo FR. NRF2 and Primary Cilia: An Emerging Partnership. Antioxidants (Basel) 2020; 9:antiox9060475. [PMID: 32498260 PMCID: PMC7346227 DOI: 10.3390/antiox9060475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
When not dividing, many cell types target their centrosome to the plasma membrane, where it nucleates assembly of a primary cilium, an antenna-like signaling structure consisting of nine concentric microtubule pairs surrounded by membrane. Primary cilia play important pathophysiological roles in many tissues, their dysfunction being associated with cancer and ciliopathies, a diverse group of congenital human diseases. Several recent studies have unveiled functional connections between primary cilia and NRF2 (nuclear factor erythroid 2-related factor 2), the master transcription factor orchestrating cytoprotective responses to oxidative and other cellular stresses. These NRF2-cilia relationships are reciprocal: primary cilia, by promoting autophagy, downregulate NRF2 activity. In turn, NRF2 transcriptionally regulates genes involved in ciliogenesis and Hedgehog (Hh) signaling, a cilia-dependent pathway with major roles in embryogenesis, stem cell function and tumorigenesis. Nevertheless, while we found that NRF2 stimulates ciliogenesis and Hh signaling, a more recent study reported that NRF2 negatively affects these processes. Herein, we review the available evidence linking NRF2 to primary cilia, suggest possible explanations to reconcile seemingly contradictory data, and discuss what the emerging interplay between primary cilia and NRF2 may mean for human health and disease.
Collapse
Affiliation(s)
- Ana Martin-Hurtado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
| | - Isabel Lastres-Becker
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28013 Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBM), UAM-CSIC, 28029 Madrid, Spain; (A.M.-H.); (I.L.-B.); (A.C.)
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), 28047 Madrid, Spain
- Correspondence:
| |
Collapse
|
14
|
Fujii T, Phutthatiraphap S, Shimizu T, Takeshima H, Sakai H. Non-morphogenic effect of Sonic Hedgehog on gastric H+,K+-ATPase activity. Biochem Biophys Res Commun 2019; 518:605-609. [DOI: 10.1016/j.bbrc.2019.08.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022]
|
15
|
Kotulak-Chrzaszcz A, Klacz J, Matuszewski M, Kmiec Z, Wierzbicki PM. Expression of the Sonic Hedgehog pathway components in clear cell renal cell carcinoma. Oncol Lett 2019; 18:5801-5810. [PMID: 31788053 PMCID: PMC6865145 DOI: 10.3892/ol.2019.10919] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common and the most aggressive histopathological subtype of kidney cancer, with patients exhibiting high mortality rates for metastatic tumors. The Sonic Hedgehog (SHH) pathway serves a crucial role in embryonic development. The abnormal activity of SHH signaling is observed in a broad range of malignancies. However, its role in ccRCC is still undetermined. The aim of the present study was to assess the expression of the SHH pathway genes in ccRCC. Neoplastic and morphologically unchanged kidney tissues were obtained during radical nephrectomy from 37 patients with ccRCC. The SHH, PTCH1, SMO and GLI1 mRNA levels were assessed using the reverse transcription-quantitative PCR. Western blot analysis was used to assess the full-length and C-terminal SHH protein level. The mRNA levels of SHH, SMO and GLI1 were approximately 2-, 2,5- and 7-fold higher in ccRCC tissue compared with control kidney tissue, respectively. Correlational analysis between the mRNA levels of SHH pathway genes and patients' clinicopathological factors revealed decreased and increased mRNA levels of PTCH1 and SMO respectively, in tumor samples derived from older patients (age >62). Furthermore, the level of C-terminal SHH protein in ccRCC samples was significantly lower in a group of males compared with females. No correlation was exhibited between molecular data and patient survival. Western blot analysis indicated a ~3-fold higher level of SHH full-length protein, and a 4-fold lower level of the C-terminal SHH protein domain, in ccRCC tumor tissues compared with normal kidney samples. The current study indicated an involvement of the SHH pathway in ccRCC development.
