1
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2022; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
2
|
Wang X, Yuan T, Yin N, Ma X, Yang Y, Yang J, Shaukat A, Deng G. Interferon-τ regulates the expression and function of bovine leukocyte antigen by downregulating bta-miR-204. Exp Ther Med 2021; 21:594. [PMID: 33884032 PMCID: PMC8056107 DOI: 10.3892/etm.2021.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
IFN-τ is a pregnancy recognition factor that regulates embryo implantation in ruminants. IFN-τ has been suggested to be involved in the expression of microRNA (miRNA/miR) and bovine leukocyte antigen (BoLA), which is an analog of the human major histocompatibility complex class I. However, little is known about whether the miRNAs are involved in the expression of BoLA in ruminants. The present study firstly verified that bta-miR-204 was downregulated and that BoLA was upregulated in the uterine tissues of dairy cows during early pregnancy. Subsequently, luciferase reporter assays, reverse transcription-quantitative PCR and western blot analysis were used to validate BoLA as the target gene of bta-miR-204. Moreover, BoLA was markedly upregulated and bta-miR-204 was downregulated in bovine endometrial epithelial cells (bEECs) treated with IFN-τ. In addition, the results indicated that when the expression level of BoLA was increased by IFN-τ, the expression level of programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2) was also increased. Furthermore, when BoLA was silenced in bEECs by small interfering RNA, the expression of PD-L1 and PD-L2 was not affected by IFN-τ. The expression level of PD-L1 and PD-L2 was also increased in the uterine tissues of pregnant dairy cattle. In conclusion, IFN-τ may function by suppressing the expression of bta-miR-204 to increase the expression of BoLA during the embryo implantation period in cattle. IFN-τ may induce PD-L1 and PD-L2 transcription by regulating BoLA, which may influence the T cell immune response, thereby regulating pregnant cattle immunization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.,College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Ting Yuan
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Nannan Yin
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
3
|
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY) 2020; 12:9380-9404. [PMID: 32420903 PMCID: PMC7288910 DOI: 10.18632/aging.103214] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic impact of microRNA (miRNA) expression levels in pancreatic cancer (PC) has been estimated for years, but the outcomes are controversial and heterogeneous. Therefore, we comprehensively reviewed the evidence collected on miRNA expression in PC to determine this effect. RESULTS PC patients with high miR-21 (HR=2.61, 95%CI=1.68-4.04), miR-451a (HR=2.23, 95%CI=1.23-4.04) or miR-1290 (HR=1.43, 95%CI=1.04-1.95) levels in blood had significantly poorer OS (P<0.05). Furthermore, PC patients with high miR-10b (HR=1.73, 95%CI=1.09-2.76), miR-17-5p (HR=1.91, 95%CI=1.30-2.80), miR-21 (HR=1.90, 95%CI=1.61-2.25), miR-23a (HR=2.18, 95%CI=1.52-3.13), miR-155 (HR=2.22, 95%CI=1.27-3.88), miR-203 (HR=1.65, 95%CI=1.14-2.40), miR-221 (HR=1.72, 95%CI=1.08-2.74), miR-222 levels (HR=1.72, 95%CI=1.02-2.91) or low miR-29c (HR=1.39, 95%CI=1.08-1.79), miR-126 (HR=1.55, 95%CI=1.23-1.95), miR-218 (HR=2.62, 95%CI=1.41-4.88) levels in tissues had significantly shorter OS (P<0.05). CONCLUSIONS In summary, blood miR-21, miR-451a, miR-1290 and tissue miR-10b, miR-17-5p, miR-21, miR-23a, miR-29c, miR-126, miR-155, miR-203, miR-218, miR-221, miR-222 had significant prognostic value. METHODS We searched PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews to recognize eligible studies, and 57 studies comprising 5445 PC patients and 15 miRNAs were included to evaluate the associations between miRNA expression levels and overall survival (OS) up to June 1, 2019. Summary hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the effect.
