1
|
Luu JK, Johnson FD, Jajarmi J, Sihota T, Shi R, Lu D, Farnsworth D, Spencer SE, Negri GL, Morin GB, Lockwood WW. Characterizing the secretome of EGFR mutant lung adenocarcinoma. Front Oncol 2024; 13:1286821. [PMID: 38260835 PMCID: PMC10801028 DOI: 10.3389/fonc.2023.1286821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jennifer K. Luu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jana Jajarmi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Tianna Sihota
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Daniel Lu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sandra E. Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
2
|
Balbisi M, Sugár S, Schlosser G, Szeitz B, Fillinger J, Moldvay J, Drahos L, Szász AM, Tóth G, Turiák L. Inter- and intratumoral proteomics and glycosaminoglycan characterization of ALK rearranged lung adenocarcinoma tissues: a pilot study. Sci Rep 2023; 13:6268. [PMID: 37069213 PMCID: PMC10110559 DOI: 10.1038/s41598-023-33435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Lung cancer is one of the most common types of cancer with limited therapeutic options, therefore a detailed understanding of the underlying molecular changes is of utmost importance. In this pilot study, we investigated the proteomic and glycosaminoglycan (GAG) profile of ALK rearranged lung tumor tissue regions based on the morphological classification, mucin and stromal content. Principal component analysis and hierarchical clustering revealed that both the proteomic and GAG-omic profiles are highly dependent on mucin content and to a lesser extent on morphology. We found that differentially expressed proteins between morphologically different tumor types are primarily involved in the regulation of protein synthesis, whereas those between adjacent normal and different tumor regions take part in several other biological processes (e.g. extracellular matrix organization, oxidation-reduction processes, protein folding) as well. The total amount and the sulfation profile of heparan sulfate and chondroitin sulfate showed small differences based on morphology and larger differences based on mucin content of the tumor, while an increase was observed in both the total amount and the average rate of sulfation in tumors compared to adjacent normal regions.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Pázmány Péter sétány 1, Budapest, 1117, Hungary
| | - Beáta Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Korányi Frigyes út 1., Budapest, 1121, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Korányi Frigyes út 1., Budapest, 1121, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary
| | - A Marcell Szász
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary.
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar Tudósok körútja 2., Budapest, 1117, Hungary.
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26., Budapest, 1085, Hungary.
| |
Collapse
|
3
|
Yamazaki M, Hosokawa M, Matsunaga H, Arikawa K, Takamochi K, Suzuki K, Hayashi T, Kambara H, Takeyama H. Integrated spatial analysis of gene mutation and gene expression for understanding tumor diversity in formalin-fixed paraffin-embedded lung adenocarcinoma. Front Oncol 2022; 12:936190. [PMID: 36505794 PMCID: PMC9731154 DOI: 10.3389/fonc.2022.936190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction A deeper understanding of intratumoral heterogeneity is essential for prognosis prediction or accurate treatment plan decisions in clinical practice. However, due to the cross-links and degradation of biomolecules within formalin-fixed paraffin-embedded (FFPE) specimens, it is challenging to analyze them. In this study, we aimed to optimize the simultaneous extraction of mRNA and DNA from microdissected FFPE tissues (φ = 100 µm) and apply the method to analyze tumor diversity in lung adenocarcinoma before and after erlotinib administration. Method Two magnetic beads were used for the simultaneous extraction of mRNA and DNA. The decross-linking conditions were evaluated for gene mutation and gene expression analyses of microdissected FFPE tissues. Lung lymph nodes before treatment and lung adenocarcinoma after erlotinib administration were collected from the same patient and were preserved as FFPE specimens for 4 years. Gene expression and gene mutations between histologically classified regions of lung adenocarcinoma (pre-treatment tumor in lung lymph node biopsies and post-treatment tumor, normal lung, tumor stroma, and remission stroma, in resected lung tissue) were compared in a microdissection-based approach. Results Using the optimized simultaneous extraction of DNA and mRNA and whole-genome amplification, we detected approximately 4,000-10,000 expressed genes and the epidermal growth factor receptor (EGFR) driver gene mutations from microdissected FFPE tissues. We found the differences in the highly expressed cancer-associated genes and the positive rate of EGFR exon 19 deletions among the tumor before and after treatment and tumor stroma, even though they were collected from tumors of the same patient or close regions of the same specimen. Conclusion Our integrated spatial analysis method would be applied to various FFPE pathology specimens providing area-specific gene expression and gene mutation information.
