1
|
Chang CH, Tsai HP, Yen MH, Lin CJ. Methanolic Extract of Cimicifuga foetida Induces G 1 Cell Cycle Arrest and Apoptosis and Inhibits Metastasis of Glioma Cells. Nutrients 2024; 16:3254. [PMID: 39408228 PMCID: PMC11478387 DOI: 10.3390/nu16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is among the most aggressive and challenging brain tumors, with limited treatment options. Cimicifuga foetida, a traditional Chinese medicine, has shown promise due to its bioactive components. This study investigates the anti-glioma effects of a methanolic extract of C. foetida (CF-ME) in GBM cell lines. METHODS The effects of CF-ME and its index compounds (caffeic acid, cimifugin, ferulic acid, and isoferulic acid) on GBM cell viability were assessed using MTT assays on U87 MG, A172, and T98G cell lines. The ability of CF-ME to induce cell cycle arrest, apoptosis, and autophagy and inhibit metastasis was evaluated using flow cytometry, Western blotting, and functional assays. Additionally, the synergistic potential of CF-ME with temozolomide (TMZ) was explored. RESULTS CF-ME significantly reduced GBM cell viability in a dose- and time-dependent manner, induced G1 phase cell cycle arrest, promoted apoptosis via caspase activation, and triggered autophagy. CF-ME also inhibited GBM cell invasion, migration, and adhesion, likely by modulating epithelial-mesenchymal transition (EMT) markers. Combined with TMZ, CF-ME further enhanced reduced GBM cell viability, suggesting a potential synergistic effect. However, the individual index compounds of CF-ME exhibited only modest inhibitory effects, indicating that the full anti-glioma activity may result from the synergistic interactions among its components. CONCLUSIONS CF-ME exhibited potent anti-glioma activity through multiple mechanisms, including cell cycle arrest, apoptosis, autophagy, and the inhibition of metastasis. Combining CF-ME with TMZ further enhanced its therapeutic potential, making it a promising candidate for adjuvant therapy in glioblastoma treatment.
Collapse
Affiliation(s)
- Chih-Hsuan Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
| | - Ming-Hong Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80756, Taiwan; (C.-H.C.); (M.-H.Y.)
| |
Collapse
|
2
|
Zhang HH, Zhang AQ, Peng P, Huang L, Liu CY, Nie XR, Hou DF, Zhang X, Li SZ. USP5 facilitates bladder cancer progression by stabilizing the c-Jun protein. Cancer Cell Int 2024; 24:32. [PMID: 38229092 DOI: 10.1186/s12935-024-03222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Bladder cancer is the second most common genitourinary malignancy worldwide. The death rate of bladder cancer has increased every year. However, the molecular mechanism of bladder cancer is not sufficiently studied. Deubiquitinating enzymes (DUBs) play an important role in carcinogenesis. Several studies have demonstrated that USP5 associated with malignancy and pathological progression in hepatocellular carcinoma, colorectal and non-small cell lung cancer. However, the role of USP5 in bladder cancer need to be explored. METHODS The USP5 expression was analysed using the web server GEPIA. To explore USP5 function in bladder cancer, we constructed USP5-knockout cell lines in T24 cells. A FLAG-USP5 (WT USP5) plasmid and a plasmid FLAG-USP5 C335A (catalytic-inactive mutant) used to overexpress USP5 in EJ cells. CCK8, colony formation, transwell and scratch assays were used to assess cell viability, proliferation and migration. RNA sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Coimmunoprecipitation and immunofluorescence were used to explore the interaction between USP5 and c-Jun. Cycloheximide (CHX) chase assays were performed to establish the effect of USP5 on c-Jun stability. Xenograft mouse model was used to study the role of USP5 in bladder cancer. RESULTS USP5 expression is increased in bladder cancer patients. Genetic ablation of USP5 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. RNA-seq and luciferase pathway screening showed that USP5 activated JNK signalling, and we identified the interaction between USP5 and c-Jun. USP5 was found to activate c-Jun by inhibiting its ubiquitination. CONCLUSIONS Our results show that high USP5 expression promotes bladder cancer progression by stabilizing c-Jun and that USP5 is a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - An-Qi Zhang
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Peng Peng
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Liang Huang
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Cai-Ying Liu
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Xin-Rui Nie
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - De-Fu Hou
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China
| | - Xia Zhang
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China.
| | - Shang-Ze Li
- Department of Laboratory Medicine, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, 371 Tongzipo Road, Yuelu District, Changsha, Hunan, China.
- School of Medicine, Chongqing University, 131 Yubei Road, Shapingba District, Chongqing, China.
| |
Collapse
|
3
|
Płoska A, Wozniak M, Hedhli J, Konopka CJ, Skondras A, Matatov S, Stawarz A, Schuh S, Czerwinski A, Dobrucki LW, Kalinowski L, Dobrucki IT. In Vitro and In Vivo Imaging-Based Evaluation of Doxorubicin Anticancer Treatment in Combination with the Herbal Medicine Black Cohosh. Int J Mol Sci 2023; 24:17506. [PMID: 38139334 PMCID: PMC10743623 DOI: 10.3390/ijms242417506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
As a substitution for hormone replacement therapy, many breast cancer patients use black cohosh (BC) extracts in combination with doxorubicin (DOX)-based chemotherapy. In this study, we evaluated the viability and survival of BC- and DOX-treated MCF-7 cells. A preclinical model of MCF-7 xenografts was used to determine the influence of BC and DOX administration on tumor growth and metabolism. The number of apoptotic cells after incubation with both DOX and BC was significantly increased (~100%) compared to the control. Treatment with DOX altered the potential of MCF-7 cells to form colonies; however, coincubation with BC did not affect this process. In vivo, PET-CT imaging showed that combined treatment of DOX and BC induced a significant reduction in both metabolic activity (29%) and angiogenesis (32%). Both DOX and BC treatments inhibited tumor growth by 20% and 12%, respectively, and combined by 57%, vs. control. We successfully demonstrated that BC increases cytotoxic effects of DOX, resulting in a significant reduction in tumor size. Further studies regarding drug transport and tumor growth biomarkers are necessary to establish the underlying mechanism and potential clinical use of BC in breast cancer patients.