Collapse
Affiliation(s)
- Fei Zhao
- , Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chao Wei
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Meng-Ying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Liang CY, Huang ZG, Tang ZQ, Xiao XL, Zeng JJ, Feng ZB. FOXO1 and hsa-microRNA-204-5p affect the biologic behavior of MDA-MB-231 breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1146-1158. [PMID: 32509089 PMCID: PMC7270695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules and targeting microRNA (miRNA) have been reported as novel focuses in recent research on breast cancer. This study aimed to probe the expression of FOXO1 in the MDA-MB-231 cell line and to explore the target effects of FOXO1 with hsa-microRNA-204-5p (miR-204) on the biologic behavior of MDA-MB-231 cells. The expression of FOXO1 mRNA and protein in MDA-MB-231 cells were derived and verified from the public databases, literature, and experimental assays, then the downregulation of FOXO1 was confirmed in the MDA-MB-231 cell line. The target binding of FOXO1 and miR-204 was predicted by miRWalk and confirmed by luciferase reporter assays. MiR-204 targeted the 3' untranslated region of FOXO1 and reduced FOXO1 expression in miR-204-transfected cells, resulting in cell growth amplification but inhibition of cell migration and apoptosis, which were assessed using the MTT method, wound healing assays, and flow cytometry, respectively. The protein levels of serine-threonine kinase (AKT), c-jun N-terminal kinase (JNK), extracellular regulatory protein kinase (ERK), and the phosphorylated protein kinases (P-AKT, P-JNK, and P-ERK) were measured by western blot. It was found that AKT, JNK, and ERK remained constant, but P-AKT, P-JNK, and P-ERK were upregulated after miR-204 transfection. In summary, the expression of FOXO1 was downregulated in MDA-MB-231 cells; and the target binding of miR-204 and FOXO1 affected phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signal pathways, leading to different alterations of cellular activity in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhong-Qing Tang
- Department of Pathology, Gongren Hospital of WuzhouWuzhou, Guangxi, P. R. China
| | - Xiao-Ling Xiao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, P. R. China
| |
Collapse
|
5
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
6
|
Liang T, Wang B, Li J, Liu Y. LINC00922 Accelerates the Proliferation, Migration and Invasion of Lung Cancer Via the miRNA-204/CXCR4 Axis. Med Sci Monit 2019; 25:5075-5086. [PMID: 31287095 PMCID: PMC6636409 DOI: 10.12659/msm.916327] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The aim of this study was to clarify the potential function of LINC00922 in regulating the progression of lung cancer and its underling mechanism. MATERIAL AND METHODS Relative levels of LINC00922 in lung cancer tissues and cell lines was determined by quantitative polymerase chain reaction. Correlation between LINC00922 levels and pathological indexes of lung cancer patients was analyzed through the chi-square test. Subsequently, regulatory effects of LINC00922 on the proliferative, migratory, and invasive capacities of PC9 and A549 cells were evaluated. Western blot was conducted to determine the role of LINC00922 in mediating protein levels of CXCR4, E-cadherin, and vimentin. Through dual-luciferase reporter gene assay and functional experiments, the potential function of LINC00922/miRNA-204/CXCR4 regulatory loop in mediating the progression of lung cancer was explored. RESULTS LINC00922 was highly expressed in lung cancer and correlated to the poor prognosis of lung cancer patients. Overexpression of LINC00922 accelerated PC9 and A549 cells to proliferate, migrate, and invade. CXCR4 was upregulated in lung cancer tissues and cells, which promoted lung cancer cells to migrate and invade. LINC00922 regulated the level of CXCR4 and directly bound to miRNA-204/CXCR4. LINC00922 mediated the cellular behaviors of lung cancer cells via targeting the miRNA-204/CXCR4 axis. CONCLUSIONS LINC00922 was upregulated in lung cancer, and accelerated lung cancer cells to proliferate, migrate, and invade via targeting the miRNA-204/CXCR4 axis.