Collapse
Affiliation(s)
- Miki Yamazaki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Kazuya Takamochi
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of Thoracic Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hideki Kambara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Frontier BioSystems Inc., Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan,*Correspondence: Haruko Takeyama,
| |
Collapse
|
4
|
Thaiparambil J, Dong J, Grimm SL, Perera D, Ambati CSR, Putluri V, Robertson MJ, Patel TD, Mistretta B, Gunaratne PH, Kim MP, Yustein JT, Putluri N, Coarfa C, El‐Zein R. Integrative metabolomics and transcriptomics analysis reveals novel therapeutic vulnerabilities in lung cancer. Cancer Med 2022; 12:584-596. [PMID: 35676822 PMCID: PMC9844651 DOI: 10.1002/cam4.4933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) comprises the majority (~85%) of all lung tumors, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being the most frequently diagnosed histological subtypes. Multi-modal omics profiling has been carried out in NSCLC, but no studies have yet reported a unique metabolite-related gene signature and altered metabolic pathways associated with LUAD and LUSC. METHODS We integrated transcriptomics and metabolomics to analyze 30 human lung tumors and adjacent noncancerous tissues. Differential co-expression was used to identify modules of metabolites that were altered between normal and tumor. RESULTS We identified unique metabolite-related gene signatures specific for LUAD and LUSC and key pathways aberrantly regulated at both transcriptional and metabolic levels. Differential co-expression analysis revealed that loss of coherence between metabolites in tumors is a major characteristic in both LUAD and LUSC. We identified one metabolic onco-module gained in LUAD, characterized by nine metabolites and 57 metabolic genes. Multi-omics integrative analysis revealed a 28 metabolic gene signature associated with poor survival in LUAD, with six metabolite-related genes as individual prognostic markers. CONCLUSIONS We demonstrated the clinical utility of this integrated metabolic gene signature in LUAD by using it to guide repurposing of AZD-6482, a PI3Kβ inhibitor which significantly inhibited three genes from the 28-gene signature. Overall, we have integrated metabolomics and transcriptomics analyses to show that LUAD and LUSC have distinct profiles, inferred gene signatures with prognostic value for patient survival, and identified therapeutic targets and repurposed drugs for potential use in NSCLC treatment.
Collapse
Affiliation(s)
| | - Jianrong Dong
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA
| | - Sandra L. Grimm
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Dimuthu Perera
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | | - Vasanta Putluri
- Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Matthew J. Robertson
- Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA
| | - Brandon Mistretta
- Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Preethi H. Gunaratne
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Department of Biology and BiochemistryUniversity of HoustonHoustonTexasUSA
| | - Min P. Kim
- Houston Methodist Cancer CenterHoustonTexasUSA,Division of Thoracic Surgery, Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
| | - Jason T. Yustein
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma CenterBaylor College of MedicineHoustonTexasUSA,Integrative Molecular and Biological Sciences ProgramBaylor College of MedicineHoustonTexasUSA
| | - Nagireddy Putluri
- Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | - Cristian Coarfa
- Center for Precision and Environmental HealthBaylor College of MedicineHoustonTexasUSA,Molecular and Cellular Biology DepartmentBaylor College of MedicineHoustonTexasUSA,Dan L Duncan Comprehensive Cancer CenterBaylor College of MedicineHoustonTexasUSA,Advanced Technology CoresBaylor College of MedicineHoustonTexasUSA
| | | |
Collapse
|
5
|
Park H, Yamaguchi R, Imoto S, Miyano S. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification. J Comput Biol 2022; 29:257-275. [DOI: 10.1089/cmb.2021.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Pandey SK, Paul A, Shteinfer-Kuzmine A, Zalk R, Bunz U, Shoshan-Barmatz V. SMAC/Diablo controls proliferation of cancer cells by regulating phosphatidylethanolamine synthesis. Mol Oncol 2021; 15:3037-3061. [PMID: 33794068 PMCID: PMC8564633 DOI: 10.1002/1878-0261.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 01/13/2023] Open
Abstract
SMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a noncanonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis. We showed that SMAC/Diablo directly interacts with mitochondrial phosphatidylserine decarboxylase (PSD) and inhibits its catalytic activity during synthesis of phosphatidylethanolamine (PE) from phosphatidylserine (PS). Unlike other phospholipids (PLs), PE is synthesized not only in the endoplasmic reticulum but also in mitochondria. As a result, PSD activity and mitochondrial PE levels were increased in the mitochondria of SMAC/Diablo-deficient cancer cells, with the total amount of cellular PLs and phosphatidylcholine (PC) being lower as compared to SMAC-expressing cancer cells. Moreover, in the absence of SMAC/Diablo, PSD inhibited cancer cell proliferation by catalysing the overproduction of mitochondrial PE and depleting the cellular levels of PC, PE and PS. Additionally, we demonstrated that both SMAC/Diablo and PSD colocalization in the nucleus resulted in increased levels of nuclear PE, that acts as a signalling molecule in regulating several nuclear activities. By using a peptide array composed of 768-peptides derived from 11 SMAC-interacting proteins, we identified six nuclear proteins ARNT, BIRC2, MAML2, NR4A1, BIRC5 and HTRA2 Five of them also interacted with PSD through motifs that are not involved in SMAC binding. Synthetic peptides carrying the PSD-interacting motifs of these proteins could bind purified PSD and inhibit the PSD catalytic activity. When targeted specifically to the mitochondria or the nucleus, these synthetic peptides inhibited cancer cell proliferation. To our knowledge, these are the first reported inhibitors of PSD acting also as inhibitors of cancer cell proliferation. Altogether, we demonstrated that phospholipid metabolism and PE synthesis regulated by the SMAC-PSD interaction are essential for cancer cell proliferation and may be potentially targeted for treating cancer.