Collapse
Affiliation(s)
- Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Marcin Wozniak
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christian J. Konopka
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Antonios Skondras
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Sarah Matatov
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Andrew Stawarz
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah Schuh
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
| | - Lawrence W. Dobrucki
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.P.); (M.W.); (L.W.D.)
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Iwona T. Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801, USA; (J.H.); (C.J.K.)
- Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Academy of Medical and Social Applied Sciences, 82-300 Elblag, Poland
| |
Collapse
|
4
|
Feng Q, Hu K, Hu H, Lu Y, Zhang H, Wang G, Zhang Q, Xu Z, Gao X, Jia X, Zhu H, Song D, Yi H, Peng Y, Wu X, Li B, Zhu W, Shi J. Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells. Int Immunopharmacol 2023; 125:111139. [PMID: 37913572 DOI: 10.1016/j.intimp.2023.111139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.
Collapse
Affiliation(s)
- Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huifang Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qikai Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongfei Yi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Peng
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
5
|
Xie F, Huang M, Lin X, Liu C, Liu Z, Meng F, Wang C, Huang Q. Retraction Note: The BET inhibitor I-BET762 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine. Sci Rep 2023; 13:20934. [PMID: 38017059 PMCID: PMC10684641 DOI: 10.1038/s41598-023-48298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Affiliation(s)
- Fang Xie
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Xiansheng Lin
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China
| | - Chenhai Liu
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China
| | - Zhen Liu
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China
| | - Futao Meng
- Anhui Medical University Affiliated Provincial Hospital, No. 9, Lujiang Road, Hefei, Anhui Province, China
| | - Chao Wang
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui Province, China.
| |
Collapse
|
6
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
7
|
Wu J, Wang D, Zhou J, Li J, Xie R, Li Y, Huang J, Liu B, Qiu J. Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother Res 2023; 37:310-328. [PMID: 36086867 DOI: 10.1002/ptr.7614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC) with limited therapies. Gambogenic acid (GNA), a flavonoids compound isolated from Gamboge, exhibits anti-tumor capacity in various cancers. Our results showed that GNA revealed not only antiproliferative and pro-apoptotic activities but also the induction of autophagy in PCa cells. In addition, autophagy inhibitor chloroquine enhanced the pro-apoptosis effect of GNA. Moreover, the activation of JNK pathway and the induction of apoptosis and autophagy triggered by GNA were attenuated by JNK inhibitor SP600125. We also found that GNA significantly promoted reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress. Meanwhile, suppressing ER stress with 4-phenylbutyric acid (4-PBA) markedly blocked the activation of JNK pathway induced by GNA. Further research indicated that ROS scavenger N-acetyl-L-cysteine (NAC) effectively abrogated ER stress and JNK pathway activation induced by GNA. Furthermore, NAC and 4-PBA significantly reversed GNA-triggered apoptosis and autophagy. Finally, GNA remarkably suppressed prostate tumor growth with low toxicity in vivo. In conclusion, the present study revealed that GNA induced apoptosis and autophagy through ROS-mediated ER stress via JNK signaling pathway in PCa cells. Thus, GNA might be a promising therapeutic drug against PCa.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juntao Li
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Ruoxin Xie
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Yiyuan Li
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jiayu Huang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| |
Collapse
|
8
|
Kim K, Youm JY, Lee EH, Gulenko O, Kim M, Yoon BH, Jeon M, Kim TH, Ha YS, Yang JM. Tapered catheter-based transurethral photoacoustic and ultrasonic endoscopy of the urinary system. OPTICS EXPRESS 2022; 30:26169-26181. [PMID: 36236812 DOI: 10.1364/oe.461855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Early diagnosis is critical for treating bladder cancer, as this cancer is very aggressive and lethal if detected too late. To address this important clinical issue, a photoacoustic tomography (PAT)-based transabdominal imaging approach was suggested in previous reports, in which its in vivo feasibility was also demonstrated based on a small animal model. However, successful translation of this approach to real clinical settings would be challenging because the human bladder is located at a depth that far exceeds the typical penetration depth of PAT (∼3 cm for in vivo cases). In this study, we developed a tapered catheter-based, transurethral photoacoustic and ultrasonic endoscopic probe with a 2.8 mm outer diameter to investigate whether the well-known benefits of PAT can be harnessed to resolve unmet urological issues, including early diagnosis of bladder cancer. To demonstrate the in vivo imaging capability of the proposed imaging probe, we performed a rabbit model-based urinary system imaging experiment and acquired a 3D microvasculature map distributed in the wall of the urinary system, which is a first in PAT, to the best of our knowledge. We believe that the results strongly support the use of this transurethral imaging approach as a feasible strategy for addressing urological diagnosis issues.
Collapse
|
9
|
Le Y, Li X, Chen S, Ning KG, Guo X, Wu CG, Manjanatha MG, Mei N. Actein contributes to black cohosh extract-induced genotoxicity in human TK6 cells. J Appl Toxicol 2022; 42:1491-1502. [PMID: 35261072 DOI: 10.1002/jat.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy, but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 μM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.