Collapse
Affiliation(s)
- Tao Liang
- Department of Thoracic Surgery, Chinese PLA Rocket Force General Hospital, Beijing, China (mainland).,Department of Thoracic Surgery, Chinese People's Liberation Army (PLA) Rocket Force General Hospital, Beijing, China (mainland)
| | - Bin Wang
- Department of Thoracic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Jei Li
- Department of Thoracic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Yang Liu
- Department of Thoracic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| |
Collapse
|
7
|
Zhu Y, Yin X, Li J, Zhang L. Overexpression of microRNA-204-5p alleviates renal ischemia-reperfusion injury in mice through blockage of Fas/FasL pathway. Exp Cell Res 2019; 381:208-214. [PMID: 31009621 DOI: 10.1016/j.yexcr.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023]
Abstract
The multiple roles of microRNA-204-5p (miR-204-5p) in numerous types of cancer have been reported, but its function in renal ischemia-reperfusion injury (RIRI) remains unclear. In this study, we aim to explore whether miR-204-5p was implicated in the RIRI in mice via regulating the Fas/Fas ligand (FasL) pathway. Firstly, the Gene Expression Omnibus (GEO) database was used to screen RIRI-related differentially expressed genes (DEGs). Then, RIRI mouse model was established, and the role of miR-204-5p and FasL in RIRI was explored by ectopic expression, depletion and reporter assay experiments. The blood urea nitrogen (BUN) and serum creatinine (Scr) levels in serum, as well as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in renal tissues of mice were also measured. Afterwards, the regulatory role of miR-204-5p on Fas/FasL pathway in RIRI was investigated. Renal tissues from RIRI mice showed lower miR-204-5p expression and higher Fas and FasL expression. FasL was identified as a direct target gene of miR-204-5p. In addition, the increased levels of BUN, Scr and MDA, as well as decreased levels of SOD and GSH-Px in RIRI mice were reversed by elevation of miR-204-5p and blockage of the Fas/FasL pathway. Taken together, this study demonstrated that increased miR-204-5p might suppress RIRI in mice through suppressing Fas/FasL pathway by targeting FasL.
Collapse
Affiliation(s)
- Yunfeng Zhu
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Xiaohui Yin
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Junxu Li
- Department of Emergency Medicine, Linyi City People's Hospital, Linyi, 276000, PR China
| | - Lei Zhang
- Department of Kidney Medicine, Linyi City People's Hospital, No. 27, Eastern Section of Jiefang Road, Linyi, 276000, PR China.
| |
Collapse
|
8
|
Exosomal miRNAs as Novel Pharmacodynamic Biomarkers for Cancer Chemopreventive Agent Early Stage Treatments in Chemically Induced Mouse Model of Lung Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11040477. [PMID: 30987362 PMCID: PMC6520832 DOI: 10.3390/cancers11040477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Chemopreventive agent (CPA) treatment is one of the main preventive options for lung cancer. However, few studies have been done on pharmacodynamic biomarkers of known CPAs for lung cancer. Materials and methods: In this study, we treated mouse models of lung squamous cell carcinoma with three different CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor: XL-147 and glucocorticoid: Budesonide) and examined circulating exosomal miRNAs in the plasma of each mouse before and after treatment. Results: Compared to baselines, we found differentially expressed exosomal miRNAs after AZD6244 treatment (n = 8, FDR < 0.05; n = 55, raw p-values < 0.05), after XL-147 treatment (n = 4, FDR < 0.05; n = 26, raw p-values < 0.05) and after Budesonide treatment (n = 1, FDR < 0.05; n = 36, raw p-values < 0.05). In co-expression analysis, we found that modules of exosomal miRNAs reacted to CPA treatments differently. By variable selection, we identified 11, 9 and nine exosomal miRNAs as predictors for AZD6244, XL-147 and Budesonide treatment, respectively. Integrating all the results, we highlighted 4 miRNAs (mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) as the key for AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment, and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment. Conclusions: This is the first study to use circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.