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Shteinfer-Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan-Barmaz V. Mitochondria and nucleus cross-talk: Signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life 2021; 73:492-510. [PMID: 33179373 DOI: 10.1002/iub.2407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The cross-talk between the mitochondrion and the nucleus regulates cellular functions, including differentiation and adaptation to stress. Mitochondria supply metabolites for epigenetic modifications and other nuclear-associated activities and certain mitochondrial proteins were found in the nucleus. The voltage-dependent anion channel 1 (VDAC1), localized at the outer mitochondrial membrane (OMM) is a central protein in controlling energy production, cell growth, Ca2+ homeostasis, and apoptosis. To alter the cross-talk between the mitochondria and the nucleus, we used specific siRNA to silence the expression of VDAC1 in glioblastoma (GBM) U87-MG and U118-MG cell-derived tumors, and then monitored the nuclear localization of mitochondrial proteins and the methylation and acetylation of histones. Depletion of VDAC1 from tumor cells reduced metabolism, leading to inhibition of tumor growth, and several tumor-associated processes and signaling pathways linked to cancer development. In addition, we demonstrate that certain mitochondrial pro-apoptotic proteins such as caspases 3, 8, and 9, and p53 were unexpectedly overexpressed in tumors, suggesting that they possess additional non-apoptotic functions. VDAC1 depletion and metabolic reprograming altered their expression levels and subcellular localization, specifically their translocation to the nucleus. In addition, VDAC1 depletion also leads to epigenetic modifications of histone acetylation and methylation, suggesting that the interchange between metabolism and cancer signaling pathways involves mitochondria-nucleus cross-talk. The mechanisms regulating mitochondrial protein trafficking into and out of the nucleus and the role these proteins play in the nucleus remain to be elucidated.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Ankit Verma
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Tasleem Arif
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Department of Cell, Developmental, & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Or Aizenberg
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| | - Avijit Paul
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Varda Shoshan-Barmaz
- Department of Life Sciences, Ben-Gurion University of the Negev and the National Institute for Biotechnology in the Negev, Beersheba, Israel
| |
Collapse
|
8
|
Identification of a 5-Gene Metabolic Signature for Predicting Prognosis Based on an Integrated Analysis of Tumor Microenvironment in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2020; 2020:5310793. [PMID: 32684932 PMCID: PMC7335383 DOI: 10.1155/2020/5310793] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with a depressing survival rate. The reprogramming of tumor metabolism was identified as a new hallmark of cancer in tumor microenvironment (TME), and we made a comprehensive exploration to reveal the prognostic role of the metabolic-related genes. Transcriptome profiling data of LUAD were, respectively, downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Based on the extracted metabolic-related genes, a novel 5-gene metabolic prognostic signature (including GNPNAT1, LPGAT1, TYMS, LDHA, and PTGES) was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression. This signature confirmed its robustness and accuracy by external validation in multiple databases. It could be an independent risk factor for LUAD, and the nomograms possessed moderately accurate performance with the C-index of 0.755 (95% confidence interval: 0.706–0.804) and 0.691 (95% confidence interval: 0.636–0.746) in training set and testing set. This signature could reveal the metabolic features according to the results of gene set enrichment analysis (GSEA) and meanwhile monitor the status of TME through ESTIMATE scores and the infiltration levels of immune cells. In conclusion, this gene signature is a cost-effective tool which could indicate the status of TME to provide more clues in the exploration of new diagnostic and therapeutic strategy.
Collapse
|
9
|
Szabó M, Hajba L, Kun R, Guttman A, Csánky E. Proteomic and Glycomic Markers to Differentiate Lung Adenocarcinoma from COPD. Curr Med Chem 2020; 27:3302-3313. [DOI: 10.2174/0929867325666181017112939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022]
Abstract
Lung adenocarcinoma is one of the leading causes of mortality among cancer patients
worldwide and Chronic Obstructive Pulmonary Disease (COPD) is also high in death
statistics. In addition, patients with Chronic Obstructive Pulmonary Disease (COPD) have a
high risk of developing primary lung cancer. Prevention, risk estimation and a non-invasive
diagnostics are essential to decrease COPD and lung cancer mortality. Therefore, better and
more accurate molecular diagnostic markers (biomarkers) are needed for the early differential
diagnosis of these lung diseases to help clinicians make better therapeutic decisions. This review
focuses on recently discovered adenocarcinoma and COPD biomarkers at the proteome
and glycome level. In the first part, the protein markers are summarized, while the second part
is focused on glycan markers. Their use to differentiate between chronic inflammation
(COPD) and malignant (adenocarcinoma) diseases is discussed in detail.