Collapse
Affiliation(s)
- Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Charles G Wu
- Botanical Review Team, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
10
|
Yin Y, Li J, Rong J, Zhang B, Wang X, Han H. Circ_0067934 reduces JNK phosphorylation through a microRNA-545-3p/PPA1 axis to enhance tumorigenesis and cisplatin resistance in ovarian cancer. Immunopharmacol Immunotoxicol 2022; 44:261-274. [PMID: 35179434 DOI: 10.1080/08923973.2022.2038193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Circular RNA 0067934 (circ_0067934) has been revealed as a cancer driver in multiple human malignancies, whereas its action in the pathogenesis of ovarian cancer (OC) remains unclear. This study focuses on the function of circ_0067934 in tumorigenesis and cisplatin (DDP) resistance in OC and the molecular mechanism. METHODS Expression of circ_0067934 in OC tissues and cells was examined, and its correlation with the clinical characteristics of patients was analyzed. Candidate targets of circ_0067934 were predicted using bioinformatics systems. Binding relationships between circ_0067934 and microRNA (miR)-545-3p and between miR-545-3p and inorganic pyrophosphatase 1 (PPA1) were validated via luciferase assays. Gain- and loss-of functions of circ_0067934, miR-545-3p and PPA1 were performed to determine their functions in proliferation, invasion, apoptosis and DDP resistance of OC cells in vitro and in vivo. RESULTS Circ_0067934 was overexpressed in OC samples and associated with advanced tumor staging and lymph node metastasis. Downregulation of circ_0067934 reduced DDP resistance of the DDP-resistant A2780/DDP cell line and reduced cell proliferation and invasion, but the malignant behaviors of OC cells were restored after further miR-545-3p downregulation. Circ_0067934 served as a sponge for miR-545-3p and diminished its suppressive effect on PPA1 translation. Artificial upregulation of PPA1 enhanced proliferation, invasion and DDP resistance of A2780/DDP cells, and it reduced phosphorylation of the pro-apoptotic JNK signaling. Similar results were found in vivo. CONCLUSION This study suggests that circ_0067934 sequesters miR-545-3p and enhances PPA1 expression to promote tumorigenesis and DDP resistance in OC. This study may provide novel approaches in the management of OC.
Collapse
Affiliation(s)
- Yingchun Yin
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| | - Jing Li
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| | - Jiansheng Rong
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| | - Baohua Zhang
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| | - Xinmei Wang
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| | - Hongmei Han
- Department of Pathology, Central Hospital of Zibo, Shandong, China
| |
Collapse
|
11
|
Hung SY, Chen WF, Lee YC, Su JH, Juan YS, Lin IP, Zhang YH, Chang MK, Lin MY, Chen CY, Lee CH. Rhopaloic acid A induces apoptosis, autophagy and MAPK activation through ROS-mediated signaling in bladder cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153720. [PMID: 34481340 DOI: 10.1016/j.phymed.2021.153720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bladder cancer (BC) is a very common type of malignant cancer in men and new therapeutic strategies are urgently needed to reduce mortality. Several studies have demonstrated that Rhopaloic acid A (RA), a compound isolated from marine sponges, fights cancer but its potential anti-tumor effect on BC is still unknown. PURPOSE The present study was aimed to explore the potential anti-tumor effects of RA against human BC cells and the underlying molecular mechanism. METHODS Cell cytotoxicity was determined using the MTT and colony formation assays. Cell cycle distribution, apoptosis induction and generation of mitochondrial reactive oxygen species (ROS) were analyzed by flow cytometry. Mitochondrial membrane potential, acridine orange staining and intracellular ROS levels were observed using fluorescence microscopy. Levels of various signaling proteins were assessed using Western blotting. Furthermore, a zebrafish BC xenotransplantation model was used to confirm the anti-tumor effect of RA in vivo. RESULTS Treatment with RA significantly suppressed the proliferation of BC cells that resulted from G2/M cycle arrest. Additionally, RA induced mitochondrial-mediated apoptosis and autophagy in BC cells. The death of BC cells induced by RA was rescued by treatment with inhibitors of apoptosis (Z-VAD-FMA) or autophagy (3-MA). RA activated the MAPK pathway and increased the production of cellular and mitochondrial ROS. Treatment with the ROS scavenger N-acetyl cysteine, effectively reversed the induction of apoptosis, autophagy, JNK activation and DNA damage elicited by RA. Finally, RA significantly inhibited tumor growth in a zebrafish BC xenotransplantation model. CONCLUSION Taken together, our findings indicate that RA induces apoptosis and autophagy and activates the MAPK pathway through ROS-mediated signaling in human BC cells. This RA-induced pathway offers insights into the molecular mechanism of its antitumor effect and shows that RA is a promising candidate for the treatment of BC.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Wu-Fu Chen
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Road, Niaosong District, Kaohsiung 83300, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, Department of Medical Research, Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - In-Pin Lin
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Hui Zhang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Kai Chang
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
12
|
Ghosh A, Panda CK. Role of Pentacyclic Triterpenoid Acids in the Treatment of Bladder Cancer. Mini Rev Med Chem 2021; 22:1331-1340. [PMID: 34719363 DOI: 10.2174/1389557521666211022145052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Bladder cancer carries a poor prognosis and has proven resistance to chemotherapy. Pentacyclic Triterpenoid Acids (PTAs) are natural bioactive compounds that have a well-known impact on cancer research because of their cytotoxic and chemopreventive activities. This review focuses on bladder cancer which can no longer be successfully treated by DNA damaging drugs. Unlike most of the existing drugs against bladder cancer, PTAs are non-toxic to normal cells. Collecting findings from both in vitro and in vivo studies, it has been concluded that PTAs may serve as promising agents in future bladder cancer therapy. In this review, the roles of various PTAs in bladder cancer have been explored, and their mechanisms of action in the treatment of bladder cancer have been described. Specific PTAs have been shortlisted from each of the chief skeletons of pentacyclic triterpenoids, which could be effective against bladder cancer because of their mode of action. This review thereby throws light on the multi targets and mechanisms of PTAs, which are responsible for their selective anticancer effects and provides guidelines for further research and development of new natural antitumor compounds.