Collapse
|
9
|
Dolcino M, Tinazzi E, Puccetti A, Lunardi C. In Systemic Sclerosis, a Unique Long Non Coding RNA Regulates Genes and Pathways Involved in the Three Main Features of the Disease (Vasculopathy, Fibrosis and Autoimmunity) and in Carcinogenesis. J Clin Med 2019; 8:jcm8030320. [PMID: 30866419 PMCID: PMC6462909 DOI: 10.3390/jcm8030320] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by three main features: vasculopathy, immune system dysregulation and fibrosis. Long non-coding RNAs (lncRNAs) may play a role in the pathogenesis of autoimmune diseases and a comprehensive analysis of lncRNAs expression in SSc is still lacking. We profiled 542,500 transcripts in peripheral blood mononuclear cells (PBMCs) from 20 SSc patients and 20 healthy donors using Clariom D arrays, confirming the results by Reverse Transcription Polymerase-chain reaction (RT-PCR). A total of 837 coding-genes were modulated in SSc patients, whereas only one lncRNA, heterogeneous nuclear ribonucleoprotein U processed transcript (ncRNA00201), was significantly downregulated. This transcript regulates tumor proliferation and its gene target hnRNPC (Heterogeneous nuclear ribonucleoproteins C) encodes for a SSc-associated auto-antigen. NcRNA00201 targeted micro RNAs (miRNAs) regulating the most highly connected genes in the Protein-Protein interaction (PPI) network of the SSc transcriptome. A total of 26 of these miRNAs targeted genes involved in pathways connected to the three main features of SSc and to cancer development including Epidermal growth factor (EGF) receptor, ErbB1 downstream, Sphingosine 1 phosphate receptor 1 (S1P1), Activin receptor-like kinase 1 (ALK1), Endothelins, Ras homolog family member A (RhoA), Class I Phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (RAC1), Transforming growth factor (TGF)-beta receptor, Myeloid differentiation primary response 88 (MyD88) and Toll-like receptors (TLRs) pathways. In SSc, the identification of a unique deregulated lncRNA that regulates genes involved in the three main features of the disease and in tumor-associated pathways, provides insight in disease pathogenesis and opens avenues for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, 16132 Genova, Italy.
| | - Claudio Lunardi
- Department of Medicine, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
10
|
Cai KT, Liu AG, Wang ZF, Jiang HW, Zeng JJ, He RQ, Ma J, Chen G, Zhong JC. Expression and potential molecular mechanisms of miR‑204‑5p in breast cancer, based on bioinformatics and a meta‑analysis of 2,306 cases. Mol Med Rep 2018; 19:1168-1184. [PMID: 30569120 PMCID: PMC6323248 DOI: 10.3892/mmr.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. However, there is insufficient research that focuses on the expression and molecular mechanisms of microRNA (miR)‑204‑5p in BC. In the current study, data were downloaded from the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena databases. They were then used to undertake a meta‑analysis that leveraged the standard mean difference (SMD) and summarized receiver operating characteristic (sROC) to evaluate the expression of the precursor miR‑204 and mature miR‑204‑5p in BC. Additionally, an intersection of predicted genes, differentially expressed genes (DEGs) from the TCGA database and the GEO database were plotted to acquire desirable putative genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein‑protein interaction (PPI) network analyses were performed to assess the potential pathways and hub genes of miR‑204‑5p in BC. A decreased trend in precursor miR‑204 expression was detected in 1,077 BC tissue samples in comparison to 104 para‑carcinoma tissue samples in the TCGA database. Further, the expression of mature miR‑204‑5p was markedly downregulated in 756 BC tissue samples in comparison to 76 para‑carcinoma tissue samples in the UCSC Xena database. The outcome of the SMD from meta‑analysis also indicated that the expression of miR‑204‑5p was markedly reduced in 2,306 BC tissue samples in comparison to 367 para‑carcinoma tissue samples. Additionally, the ROC and sROC values indicated that miR‑204‑5p had a great discriminatory capacity for BC. In GO analysis, 'cell development', 'cell surface activity', and 'receptor agonist activity' were the most enriched terms; in KEGG analysis, 'endocytosis' was significantly enriched. Rac GTPase activating protein 1 (RACGAP1) was considered the hub gene in the PPI network. In conclusion, miR‑204‑5p may serve a suppressor role in the oncogenesis and advancement of BC, and miR‑204‑5p may have crucial functions in BC by targeting RACGAP1.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ze-Feng Wang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hang-Wei Jiang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|