Collapse
Affiliation(s)
- Miklós Szabó
- Department of Pulmonology, Semmelweis Hospital, of Borsod Abauj Zemplen County Central Hospital and University Teaching Hospital Department of Pulmonology, Miskolc, Hungary
| | - László Hajba
- Translational Glycomics Research Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Renáta Kun
- Horvath Csaba Laboratory of Bioseparation Sciences, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Guttman
- Translational Glycomics Research Group, Research Institute for Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Eszter Csánky
- Department of Pulmonology, Semmelweis Hospital, of Borsod Abauj Zemplen County Central Hospital and University Teaching Hospital Department of Pulmonology, Miskolc, Hungary
| |
Collapse
|
10
|
Schulze AB, Evers G, Görlich D, Mohr M, Marra A, Hillejan L, Rehkämper J, Schmidt LH, Heitkötter B. Tumor infiltrating T cells influence prognosis in stage I-III non-small cell lung cancer. J Thorac Dis 2020; 12:1824-1842. [PMID: 32642087 PMCID: PMC7330340 DOI: 10.21037/jtd-19-3414a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background T cell infiltration in non-small cell lung cancer (NSCLC) is essential for the immunological response to malignant tissue, especially in the era of immune-checkpoint inhibition. To investigate the prognostic impact of CD4+ T helper cells (Th), CD8+ cytotoxic (Tc) and FOXP3+ regulatory T (Treg) cells in NSCLC, we performed this analysis. Methods By counterstaining of CD4, CD8 and FOXP3 we used immunohistochemistry on tissue microarrays (TMA) to evaluate peritumoral Th cells, Treg cells and Tc cells in n=294 NSCLC patients with pTNM stage I–III disease. Results Strong CD4+ infiltration was associated with higher tumor stages and lymphonodal spread. However, strong CD4+ infiltration yielded improved overall survival (OS) (P=0.014) in adenocarcinoma (ADC) and large cell carcinoma (LCC) but not in squamous cell carcinoma (SCC). A CD4/CD8 ratio <1 was associated with high grade NSCLC tumors (P=0.020). High CD8+ T cell infiltration was an independent prognostic factor for OS (P=0.040) and progression-free survival (PFS) (P=0.012) in the entire study collective. The OS benefit of high CD8+ infiltration was especially prominent in PD-L1 negative NSCLC (P=0.001) but not in PD-L1 positive tissue (P=0.335). Moreover, positive FOXP3+ expression in tumor infiltrating lymphocytes was associated with increased OS (P=0.007) and PFS (P=0.014) in SCC but not in ADC and LCC (all P>0.05). Here, prognostic effects were prominent in PD-L1 positive SCC (P=0.023) but not in PD-L1 negative SCC (P=0.236). Conclusions High proportion of CD8+ Tc cells correlated with improved prognostic outcome in stage I–III NSCLC. Th cells and Treg cells have implications on outcome with respect to tumor histology and biology.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, Westfaelische-Wilhelms University Muenster, Muenster, Germany
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany
| | - Alessandro Marra
- Department of Thoracic Surgery, Rems-Murr-Klinikum Winnenden, Winnenden, Germany
| | - Ludger Hillejan
- Department of Thoracic Surgery, Niels-Stensen-Kliniken, Ostercappeln, Germany
| | - Jan Rehkämper
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, Muenster, Germany.,IV. Medical Department, Pulmonary Medicine and Thoracic Oncology, Klinikum Ingolstadt, Ingolstadt, Germany
| | - Birthe Heitkötter
- Gerhard Domagk Institute of Pathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
11
|
Kauczor HU, Baird AM, Blum TG, Bonomo L, Bostantzoglou C, Burghuber O, Čepická B, Comanescu A, Couraud S, Devaraj A, Jespersen V, Morozov S, Nardi Agmon I, Peled N, Powell P, Prosch H, Ravara S, Rawlinson J, Revel MP, Silva M, Snoeckx A, van Ginneken B, van Meerbeeck JP, Vardavas C, von Stackelberg O, Gaga M. ESR/ERS statement paper on lung cancer screening. Eur Respir J 2020; 55:13993003.00506-2019. [PMID: 32051182 DOI: 10.1183/13993003.00506-2019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
In Europe, lung cancer ranks third among the most common cancers, remaining the biggest killer. Since the publication of the first European Society of Radiology and European Respiratory Society joint white paper on lung cancer screening (LCS) in 2015, many new findings have been published and discussions have increased considerably. Thus, this updated expert opinion represents a narrative, non-systematic review of the evidence from LCS trials and description of the current practice of LCS as well as aspects that have not received adequate attention until now. Reaching out to the potential participants (persons at high risk), optimal communication and shared decision-making will be key starting points. Furthermore, standards for infrastructure, pathways and quality assurance are pivotal, including promoting tobacco cessation, benefits and harms, overdiagnosis, quality, minimum radiation exposure, definition of management of positive screen results and incidental findings linked to respective actions as well as cost-effectiveness. This requires a multidisciplinary team with experts from pulmonology and radiology as well as thoracic oncologists, thoracic surgeons, pathologists, family doctors, patient representatives and others. The ESR and ERS agree that Europe's health systems need to adapt to allow citizens to benefit from organised pathways, rather than unsupervised initiatives, to allow early diagnosis of lung cancer and reduce the mortality rate. Now is the time to set up and conduct demonstration programmes focusing, among other points, on methodology, standardisation, tobacco cessation, education on healthy lifestyle, cost-effectiveness and a central registry.