Collapse
Affiliation(s)
- Anindita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| |
Collapse
|
13
|
Cong L, Lei MY, Liu ZQ, Liu ZF, Ma Z, Liu K, Li J, Deng Y, Liu W, Xu B. Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem Toxicol 2021; 153:112283. [PMID: 34029668 DOI: 10.1016/j.fct.2021.112283] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Exposure to excess levels of manganese (Mn) leads to neurotoxicity. Increasing evidence demonstrates that oxidative stress and neuroinflammation are important pathological causes of neurotoxicity. Resveratrol (Rsv), a sirtuin-1 (SIRT1) activator, plays an important role in neuroprotection. However, the molecular mechanisms of Rsv alleviating Mn-induced oxidative stress and neuroinflammation are not fully understood. To evaluate whether Rsv treatment relieves the oxidative stress and neuroinflammation in the hippocampus after Mn exposure through SIRT1 signaling, C57BL/6 adult mice were exposed to MnCl2 (200 μmol/kg), Rsv (30 mg/kg), and EX527 (5 mg/kg). Our results showed that administering MnCl2 for 6 weeks caused behavioral impairment and nerve cell injury in hippocampal tissue, which was related to oxidative stress and neuroinflammation. Activating Mn-induced JNK and inhibiting SIRT1 increased the phosphorylated and acetylated levels of NF-κB and STAT3, respectively. However, Rsv reduced the phosphorylated and acetylated levels of NF-κB and STAT3, and attenuated Mn-induced oxidative stress and inflammatory cytokines by activating SIRT1 signaling. Most importantly, EX527, a potent SIRT1 inhibitor, inactivated SIRT1, which prevented Rsv from exerting its beneficial effects. Taken together, our findings revealed that Rsv alleviated Mn-induced oxidative stress and neuroinflammation in adult mice by activating SIRT1.
Collapse
Affiliation(s)
- Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Address:No.77 Puhe Road, Shenyang North New Area, Shenyang,110122, Liaoning, China.
| |
Collapse
|
14
|
Odongo R, Demiroglu-Zergeroglu A, Çakır T. A systems pharmacology approach based on oncogenic signalling pathways to determine the mechanisms of action of natural products in breast cancer from transcriptome data. BMC Complement Med Ther 2021; 21:181. [PMID: 34193143 PMCID: PMC8244196 DOI: 10.1186/s12906-021-03340-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus, are appropriate in the management of complex diseases, especially cancers. However, methodological limitations impede attempts to catalogue targeted processes and infer systemic mechanisms of action. While most of the current understanding of these compounds is based on reductive methods, it is increasingly becoming clear that holistic techniques, leveraging current improvements in omic data collection and bioinformatics methods, are better suited for elucidating their systemic effects. Thus, we developed and implemented an integrative systems biology pipeline to study these compounds and reveal their mechanism of actions on breast cancer cell lines. METHODS Transcriptome data from compound-treated breast cancer cell lines, representing triple negative (TN), luminal A (ER+) and HER2+ tumour types, were mapped on human protein interactome to construct targeted subnetworks. The subnetworks were analysed for enriched oncogenic signalling pathways. Pathway redundancy was reduced by constructing pathway-pathway interaction networks, and the sets of overlapping genes were subsequently used to infer pathway crosstalk. The resulting filtered pathways were mapped on oncogenesis processes to evaluate their anti-carcinogenic effectiveness, and thus putative mechanisms of action. RESULTS The signalling pathways regulated by Actein, Withaferin A, Indole-3-Carbinol and Compound Kushen, which are extensively researched compounds, were shown to be projected on a set of oncogenesis processes at the transcriptomic level in different breast cancer subtypes. The enrichment of well-known tumour driving genes indicate that these compounds indirectly dysregulate cancer driving pathways in the subnetworks. CONCLUSION The proposed framework infers the mechanisms of action of potential drug candidates from their enriched protein interaction subnetworks and oncogenic signalling pathways. It also provides a systematic approach for evaluating such compounds in polygenic complex diseases. In addition, the plant-based compounds used here show poly-pharmacologic mechanism of action by targeting subnetworks enriched with cancer driving genes. This network perspective supports the need for a systemic drug-target evaluation for lead compounds prior to efficacy experiments.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
| | | | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
15
|
Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021; 137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) refer to elements of genomic transcription with more than 200 nucleotides that are not translated into proteins, but have crucial roles in cancer progression. MAGI2-AS3, a novel lncRNA, has been reported to be aberrantly expressed in many solid tumors. Increasingly, studies have demonstrated that MAGI2-AS3 expression is significantly correlated with patient clinical characteristics, and that MAGI2-AS3 can regulate multiple biological processes through target-gene regulation. Furthermore, MAGI2-AS3 may serve as both a diagnostic biomarker and as a promising therapeutic target against solid tumors. In this review, we summarize the current knowledge regarding the biological functions and related molecular mechanisms of MAGI2-AS3 in solid-tumor progression. We conclude that understanding MAGI2-AS3 properties may provide new insights into the diagnoses and treatments of solid tumors.
