1
|
Ligustilide Inhibits Tumor Angiogenesis by Downregulating VEGFA Secretion from Cancer-Associated Fibroblasts in Prostate Cancer via TLR4. Cancers (Basel) 2022; 14:cancers14102406. [PMID: 35626012 PMCID: PMC9140166 DOI: 10.3390/cancers14102406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
CAFs secrete VEGFA in the tumor microenvironment to induce angiogenesis and promote tumor growth. The downregulation of VEGFA secretion from CAFs helps block angiogenesis and exerts an anti-tumor effect. In vivo experiments showed that the angiogenesis of the tumor-bearing mice in the ligustilide group was significantly reduced. The results of MTT, tube formation, Transwell and scratch experiments showed that ligustilide did not affect the proliferation of HUVECs in a certain concentration range (<60 μM), but it inhibited the proliferation, tube formation and migration of HUVECs induced by CAFs. At this concentration, ligustilide did not inhibit CAF proliferation. The qPCR and WB results revealed that ligustilide downregulated the level of VEGFA in CAFs via the TLR4-ERK/JNK/p38 signaling pathway, and the effect was attenuated by blockers of the above molecules. Ligustilide also downregulated the autocrine VEGFA of HUVECs induced by CAFs, which inhibited angiogenesis more effectively. In addition, ligustilide inhibited glycolysis and HIF-1 expression in CAFs. Overall, ligustilide downregulated the VEGFA level in CAFs via the TLR4-ERK/JNK/p38 signaling pathway and inhibited the promotion of angiogenesis. This study provides a new strategy for the anti-tumor effect of natural active molecules, namely, blockade of angiogenesis, and provides a new candidate molecule for blocking angiogenesis in the tumor microenvironment.
Collapse
|
2
|
Wang Y, Zeng Y, Zhu L, Wan J, Lei N, Yao X, Duan X, Zhang Y, Cheng Y, Tao N, Qin Z. Polysaccharides From Lentinus Edodes Inhibits Lymphangiogenesis via the Toll-Like Receptor 4/JNK Pathway of Cancer-Associated Fibroblasts. Front Oncol 2021; 10:547683. [PMID: 33643892 PMCID: PMC7907162 DOI: 10.3389/fonc.2020.547683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Polysaccharides from Lentinus edodes (L. edodes) have been successfully used as adjuvant chemotherapy drug to treat lymphatic metastasis in some malignancies, such as colorectal cancer (CRC), lung cancer and gastric cancer. The CRC could metastasize via lymphatic vessels. Lymphatic metastasis is commonly thought to be the cause of poor prognosis of CRC. The mechanism of polysaccharides from L. edodes inhibiting lymphatic metastasis of CRC is still unclear. In this study, we explored how MPSSS, a novel polysaccharide component of L. edodes, influences lymphangiogenesis and lymph node metastasis. The results show that MPSSS can reduce lymphangiogenesis and lymphatic metastasis of CRC in mouse model. And combined with in vitro study, a likely mechanism is that MPSSS reduce the secretion of VEGF-C by cancer associated fibroblasts (CAFs). This effect can be suppressed by a TLR4 inhibitor, which suggests that MPSSS plays a role in CAFs through the TLR4/JNK signaling pathway. In conclusion, MPSSS may reduce lymphangiogenesis by decreasing the VEGF-C secretion of CAFs, which may provide a new strategy for the comprehensive treatment of CRC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqiong Zeng
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Linyu Zhu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjing Lei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohan Yao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xixi Duan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yana Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Müller M, Ringer K, Hub F, Kamm N, Worzfeld T, Jacob R. TTL-Expression Modulates Epithelial Morphogenesis. Front Cell Dev Biol 2021; 9:635723. [PMID: 33614664 PMCID: PMC7892909 DOI: 10.3389/fcell.2021.635723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Epithelial monolayer formation depends on the architecture and composition of the microtubule cytoskeleton. Microtubules control bidirectional trafficking and determine the positioning of structural cellular proteins. We studied the role of tubulin tyrosination in epithelial cell shape and motility. Tubulin tyrosine ligase (TTL), the enzyme that adds tyrosine to the carboxy terminus of detyrosinated α-tubulin, was depleted or overexpressed in 2D epithelial monolayers as well as in 3D intestinal organoids. We demonstrate qualitatively and quantitatively that in the absence of TTL the cells comprise high levels of detyrosinated tubulin, change their shape into an initial flat morphology and retardedly acquire a differentiated columnar epithelial cell shape. Enhanced adhesion and accelerated migration patterns of TTL-knockout cells combined with reverse effects in TTL-overexpressing cells indicate that the loss of TTL affects the organization of cell adhesion foci. Precipitation of detyrosinated tubulin with focal adhesion scaffold components coincides with increased quantities and persistence of focal adhesion plaques. Our results indicate that the equilibrium between microtubules enriched in detyrosinated or tyrosinated tubulin modulates epithelial tissue formation, cell morphology, and adhesion.
Collapse
Affiliation(s)
- Manuel Müller
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Karina Ringer
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Hub
- Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany
| | - Natalia Kamm
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany
| | - Thomas Worzfeld
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany.,Institute of Pharmacology, Biochemical-Pharmacological Center, University of Marburg, Marburg, Germany.,Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-Universität Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodelling, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Bioprofiling TS/A Murine Mammary Cancer for a Functional Precision Experimental Model. Cancers (Basel) 2019; 11:cancers11121889. [PMID: 31783695 PMCID: PMC6966465 DOI: 10.3390/cancers11121889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor-host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.
Collapse
|