Collapse
Affiliation(s)
- Anna Kotulak-Chrzaszcz
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Jakub Klacz
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Marcin Matuszewski
- Department of Urology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80402, Poland
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| | - Piotr M Wierzbicki
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, Gdansk 80211, Poland
| |
Collapse
|
16
|
Dacosta-Noble P, Costantini A, Dumenil C, Dumoulin J, Helly de Tauriers P, Giraud V, Labrune S, Emile JF, Alvarez JC, Chinet T, Giroux Leprieur E. Positive plasma cotinine during platinum-based chemotherapy is associated with poor response rate in advanced non-small cell lung cancer patients. PLoS One 2019; 14:e0219080. [PMID: 31260495 PMCID: PMC6602197 DOI: 10.1371/journal.pone.0219080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Patients with advanced non-small cell lung cancer (NSCLC) are most of the time treated with a first-line cytotoxic chemotherapy. Tobacco use is responsible for 90% of lung cancer. The aim of this study was to evaluate the impact of smoking continuation during first-line chemotherapy on tumor response in advanced-stage NSCLC. MATERIALS AND METHODS All patients with an advanced-stage NSCLC (IIIb or IV), treated with first-line platinum-based chemotherapy in our Department between June 2013 and July 2017 were included. Smoking status was assessed at inclusion by self-report, then at the tumor assessment consultation after 2 months of treatment, by both self-report and plasmatic cotinine measurement. Chemotherapy response, progression-free survival (PFS), overall survival (OS) and stage 3-4 toxicity were registered. RESULTS Ninety-seven patients were included: 8 (8%) declared to be non-smokers, 56 (58%) current smokers and 33 (34%) former smokers at diagnosis. At the first tumor evaluation, 24 (25%) self-reported as active smokers and 73 (75%) as non-smokers; overall response rate (ORR) was respectively 38% and 48% (p = 0.373). Fifty-four patients had a plasmatic cotinine evaluation at the first tumor evaluation. Seventeen patients (32%) had a positive cotinine rate (median 108ng/mL, IQR 31-236). Six patients (35%) had positive cotinine rate whereas declaring to be non-smokers at the first tumor evaluation. ORR was 18% in case of positive cotinine rate, and 57% when negative (p = 0.007). Regardless of the method for smoking status evaluation, PFS, OS and grade 3-4 toxicities were similar between smoker and non-smoker patients at the first tumor evaluation. CONCLUSION Smoking continuation during platinum-based chemotherapy, reflected by positive plasma cotinine rate, was associated with a poor ORR.
Collapse
Affiliation(s)
- Philippine Dacosta-Noble
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
- EA 4340, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
- EA 4340, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Pierre Helly de Tauriers
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Jean-François Emile
- EA 4340, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
- Centre de Ressources Biologiques, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
| | - Jean-Claude Alvarez
- AP-HP, Hôpital Raymond Poincaré, Service de Pharmacologie Toxicologie, INSERM U-1173, UVSQ, Université Paris-Saclay, Garches, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
- EA 4340, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Paré, Boulogne-Billancourt, France
- EA 4340, UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
- * E-mail:
| |
Collapse
|
17
|
Qi H, Wang S, Wu J, Yang S, Gray S, Ng CSH, Du J, Underwood MJ, Li MY, Chen GG. EGFR-AS1/HIF2A regulates the expression of FOXP3 to impact the cancer stemness of smoking-related non-small cell lung cancer. Ther Adv Med Oncol 2019; 11:1758835919855228. [PMID: 31275431 PMCID: PMC6598324 DOI: 10.1177/1758835919855228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Early data showed that FOXP3 could induce epithelial-mesenchymal transition by stimulating the Wnt/β-catenin signaling pathway in non-small cell lung cancer (NSCLC). However, how the expression of FOXP3 is regulated in NSCLC remains unknown. We thus explored the impacts of the long noncoding RNA EGFR antisense RNA 1 (EGFR-AS1) and hypoxia-inducible factor-2A (HIF2A) on FOXP3 expression and the cancer stemness of NSCLC. Methods: Lung tissues samples from 87 patients with NSCLC and two NSCLC cell lines were used in this study. The regulation of FOXP3 and lung cancer cell stemness by EGFR-AS1 and HIF2A was determined at molecular levels in NSCLC tissue samples and cultured cells in the presence/absence of the smoking carcinogen, 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (also known as nicotine-derived nitrosamine ketone). The results were confirmed in tumor xenograft models. Results: We found that NNK decreased the expression of EGFR-AS1 in the long term, but increased the expression of HIF2A and FOXP3 to stimulate lung cancer cell stemness. EGFR-AS1 significantly inhibited FOXP3 expression and NSCLC cell stemness, whereas HIF2A obviously promoted both. The enhancement of lung cancer stemness by FOXP3 was, at least partially, via stimulating Notch1, as the inhibition of Notch1 could markedly diminish the effect of FOXP3. Conclusions: FOXP3, the expression of which is under the fine control of EGFR-AS1, is a critical molecule that promotes NSCLC cancer cell stemness through stimulating the Notch1 pathway.