Collapse
Affiliation(s)
- Hans-Ulrich Kauczor
- Dept of Diagnostic and Interventional Radiology, University Hospital Heidelberg, German Center of Lung Research, Heidelberg, Germany
| | - Anne-Marie Baird
- Central Pathology Laboratory, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | | | - Lorenzo Bonomo
- Dept of Radiology, Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | | | | | | | - Sébastien Couraud
- Service de Pneumologie et Oncologie Thoracique, Hospices Civils de Lyon, CH Lyon Sud, Pierre Bénite, France.,Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux, Université Claude Bernard Lyon I, Oullins, France
| | | | | | - Sergey Morozov
- Dept of Health Care of Moscow, Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Moscow, Russian Federation
| | | | - Nir Peled
- Thoracic Cancer Unit, Rabin Medical Center, Petach Tiqwa, Israel
| | | | - Helmut Prosch
- Dept of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sofia Ravara
- Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilha, Portugal.,Tobacco Cessation Unit, CHCB University Hospital, Covilha, Portugal
| | | | | | - Mario Silva
- Section of Radiology, Dept of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | | | - Bram van Ginneken
- Image Sciences Institute, University Medical Centre, Utrecht, The Netherlands.,Dept of Radiology, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Constantine Vardavas
- Clinic of Social and Family Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.,Center for Global Tobacco Control, Department of Society, Human Development and Health, Harvard School of Public Health, Boston, MA, USA
| | - Oyunbileg von Stackelberg
- Dept of Diagnostic and Interventional Radiology, University Hospital Heidelberg, German Center of Lung Research, Heidelberg, Germany
| | - Mina Gaga
- 7th Respiratory Medicine Dept, Athens Chest Hospital Sotiria, Athens, Greece
| | | |
Collapse
|
12
|
Kauczor HU, Baird AM, Blum TG, Bonomo L, Bostantzoglou C, Burghuber O, Čepická B, Comanescu A, Couraud S, Devaraj A, Jespersen V, Morozov S, Agmon IN, Peled N, Powell P, Prosch H, Ravara S, Rawlinson J, Revel MP, Silva M, Snoeckx A, van Ginneken B, van Meerbeeck JP, Vardavas C, von Stackelberg O, Gaga M. ESR/ERS statement paper on lung cancer screening. Eur Radiol 2020; 30:3277-3294. [PMID: 32052170 DOI: 10.1007/s00330-020-06727-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022]
Abstract
In Europe, lung cancer ranks third among the most common cancers, remaining the biggest killer. Since the publication of the first European Society of Radiology and European Respiratory Society joint white paper on lung cancer screening (LCS) in 2015, many new findings have been published and discussions have increased considerably. Thus, this updated expert opinion represents a narrative, non-systematic review of the evidence from LCS trials and description of the current practice of LCS as well as aspects that have not received adequate attention until now. Reaching out to the potential participants (persons at high risk), optimal communication and shared decision-making will be key starting points. Furthermore, standards for infrastructure, pathways and quality assurance are pivotal, including promoting tobacco cessation, benefits and harms, overdiagnosis, quality, minimum radiation exposure, definition of management of positive screen results and incidental findings linked to respective actions as well as cost-effectiveness. This requires a multidisciplinary team with experts from pulmonology and radiology as well as thoracic oncologists, thoracic surgeons, pathologists, family doctors, patient representatives and others. The ESR and ERS agree that Europe's health systems need to adapt to allow citizens to benefit from organised pathways, rather than unsupervised initiatives, to allow early diagnosis of lung cancer and reduce the mortality rate. Now is the time to set up and conduct demonstration programmes focusing, among other points, on methodology, standardisation, tobacco cessation, education on healthy lifestyle, cost-effectiveness and a central registry.Key Points• Pulmonologists and radiologists both have key roles in the set up of multidisciplinary LCS teams with experts from many other fields.• Pulmonologists identify people eligible for LCS, reach out to family doctors, share the decision-making process and promote tobacco cessation.• Radiologists ensure appropriate image quality, minimum dose and a standardised reading/reporting algorithm, together with a clear definition of a "positive screen".• Strict algorithms define the exact management of screen-detected nodules and incidental findings.• For LCS to be (cost-)effective, it has to target a population defined by risk prediction models.