Collapse
|
16
|
KCNQ1OT1 regulates the retinoblastoma cell proliferation, migration and SIRT1/JNK signaling pathway by targeting miR-124/SP1 axis. Biosci Rep 2021; 41:227390. [PMID: 33345272 PMCID: PMC7805023 DOI: 10.1042/bsr20201626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/06/2020] [Accepted: 12/09/2020] [Indexed: 02/03/2023] Open
Abstract
Objective: Long non-coding RNA (lncRNA) KCNQ1OT1 was reported to be tightly associated with tumorigenesis and progression of multiple cancers. However, the expression and biological functions of KCNQ1OT1 in retinoblastoma (RB) are still unknown. We aim to elucidate the potential function and underlying mechanism of KCNQ1OT1 in regulating the progression of RB. Methods: The levels of KCNQ1OT1 were assayed by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) analysis. The cell proliferation of RB cells (Y79 and WERI-Rb-1) were evaluated through Cell Counting Kit 8 (CCK-8) assay. Meanwhile, Y79 and WERI-Rb-1 cell apoptosis and cell cycle were assessed by Flow Cytometry analysis. Dual luciferase reporter assay were performed to illustrate the interaction between KCNQ1OT1, miR-124, and SP1. Results: We found that KCNQ1OT1 was up-regulated and miR-124 was down-regulated in RB tissues and cells. Moreover, knockdown of KCNQ1OT1 reduced the proliferation, migration, and cell cycle, as well as promoted cell apoptosis of Y79 and WERI-Rb-1 cells. Western blot analysis consistently proved cell cycle and apoptosis related protein expression levels. More importantly, KCNQ1OT1 was a sponge of microRNA (miR)-124. MiR-124 inhibition strongly reversed the effect on cell proliferation, cycle arrest, and apoptosis by KCNQ1OT1 knockdown mediation. In addition, KCNQ1OT1 regulated expression of SP1, a direct target of miR-124 in RB. On the other hand, miR-124 inhibitor abrogated the active effect of KCNQ1OT1 silencing on silent information regulator 1 (SIRT1)/c-Jun N-terminal kinase (JNK) signaling pathway. The function of KCNQ1OT1 was verified in vivo. Conclusions: These findings implied that KCNQ1OT1 silencing inhibited RB progression and activated SIRT1/JNK signaling pathway partially by modulating the miR-124/SP1 axis.
Collapse
|
17
|
Castelo-Branco C, Gambacciani M, Cano A, Minkin MJ, Rachoń D, Ruan X, Beer AM, Schnitker J, Henneicke-von Zepelin HH, Pickartz S. Review & meta-analysis: isopropanolic black cohosh extract iCR for menopausal symptoms – an update on the evidence. Climacteric 2020; 24:109-119. [DOI: 10.1080/13697137.2020.1820477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C. Castelo-Branco
- Clinic Institute of Gnyecology, Obstetrics and Neonatology, Faculty of Medicine, University of Barcelona, Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M. Gambacciani
- Menopause Center, Department of Obstetrics and Gynecology, University of Pisa, Pisa, Italy
| | - A. Cano
- Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - M. J. Minkin
- Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - D. Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Gdańsk, Poland
| | - X. Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - A.-M. Beer
- Hospital for True Naturopathy, Katholisches Klinikum Bochum, Blankenstein Hospital, Hattingen, Germany
| | - J. Schnitker
- Institut für Angewandte Statistik (IAS) GmbH, Bielefeld, Germany
| | | | - S. Pickartz
- Medical Service, Schaper & Brümmer GmbH & Co. KG, Salzgitter, Germany
| |
Collapse
|
18
|
Lin Z, Pan J, Chen L, Wang X, Chen Y. MiR-140 Resensitizes Cisplatin-Resistant NSCLC Cells to Cisplatin Treatment Through the SIRT1/ROS/JNK Pathway. Onco Targets Ther 2020; 13:8149-8160. [PMID: 32884297 PMCID: PMC7443038 DOI: 10.2147/ott.s261799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although cisplatin is an effective chemotherapeutic drug that is commonly used for non-small-cell lung cancer (NSCLC) treatment, the drug resistance usually occurs during the long-term use of it. It is urgent to develop strategies to reduce the resistance of NSCLC cells to cisplatin. Methods Cisplatin-resistant NSCLC cell lines (PC9/R and A549/R) were acquired through long-term exposure of PC9 and A549 cells to cisplatin. QRT-PCR analysis was performed to compare the expression of miR-140 between routine NSCLC cells and cisplatin-resistant NSCLC cells. CCK-8 assay was used to evaluate the effect of miR-140 on the sensitivity of PC9/R and A549/R to cisplatin. Western blot assay and luciferase reporter assay were used to confirm the regulation of miR-140 on SIRT1. Western blot and flow cytometry analysis were performed to evaluate the effect of miR-140 on the apoptosis pathway induced by cisplatin. Results PC9/R and A549/R exhibited obviously lower sensitivity compared to their parental PC9 and A549 cells, respectively. Furthermore, PC9/R and A549/R cells expressed significantly lower levels of miR-140 compared to their parental PC9 and A549 cells, respectively. However, transfection with miR-140 mimics significantly resensitized the PC9/R and A549/R to cisplatin-induced cytotoxicity. In the mechanism research, we confirmed that SIRT1 was overexpressed and was targeted by miR-140 in PC9/R and A549/R. Furthermore, overexpression of SIRT1 was responsible for the resistance to cisplatin in PC9/R and A549/R cells. Transfection with miR-140 was able to inhibit the expression of SIRT1 and thus inhibited the SIRT1/ROS/JNK pathway. As a result, the PC9/R and A549/R cells restored the sensitivity to cisplatin-induced apoptosis. Conclusion MiR-140 resensitizes cisplatin-resistant NSCLC cells to cisplatin treatment through the SIRT1/ROS/JNK pathway.