Collapse
Affiliation(s)
- Haolong Qi
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Juekun Wu
- Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan District People's Hospital of Shenzhen, Shenzhen, China
| | - Steven Gray
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | - Calvin S H Ng
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jing Du
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Malcolm J Underwood
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - George G Chen
- Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| |
Collapse
|
18
|
Huang H, Fu S, Liu D. Detection and Analysis of the Hedgehog Signaling Pathway-Related Long Non-Coding RNA (lncRNA) Expression Profiles in Keloid. Med Sci Monit 2018; 24:9032-9044. [PMID: 30543583 PMCID: PMC6301256 DOI: 10.12659/msm.911159] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling pathway-related genes have important roles in several physiological and disease processes that involve cell proliferation. Long non-coding region RNAs (lncRNAs) have a regulatory role on gene expression. Keloid is characterized by excessive proliferation of scar tissue following trauma. The aims of this study were to evaluate the Hh signaling pathway in keloid skin tissues and its downstream gene expression and lncRNAs, compared with normal skin. MATERIAL AND METHODS Four pairs of keloids and adjacent normal skin epidermis underwent total RNA extraction. Gene chip high-throughput real-time quantitative polymerase chain reaction (qPCR) was used to examine the differential expression profiles of the Hh signaling pathway-related lncRNAs and mRNAs in the human keloid and normal skin. The differentially expressed mRNAs were analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to identify their biological roles. RESULTS In keloid tissue, differential expression of 33 mRNAs and 30 lncRNAs relating to the Hh pathway, were verified by gene chip qPCR. The results of GO and KEGG analysis showed that the upregulated mRNAs were involved in cell proliferation, cell growth, and tissue repair, and down-regulated mRNAs were involved in apoptosis. The lncRNA, AC073257.2, affected cell keloid growth and proliferation by its upstream target the GLI2 gene at the transcriptional level. The lncRNA, HNF1A-AS1, affected cell keloid growth and proliferation by its neighboring target gene, HNF1A. CONCLUSIONS Differential expression occurred in Hh signaling pathway-related lncRNAs and mRNAs, which may provide further insight into the development of keloid.
Collapse
Affiliation(s)
- Heping Huang
- Institute of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Plastic and Aesthetic Surgery, Jingxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P.R. China
| | - Shangfeng Fu
- Institute of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Dewu Liu
- Institute of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
19
|
Yang YG, Koh YW, Sari IN, Jun N, Lee S, Phi LTH, Kim KS, Wijaya YT, Lee SH, Baek MJ, Jeong D, Kwon HY. Interferon-induced transmembrane protein 1-mediated EGFR/SOX2 signaling axis is essential for progression of non-small cell lung cancer. Int J Cancer 2018; 144:2020-2032. [PMID: 30318841 PMCID: PMC6587945 DOI: 10.1002/ijc.31926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/20/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023]
Abstract
Emerging data indicate that interferon‐induced transmembrane protein 1 (IFITM1) plays an important role in many cancers. However, it remains unclear whether IFITM1 is functionally indispensable in nonsmall cell lung cancer (NSCLC). Here, using NSCLC cell lines and patient‐derived samples, we show that IFITM1 is essentially required for the progression of NSCLC in vitro and in vivo. Specifically, IFITM1 depletion resulted in a significant reduction in sphere formation, migration, and invasion of NSCLC cells in vitro; these events were inversely correlated with the ectopic expression of IFITM1. In addition, tumor development was significantly impaired in the absence of IFITM1 in vivo. Mechanistically, epidermal growth factor receptor/sex‐determining region Y‐box 2 (EGFR/SOX2) signaling axis was compromised in the absence of IFITM1, and the ectopic expression of SOX2 partially rescued the defects caused by IFITM1 depletion. More importantly, using 226 patient‐derived samples, we demonstrate that a high level of IFITM1 expression is associated with a poor overall survival (OS) rate in adenocarcinoma but not in squamous cell carcinoma. Collectively, these data suggest that IFITM1 is a poor prognostic marker of adenocarcinoma and an attractive target to develop novel therapeutics for NSCLC. What's new? Interferon response genes play key roles in pathogen defense but emerging evidence also link them with cancer. The authors report that interferon‐induced transmembrane protein 1 (IFITM1) critically regulates epidermal growth factor receptor‐mediated signaling in nonsmall lung cancer models and is associated with a poor prognosis of patients with adenocarcinoma. This expands the function of this innate defense factor and might lead to improved clinical management of individuals afflicted with lung cancer.