Collapse
Affiliation(s)
- Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, German Center of Lung Research, INF 110, 69120, Heidelberg, Germany.
| | - Anne-Marie Baird
- Central Pathology Laboratory, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | | | - Lorenzo Bonomo
- Department of Radiology, Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | | | | | | | - Sébastien Couraud
- Service de Pneumologie et Oncologie Thoracique, Hospices Civils de Lyon, Sud, Pierre Bénite, Lyon, CH, France.,Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux, Université Claude Bernard Lyon I, Oullins, France
| | | | | | - Sergey Morozov
- Department of Health Care of Moscow, Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Moscow, Russian Federation
| | | | - Nir Peled
- Thoracic Cancer Unit, Rabin Medical Center, Petach Tiqwa, Israel
| | | | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sofia Ravara
- Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilha, Portugal.,Tobacco Cessation Unit, CHCB University Hospital, Covilha, Portugal
| | | | | | - Mario Silva
- Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | | | - Bram van Ginneken
- Image Sciences Institute, University Medical Centre, Utrecht, The Netherlands.,Department of Radiology, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Constantine Vardavas
- Clinic of Social and Family Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece.,Center for Global Tobacco Control, Department of Society, Human Development and Health, Harvard School of Public Health, Boston, MA, USA
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, German Center of Lung Research, INF 110, 69120, Heidelberg, Germany
| | - Mina Gaga
- 7th Respiratory Medicine Department, Athens Chest Hospital Sotiria, Athens, Greece
| | | |
Collapse
|
13
|
Autsavapromporn N, Dukaew N, Wongnoppavich A, Chewaskulyong B, Roytrakul S, Klunklin P, Phantawong K, Chitapanarux I, Sripun P, Kritsananuwat R, Amphol S, Pornnumpa C, Suzuki T, Kudo H, Hosoda M, Tokonami S. IDENTIFICATION OF NOVEL BIOMARKERS FOR LUNG CANCER RISK IN HIGH LEVELS OF RADON BY PROTEOMICS: A PILOT STUDY. RADIATION PROTECTION DOSIMETRY 2019; 184:496-499. [PMID: 31330007 DOI: 10.1093/rpd/ncz064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 06/10/2023]
Abstract
Radon is the second most important risk factor for lung cancer after tobacco smoking. In Chiang Mai, Thailand, the values of indoor radon activity concentrations are considerably higher than global average values and it is a highest level among East Asian countries. The aim of our study is to identify novel biomarkers for lung cancer risk in high radon areas using a proteomic approach. In our transitional study, a total of 81 participants of non-smokers were examined, consist of 25 lung cancer patients (LC), 16 healthy controls from low levels of natural radiation areas (LLNRA) and 40 healthy controls from high levels of natural radiation areas (HLNRA). The results showed that a total of 799 differentially expressed proteins were identified. Among these, a total of 25 proteins were observed in both LC and HLNRA, but not in LINRA. Owing to the results obtained from this study, we also point out the research direction regarding the validation of some new candidate protein as a biomarker to screen population with high risk for lung cancer in the area with high levels of radon.
Collapse
Affiliation(s)
- N Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - N Dukaew
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - A Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - B Chewaskulyong
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - S Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - P Klunklin
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - K Phantawong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - I Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - P Sripun
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - R Kritsananuwat
- Department of Nuclear Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - S Amphol
- Chiang Mai Neurological Hospital, Chiang Mai, Thailand
| | - C Pornnumpa
- Department of Applied Radiation and Isotope, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - T Suzuki
- Hirosaki University Graduate School of Health Science, Hirosaki, Aomori, Japan
| | - H Kudo
- Hirosaki University Graduate School of Health Science, Hirosaki, Aomori, Japan
| | - M Hosoda
- Hirosaki University Graduate School of Health Science, Hirosaki, Aomori, Japan
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan
| | - S Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan
| |
Collapse
|
14
|
Fonseca FP, Macedo CCS, Dos Santos Costa SF, Leme AFP, Rodrigues RR, Pontes HAR, Altemani A, van Heerden WFP, Martins MD, de Almeida OP, Santos-Silva AR, Lopes MA, Vargas PA. Mass spectrometry-based proteome profile may be useful to differentiate adenoid cystic carcinoma from polymorphous adenocarcinoma of salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:639-650. [PMID: 31494112 DOI: 10.1016/j.oooo.2019.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to determine the proteome of adenoid cystic carcinoma (AdCC) and polymorphous adenocarcinoma (PAc) and to identify a protein signature useful in distinguishing these two neoplasms. STUDY DESIGN Ten cases of AdCC and 10 cases of PAc were microdissected for enrichment of neoplastic tissue. The samples were submitted to liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the proteomics data were analyzed by using the MaxQuant software. LC-MS/MS spectra were searched against the Human UniProt database, and statistical analyses were performed with Perseus software. Bioinformatic analyses were performed by using discovery-based proteomic data on both tumors. RESULTS LC-MS/MS analysis identified 1957 proteins. The tumors shared 1590 proteins, and 261 were exclusively identified in AdCC and 106 in PAc. Clustering analysis of the statistically significant proteins clearly separated AdCC from PAc. Protein expression 10 times higher in one group than in the other led to a signature of 16 proteins-6 upregulated in AdCC and 10 in PAc. A new clustering analysis showed reverse regulation and also differentiated both tumors. CONCLUSIONS Global proteomics may be useful in discriminating these two malignant salivary neoplasms that frequently show clinical and microscopic overlaps, but additional validation studies are still necessary to determine the diagnostic potential of the protein signature obtained.
