1
|
Mthembu SXH, Mazibuko-Mbeje SE, Ziqubu K, Muvhulawa N, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models. Pflugers Arch 2024; 476:283-293. [PMID: 38044359 PMCID: PMC10847180 DOI: 10.1007/s00424-023-02890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
2
|
Altered Liver Metabolism, Mitochondrial Function, Oxidative Status, and Inflammatory Response in Intrauterine Growth Restriction Piglets with Different Growth Patterns before Weaning. Metabolites 2022; 12:metabo12111053. [PMID: 36355136 PMCID: PMC9696915 DOI: 10.3390/metabo12111053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Frequent occurrence of intrauterine growth restriction (IUGR) causes huge economic losses in the pig industry. Accelerated catch-up growth (CUG) in the early stage of life could restore multiple adverse outcomes of IUGR offspring; however, there is little knowledge about this beneficial phenomenon. We previously found that nutrient absorption related to intestinal function was globally promoted in CUG-IUGR piglets before weaning, which might be the dominant reason for CUG, but what this alteration could lead to in subsequent liver metabolism is still unknown. Firstly, a Normal, CUG, and non-catch-up growth (NCUG) piglet model before weaning was established by dividing eighty litters of newborn piglets into normal birth weight (NBW) and IUGR groups according to birth weight, and those piglets with IUGR but above-average weanling body weight were considered CUG, and the piglets with IUGR still below average body weight were considered NCUG at weaning day (d 26). Liver samples were collected and then systematically compared in glycolipid metabolism, mitochondrial function, antioxidant status, and inflammatory status among these three different growth models. Enhanced hepatic uptake of fatty acids, diminished de novo synthesis of fatty acids, and increased oxidation of fatty acids were observed in CUG livers compared to Normal and NCUG. In contrast, the NCUG liver showed enhanced glucose uptake and gluconeogenesis compared to Normal and CUG. We also observed deteriorating hepatic vacuolation in NCUG piglets, while increasing hepatic lipid deposition in CUG piglets. Besides, the expression of genes related to mitochondrial energy metabolism and biogenesis was reduced in CUG piglets and the phosphorylation level of AMPK was significantly higher compared to Normal (p < 0.05). Moreover, NCUG liver showed decreased T-AOC (p < 0.01) and GSH-PX (p < 0.05), increased MDA concentrations (p < 0.01), upregulated phosphorylation levels of ERK and NF-κB (p < 0.05), and elevated pro-inflammatory factors IL-1β, IL-6 and TNF-α (p < 0.05) compared to Normal. Furthermore, correlation analysis revealed a significant positive correlation between glucose metabolism and inflammatory factors, while a negative correlation between mitochondrial function-related genes and fatty acid transport. NGUG piglets showed simultaneous enhancement of glucose uptake and gluconeogenesis, as well as reduced antioxidant capacity and increased inflammatory status, whereas CUG comes at the expense of impaired hepatic mitochondrial function and pathological fat accumulation.
Collapse
|