Collapse
Affiliation(s)
- Zhilai Lin
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou City, Fujian Province 350008, People's Republic of China
| | - Jianguang Pan
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou City, Fujian Province 350008, People's Republic of China
| | - Lei Chen
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou City, Fujian Province 350008, People's Republic of China
| | - Xinhang Wang
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou City, Fujian Province 350008, People's Republic of China
| | - Yuhua Chen
- Department of Respiratory Medicine, Fuzhou Pulmonary Hospital, Fujian Medical University, Fuzhou City, Fujian Province 350008, People's Republic of China
| |
Collapse
|
19
|
Xu Y, Lai Y, Weng H, Tan L, Li Y, Chen G, Luo X, Ye Y. MiR-124 sensitizes cisplatin-induced cytotoxicity against CD133 + hepatocellular carcinoma cells by targeting SIRT1/ROS/JNK pathway. Aging (Albany NY) 2020; 11:2551-2564. [PMID: 31056532 PMCID: PMC6535064 DOI: 10.18632/aging.101876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/06/2019] [Indexed: 01/31/2023]
Abstract
Drug resistance is still a major obstacle for efficient treatment of hepatocellular carcinoma (HCC) during the cisplatin-based chemotherapy. Recent studies have demonstrated that CD133 positive population of cancer cells are responsible for multiple drug resistance. We are supposed to take strategies to sensitize CD133+ HCC cells to cisplatin treatment. In the present study, CD133+ HCC cells showed significant cisplatin-resistance compared to the CD133- HCC cells. Downregulation of miR-124 was observed in CD133+ HCC cells. However, enforced expression of miR-124 can increase the sensitivity of CD133+ HCC cells to cisplatin treatment in vitro and in vivo. Mechanically, overexpression of miR-124 was found to inhibit the expression of SIRT1 and thus promoted the generation of ROS and phosphorylation of JNK. As the results, overexpression of miR-124 expanded the apoptosis in cisplatin-treated CD133+ HCC cells. We then demonstrated that overexpression of miR-124 sensitized cisplatin-induced cytotoxicity against CD133+ hepatocellular carcinoma cells by targeting SIRT1/ROS/JNK pathway.
Collapse
Affiliation(s)
- Yunxiuxiu Xu
- Department of Hepato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yu Lai
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hanqin Weng
- Department of Hepato-Billiary Surgery, Dongguan people's Hospital, Southern Medical University, Guangdong 523905, China
| | - Lanping Tan
- Department of Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanshan Li
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangcheng Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xingxi Luo
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yibiao Ye
- Department of Hepato-Billiary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
20
|
Zhang J, Li X, Huang L. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment. Adv Drug Deliv Rev 2020; 154-155:245-273. [PMID: 32473991 PMCID: PMC7704676 DOI: 10.1016/j.addr.2020.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Various bioactive ingredients have been extracted from Chinese herbal medicines (CHMs) that affect tumor progression and metastasis. To further understand the mechanisms of CHMs in cancer therapy, this article summarizes the effects of five categories of CHMs and their active ingredients on tumor cells and the tumor microenvironment. Despite their treatment potential, the undesirable physicochemical properties (poor permeability, instability, high hydrophilicity or hydrophobicity, toxicity) and unwanted pharmacokinetic profiles (short half-life in blood and low bioavailability) restrict clinical studies of CHMs. Therefore, development of liposomes through relevant surface modifying techniques to achieve targeted CHM delivery for cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature, have been reviewed. Current challenges of liposomal targeting of these phytoconstituents and future perspective of CHM applications are discussed to provide an informative reference for interested readers.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
21
|
Wu XX, Yue GGL, Dong JR, Lam CWK, Wong CK, Qiu MH, Lau CBS. Actein Inhibits Tumor Growth and Metastasis in HER2-Positive Breast Tumor Bearing Mice via Suppressing AKT/mTOR and Ras/Raf/MAPK Signaling Pathways. Front Oncol 2020; 10:854. [PMID: 32547952 PMCID: PMC7269144 DOI: 10.3389/fonc.2020.00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
HER2-positive breast cancer accounts for 15–20% in breast cancer and 50% of the metastatic HER2-positive breast cancer patients died of central nervous system progression. The present study investigated the effects of actein (a natural cycloartane triterpene) on cells adhesion, migration, proliferation and matrix degradation, and its underlying mechanism in HER2-positive breast cancer cells. The in vivo effect of actein on tumor growth and metastasis in MDA-MB-361 tumor-bearing mice as well as the anti-brain metastasis in tail vein injection mice model were also investigated. Our results showed that actein inhibited HER2-positive breast cancer cells viability, proliferation and migration. Actein also induced MDA-MB-361 cells G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. For intracellular mechanisms, actein inhibited the expressions of molecules in AKT/mTOR and Ras/Raf/MAPK signaling pathways. Furthermore, actein (15 mg/kg) was shown to exhibit anti-tumor and anti-metastatic activities in MDA-MB-361 breast tumor-bearing mice, and reduced brain metastasis in tail vein injection mice model. All these findings strongly suggested that actein is a potential anti-metastatic agent for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiao-Xiao Wu