Collapse
Affiliation(s)
- Felipe Paiva Fonseca
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil; Department of Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Carneiro Soares Macedo
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | | | - Adriana Franco Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Romênia Ramos Rodrigues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Hélder Antônio Rebelo Pontes
- Service of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Willie F P van Heerden
- Department of Oral Pathology and Oral Biology, School of Dentistry, University of Pretoria, Pretoria, South Africa
| | - Manoela Domingues Martins
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil; Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Oslei Paes de Almeida
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil; Department of Oral Pathology and Oral Biology, School of Dentistry, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
15
|
Madia F, Worth A, Whelan M, Corvi R. Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. ENVIRONMENT INTERNATIONAL 2019; 128:417-429. [PMID: 31078876 PMCID: PMC6520474 DOI: 10.1016/j.envint.2019.04.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/10/2019] [Accepted: 04/27/2019] [Indexed: 05/10/2023]
Abstract
Cancer is a key public health concern, being the second leading cause of worldwide morbidity and mortality after cardiovascular diseases. At the global level, cancer prevalence, incidence and mortality rates are increasing. These trends are not fully explained by a growing and ageing population: with marked regional and socioeconomic disparities, lifestyle factors, the resources dedicated to preventive medicine, and the occupational and environmental control of hazardous chemicals all playing a role. While it is difficult to establish the contribution of chemical exposure to the societal burden of cancer, a number of measures can be taken to better assess the carcinogenic properties of chemicals and manage their risks. This paper discusses how these measures can be informed not only by the traditional data streams of regulatory toxicology, but also by using new toxicological assessment methods, along with indicators of public health status based on biomonitoring. These diverse evidence streams have the potential to form the basis of an integrated and more effective approach to cancer prevention.
Collapse
Affiliation(s)
- Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
16
|
Optical Fiber Gratings Immunoassays. SENSORS 2019; 19:s19112595. [PMID: 31181610 PMCID: PMC6603621 DOI: 10.3390/s19112595] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022]
Abstract
Optical fibers are of growing interest for biosensing, especially for point-of-care and biomedical assays. Their intrinsic properties bestow them sought-after assets for the detection of low concentrations of analytes. Tilted fiber Bragg gratings (TFBGs) photo-inscribed in the core of telecommunication-grade optical fibers are known to be highly-sensitive refractometers. In this work, we present different strategies to use them for label-free immunoassays. Bare, gold-sputtered, gold-electroless-plated (ELP) and hybrid configurations are biofunctionalized with antibodies, aiming at the detection of cancer biomarkers. We discuss the relative performances of the tested configurations and show that each leads to singular key features, which therefore drives their selection as a function of the target application. The most sensitive configuration presents a limit of detection of 10−12 g/mL in laboratory settings and was successfully used ex vivo in freshly resected lung tissues.
Collapse
|
17
|
Kashima J, Kitadai R, Okuma Y. Molecular and Morphological Profiling of Lung Cancer: A Foundation for "Next-Generation" Pathologists and Oncologists. Cancers (Basel) 2019; 11:E599. [PMID: 31035693 PMCID: PMC6562944 DOI: 10.3390/cancers11050599] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
The pathological diagnosis of lung cancer has largely been based on the morphological features observed microscopically. Recent innovations in molecular and genetic technology enable us to compare conventional histological classifications, protein expression status, and gene abnormalities. The introduction of The Cancer Genome Atlas (TCGA) project along with the widespread use of the next-generation sequencer (NGS) have facilitated access to enormous data regarding the molecular profiles of lung cancer. The World Health Organization classification of lung cancer, which was revised in 2015, is based on this progress in molecular pathology; moreover, immunohistochemistry has come to play a larger role in diagnosis. In this article, we focused on genetic and epigenetic abnormalities in non-small cell carcinoma (adenocarcinoma and squamous cell carcinoma), neuroendocrine tumor (including carcinoids, small cell carcinoma, and large cell neuroendocrine carcinoma), and carcinoma with rare histological subtypes. In addition, we summarize the therapeutic targeted reagents that are currently available and undergoing clinical trials. A good understanding of the morphological and molecular profiles will be necessary in routine practice when the NGS platform is widely used.
Collapse
Affiliation(s)
- Jumpei Kashima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Rui Kitadai
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
| | - Yusuke Okuma
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-8677, Japan.