Collapse
Affiliation(s)
- Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sanghyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Yoseph Toni Wijaya
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Moo-Jun Baek
- Department of surgery, College of medicine, Soonchunhyang University, Republic of Korea
| | - Dongjun Jeong
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
20
|
The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells Int 2018; 2018:6392198. [PMID: 30532788 PMCID: PMC6247433 DOI: 10.1155/2018/6392198] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Several evidences nowadays demonstrated the critical role of the microenvironment in regulating cancer stem cells and their involvement in tumor progression. Extracellular vesicles (EVs) are considered as one of the most effective vehicles of information among cells. Accordingly, a number of studies led to the recognition of stem cell-associated EVs as new complexes able to contribute to cell fate determination of either normal or tumor cells. In this review, we aim to highlight an existing bidirectional role of EV-mediated communication—from cancer stem cells to microenvironment and also from microenvironment to cancer stem cells—in the most widespread solid cancers as prostate, breast, lung, and colon tumors.
Collapse
|
21
|
Giroux-Leprieur E, Costantini A, Ding VW, He B. Hedgehog Signaling in Lung Cancer: From Oncogenesis to Cancer Treatment Resistance. Int J Mol Sci 2018; 19:E2835. [PMID: 30235830 PMCID: PMC6165231 DOI: 10.3390/ijms19092835] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hedgehog signaling pathway is physiologically activated during embryogenesis, especially in lung development. It is also reactivated in many solid tumors. In lung cancer, Hedgehog pathway is closely associated with cancer stem cells (CSCs). Recent works have shown that CSCs produced a full-length Sonic Hedgehog (Shh) protein, with paracrine activity and induction of tumor development. Hedgehog pathway is also involved in tumor drug resistance in lung cancer, as cytotoxic chemotherapy, radiotherapy, and targeted therapies. This review proposes to describe the activation mechanisms of Hedgehog pathway in lung cancer, the clinical implications for overcoming drug resistance, and the perspectives for further research.
Collapse
Affiliation(s)
- Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hopital Ambroise Pare, 92100 Boulogne-Billancourt, France.
- EA 4340, UVSQ, Université Paris-Saclay, 92100 Boulogne-Billancourt, France.
| | - Vivianne W Ding
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Tolani B, Hoang NT, Acevedo LA, Giroux Leprieur E, Li H, He B, Jablons DM. Preclinical characterization of therapeutic antibodies targeted at the carboxy-terminus of Sonic hedgehog. Oncotarget 2018; 9:14311-14323. [PMID: 29581846 PMCID: PMC5865672 DOI: 10.18632/oncotarget.24510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/10/2018] [Indexed: 12/15/2022] Open
Abstract
The Sonic Hedgehog (Shh) signaling pathway has been implicated in the development and tumor progression of a number of human cancers. Using synthetic peptide mimics to mount an immune response, we generated a mouse mAb to the carboxy (C)-terminus of the Shh protein and characterized its preclinical antitumor effects. In vitro screening guided selection of the best candidate for mAb scale-up production and therapeutic development. C-term anti-Shh, Ab 1C11-2G4 was selected based on ELISA screens, Western blotting, and flow cytometric analyses. Purified Ab 1C11-2G4 was shown to recognize and bind both Shh peptide mimics and cell surface Shh. Administration of Ab 1C11-2G4 not only reduced cell viability in 7 cancer cell lines but also significantly inhibitted tumor growth in a xenograft model of A549 lung cancer cells. Ex vivo analyses of xenograft tumors revealed a reduction in Shh signal transduction and apoptosis in 2G4-treated mice. Collectively, our results provide early demonstration of the antitumor utility of antibodies specific for the C-terminal region of Shh, and support continued development to evaluate their potential efficacy in cancers in which Shh activity is elevated.
Collapse
Affiliation(s)
- Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Ngoc T Hoang
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Luis A Acevedo
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Respiratory Diseases and Thoracic Oncology Department, APHP-Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Hui Li
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
23
|
Old Sonic Hedgehog, new tricks: a new paradigm in thoracic malignancies. Oncotarget 2018; 9:14680-14691. [PMID: 29581874 PMCID: PMC5865700 DOI: 10.18632/oncotarget.24411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
The Sonic Hedgehog (Shh) pathway is physiologically involved during embryogenesis, but is also activated in several diseases, including solid cancers. Previous studies have demonstrated that the Shh pathway is involved in oncogenesis, tumor progression and chemoresistance in lung cancer and mesothelioma. The Shh pathway is also closely associated with epithelial-mesenchymal transition and cancer stem cells. Recent findings have revealed that a small proportion of lung cancer cells expressed an abnormal full-length Shh protein, associated with cancer stem cell features. In this paper, we review the role of the Shh pathway in thoracic cancers (small cell lung cancer, non-small cell lung cancer, and mesothelioma) and discuss the new perspectives of cancer research highlighted by the recent data of the literature.
Collapse
|