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Jin-Run Dong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Jian S, Chen L, Minxue L, Hongmin C, Ronghua T, Xiaoxuan F, Binbin Z, Shiwen G. Tanshinone I induces apoptosis and protective autophagy in human glioblastoma cells via a reactive oxygen species‑dependent pathway. Int J Mol Med 2020; 45:983-992. [PMID: 32124953 PMCID: PMC7053869 DOI: 10.3892/ijmm.2020.4499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/25/2019] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system and is associated with high mortality rates. Despite the available treatment options including surgery, radiotherapy and chemotherapy, the median patient survival rate is low. Therefore, the development of novel anticancer agents for the treatment of glioma is urgently required. Tanshinone I (TS I) is a tanshinone compound that is isolated from Danshen. Accumulating evidence indicates that TS I exhibits antiproliferative activity in a variety of cancer types. However, the role of TS I and its mechanism of action in human glioma remain to be elucidated. In the present study, the anticancer potential of TS I against human glioma U87 MG cells was investigated. The results indicated that TS I exerted a potential cytotoxic effect on human glioma U87 MG cells. TS I was found to induce cell proliferation, inhibition, cell cycle arrest, apoptosis and autophagy in U87 MG cells. Mechanistic experiments indicated that TS I activated endoplasmic reticulum (ER) stress and inhibited AKT signaling and apoptosis in human glioma U87 MG cells. Furthermore, the present study demonstrated that TS I induced protective autophagy in U87 MG cells. Additionally, ER stress and AKT signal-mediated apoptosis and protective autophagy were found to be induced by TS I via intracellular reactive oxygen species accumulation. The results of the present study demonstrated that TS I may be a potential anticancer drug candidate that may be of value in the treatment of human glioma.
Collapse
Affiliation(s)
- Shangguan Jian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lian Minxue
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Che Hongmin
- Department of Neurosurgery, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710061, P.R. China
| | - Tang Ronghua
- Department of Neurosurgery, Chongqing University Cancer Hospital, Chongqing 400030, P.R. China
| | - Fan Xiaoxuan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhang Binbin
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guo Shiwen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
23
|
Li B, Zhou P, Xu K, Chen T, Jiao J, Wei H, Yang X, Xu W, Wan W, Xiao J. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci 2020; 16:74-84. [PMID: 31892847 PMCID: PMC6930379 DOI: 10.7150/ijbs.33787] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 10/13/2019] [Indexed: 01/07/2023] Open
Abstract
Metformin, an ancient drug commonly used for treating type II diabetes, has been associated to anti-cancer capacity in a variety of developing cancers, though the mechanism remains elusive. Here, we aimed to examine the inhibitory effect of metformin in osteosarcoma. Herein, we demonstrated that metformin treatment blocked proliferation progression by causing accumulation of G2/M phase in U2OS and 143B cells. Furthermore, metformin treatment triggered programmed cell death process in osteosarcoma cell lines. Further research indicated the induction of apoptosis and autophagy triggered by metformin could remarkably attenuate after the treatment of ROS scavenger NAC and JNK inhibitor SP600125. Additionally, our results showed that NAC-suppressed JNK/c-Jun signaling pathway could have been activated through metformin treatment. Lastly, metformin could inhibit osteosarcoma growth under safe dose in vivo. Thus, we propose that metformin could induce cell cycle arrest as well as programmed cell death, including apoptosis and autophagy, through ROS-dependent JNK/c-Jun cascade in human osteosarcoma. This metformin-induced pathway provides further insights into its antitumor potential molecular mechanism and illuminates potential cancer targets for osteosarcoma.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kehan Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tianrui Chen
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xinghai Yang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Wan
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Wang J, Zhang Y, Liu X, Wang J, Li B, Liu Y, Wang J. Alantolactone enhances gemcitabine sensitivity of lung cancer cells through the reactive oxygen species-mediated endoplasmic reticulum stress and Akt/GSK3β pathway. Int J Mol Med 2019; 44:1026-1038. [PMID: 31524219 PMCID: PMC6657978 DOI: 10.3892/ijmm.2019.4268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer‑associated mortality in China and globally. Gemcitabine (GEM), as a first‑line therapeutic drug, has been used to treat lung cancer, but GEM resistance poses a major limitation on the efficacy of GEM chemotherapy. Alantolactone (ALT), a sesquiterpene lactone compound isolated from Inula helenium, has been identified to exert anticancer activity in various types of cancer, including breast, pancreatic, lung squamous and colorectal cancer. However, the underlying mechanisms of the anticancer activity of ALT in lung cancer remain to be fully elucidated. The present study aimed to determine whether ALT enhances the anticancer efficacy of GEM in lung cancer cells and investigated the underlying mechanisms. The cell viability was assessed with a Cell Counting Kit‑8 assay. The cell cycle, apoptosis and the level of reactive oxygen species (ROS) were assessed by flow cytometry, and the expression of cell cycle‑associated and apoptosis‑associated proteins were determined by western blot analysis. The results demonstrated that ALT inhibited cell growth and induced S‑phase arrest and cell apoptosis in A549 and NCI‑H520 cells. Furthermore, ALT increased the level of ROS, inhibited the Akt/glycogen synthase kinase (GSK)3β pathway and induced endoplasmic reticulum (ER) stress in A549 and NCI‑H520 cells. Additionally, ALT treatment sensitized lung cancer cells to GEM. Analysis of the molecular mechanisms further revealed that ALT enhanced the anticancer effects of GEM via ROS‑mediated activation of the Akt/GSK3β and ER stress pathways. In conclusion, combined treatment with ALT and GEM may have potential as a clinical strategy for lung cancer treatment.