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan.
| |
Collapse
|
18
|
Sheng M, Xie X, Wang J, Gu W. A Pathway-Based Strategy to Identify Biomarkers for Lung Cancer Diagnosis and Prognosis. Evol Bioinform Online 2019; 15:1176934319838494. [PMID: 30923439 PMCID: PMC6431770 DOI: 10.1177/1176934319838494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 12/23/2022] Open
Abstract
Current research has identified several potential biomarkers for lung cancer diagnosis or prognosis. However, most of these biomarkers are derived from a relatively small number of samples using algorithms at the gene level. Hence, gene expression signatures discovered in these studies have little overlaps. In this study, we proposed a new strategy to identify biomarkers from multiple datasets at the pathway level. We integrated the genome-wide expression data of lung cancer tissues from 13 published studies and applied our strategy to identify lung cancer diagnostic and prognostic biomarkers. We identified a 32-gene signature that differentiates lung adenocarcinomas from other lung cancer subtypes. We also discovered a 43-gene signature that can predict the outcome of human lung cancers. We tested their performance in several independent cohorts, which confirmed their robust prognostic and diagnostic power. Furthermore, we showed that the proposed gene expression signatures were independent of several traditional clinical indicators in lung cancer management. Our results suggest that the pathway-based strategy is useful to identify transcriptomic biomarkers from large-scale gene expression datasets that were collected from multiple sources.
Collapse
Affiliation(s)
- Mengying Sheng
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Xueying Xie
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Jun Wang
- Department of Thoracic Surgery, Jiangsu Province People's Hospital and the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Martínez-Terroba E, Behrens C, Agorreta J, Monsó E, Millares L, Felip E, Rosell R, Ramirez JL, Remirez A, Torre W, Gil-Bazo I, Idoate MA, de-Torres JP, Pio R, Wistuba II, Pajares MJ, Montuenga LM. 5 protein-based signature for resectable lung squamous cell carcinoma improves the prognostic performance of the TNM staging. Thorax 2018; 74:371-379. [PMID: 30472670 DOI: 10.1136/thoraxjnl-2018-212194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Prognostic biomarkers have been very elusive in the lung squamous cell carcinoma (SCC) and none is currently being used in the clinical setting. We aimed to identify and validate the clinical utility of a protein-based prognostic signature to stratify patients with early lung SCC according to their risk of recurrence or death. METHODS Patients were staged following the new International Association for the Study of Lung Cancer (IASLC) staging criteria (eighth edition, 2018). Three independent retrospective cohorts of 117, 96 and 105 patients with lung SCC were analysed to develop and validate a prognostic signature based on immunohistochemistry for five proteins. RESULTS We identified a five protein-based signature whose prognostic index (PI) was an independent and significant predictor of disease-free survival (DFS) (p<0.001; HR=4.06, 95% CI 2.18 to 7.56) and overall survival (OS) (p=0.004; HR=2.38, 95% CI 1.32 to 4.31). The prognostic capability of PI was confirmed in an external multi-institutional cohort for DFS (p=0.042; HR=2.01, 95% CI 1.03 to 3.94) and for OS (p=0.031; HR=2.29, 95% CI 1.08 to 4.86). Moreover, PI added complementary information to the newly established IASLC TNM 8th edition staging system. A combined prognostic model including both molecular and anatomical (TNM) criteria improved the risk stratification in both cohorts (p<0.05). CONCLUSION We have identified and validated a clinically feasible protein-based prognostic model that complements the updated TNM system allowing more accurate risk stratification. This signature may be used as an advantageous tool to improve the clinical management of the patients, allowing the reduction of lung SCC mortality through a more accurate knowledge of the patient's potential outcome.
Collapse
Affiliation(s)
- Elena Martínez-Terroba
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jackeline Agorreta
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Eduard Monsó
- Neumology Service, Parc Taulí Universitary Hospital, Sabadell, Spain.,CIBER de Enfermedades Respiratorias-CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Millares
- Neumology Service, Parc Taulí Universitary Hospital, Sabadell, Spain.,CIBER de Enfermedades Respiratorias-CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Institute of Oncology, Barcelona, Spain
| | - Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - José Luis Ramirez
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ana Remirez
- Program in Solid Tumors, CIMA, Pamplona, Spain
| | - Wenceslao Torre
- Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Department of Thoracic Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel A Idoate
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Juan P de-Torres
- Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Neumology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - María J Pajares
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Luis M Montuenga
- Program in Solid Tumors, CIMA, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Navarra Health Research Institute (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
20
|
Sau S, Iyer AK. Immunotherapy and molecular role of T-cell in PD-1 antibody treated resectable lung cancer patients. J Thorac Dis 2018; 10:4682-4685. [PMID: 30233838 DOI: 10.21037/jtd.2018.07.66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Naß J, Efferth T. Insights into apoptotic proteins in chemotherapy: quantification techniques and informing therapy choice. Expert Rev Proteomics 2018; 15:413-429. [DOI: 10.1080/14789450.2018.1468755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Biochemistry and Pharmacy, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
22
|
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta 30322, GA, USA; Veterans Affairs Medical Center, Decatur 30322, GA, USA.
| |
Collapse
|