Collapse
Affiliation(s)
| | | | - Xu Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yongkang Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jiansheng Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061
| |
Collapse
|
25
|
Wang S, Ren X, Hu X, Zhou L, Zhang C, Zhang M. Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicol Appl Pharmacol 2019; 368:37-48. [DOI: 10.1016/j.taap.2019.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
|
26
|
Ruan X, Mueck AO, Beer AM, Naser B, Pickartz S. Benefit–risk profile of black cohosh (isopropanolic Cimicifuga racemosa extract) with and without St John’s wort in breast cancer patients. Climacteric 2019; 22:339-347. [DOI: 10.1080/13697137.2018.1551346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- X. Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women’s Health, University Women’s Hospital and Research Center for Women’s Health, University Hospitals of Tuebingen, Tuebingen, Germany
| | - A. O. Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Department of Women’s Health, University Women’s Hospital and Research Center for Women’s Health, University Hospitals of Tuebingen, Tuebingen, Germany
| | - A.-M. Beer
- Hospital for True Naturopathy, Katholisches Klinikum Bochum, Blankenstein Hospital, Hattingen, Germany
| | - B. Naser
- Pharmacovigilance, Schaper & Brümmer GmbH & Co. KG, Salzgitter, Germany
| | - S. Pickartz
- Medical Service, Schaper & Brümmer GmbH & Co. KG, Salzgitter, Germany
| |
Collapse
|
27
|
Pham DC, Chang YC, Lin SR, Fuh YM, Tsai MJ, Weng CF. FAK and S6K1 Inhibitor, Neferine, Dually Induces Autophagy and Apoptosis in Human Neuroblastoma Cells. Molecules 2018; 23:molecules23123110. [PMID: 30486505 PMCID: PMC6321370 DOI: 10.3390/molecules23123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022] Open
Abstract
Human neuroblastoma cancer is the most typical extracranial solid tumor. Yet, new remedial treatment therapies are demanded to overcome its sluggish survival rate. Neferine, isolated from the lotus embryos, inhibits the proliferation of various cancer cells. This study aimed to evaluate the anti-cancer activity of neferine in IMR32 human neuroblastoma cells and to expose the concealable molecular mechanisms. IMR32 cells were treated with different concentrations of neferine, followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess cell viability. In an effort to determine the molecular mechanisms in neferine-incubated IMR32 cells, cell cycle arrest, cell migration, and focal adhesion kinase (FAK), the 70-kDa ribosomal S6 kinase 1 (S6K1), poly (ADP-ribose) polymerase (PARP), caspase-3, Beclin-1, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein expressions were investigated. Neferine strongly disrupted the neuroblastoma cell growth via induction of G2/M phase arrest. Furthermore, neferine provoked autophagy and apoptosis in IMR32 cells, confirmed by p-FAK, and p-S6K1 reduction, LC3-II accumulation, Beclin-1 overexpression, and cleaved caspase-3/PARP improvement. Finally, neferine markedly retarded cell migration of neuroblastoma cancer cells. As a result, our findings for the first time showed an explicit anti-cancer effect of neferine in IMR32 cells, suggesting that neferine might be a potential candidate against human neuroblastoma cells to improve clinical outcomes with further in vivo investigation.
Collapse
Affiliation(s)
- Dinh-Chuong Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Yu-Chuan Chang
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Yuh-Ming Fuh
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Taipei Veterans General Hospital, Taipei 11260, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| |
Collapse
|
28
|
Sun J, Mu H, Yu J, Li L, Yan H, Li G, Tan H, Yang N, Yang X, Yi L. Diallyl disulfide down-regulates calreticulin and promotes C/EBPα expression in differentiation of human leukaemia cells. J Cell Mol Med 2018; 23:194-204. [PMID: 30394654 PMCID: PMC6307788 DOI: 10.1111/jcmm.13904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL-60 cell differentiation involves down-regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS-induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein-α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL-60 cells resulted in down-regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL-60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS-mediated down-regulation of CRT and up-regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG-rich element in the 3' untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS-induced leukaemic cell differentiation.
Collapse
Affiliation(s)
- Jing Sun
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hongxiang Mu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Jia Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Linwei Li
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Hongxia Yan
- Department of Laboratory, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Guoqing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Hui Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Nanyang Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| | - Lan Yi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China.,Biology Research Institute, College of Pharmacy and Biological Sciences, University of South China, Hengyang, Hunan, China
| |
Collapse
|
29
|
Autophagy and its potent modulators from phytochemicals in cancer treatment. Cancer Chemother Pharmacol 2018; 83:17-26. [PMID: 30353226 DOI: 10.1007/s00280-018-3707-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Autophagy is a ubiquitous catabolic process by which damaged or harmful intracellular components are delivered to the lysosomes for self-digestion and recycling. It is critical in cancer treatment. Therapy-induced autophagy predominantly acts as a pro-survival mechanism, but progressive autophagy can lead to non-apoptotic cell death, also known as autophagic cell death. Plants or herbs contain various natural compounds that are widely used in the treatment of many types of malignancies. Emerging evidence indicates that phytochemicals targeting the autophagic pathway are promising agents for cancer treatment. However, these compounds play different roles in autophagy. In this review, we discussed the role of autophagy in cancer development and therapy, and focussed on elucidating the anti-cancer activities of autophagic modulators, especially phytochemicals. Notably, we described a novel premise that the dynamic role of phytochemicals should be evaluated in regulation of autophagy in cancer.
Collapse
|