1
|
Li L, Song Q, Cao D, Jiao Y, Yuan G, Song Y. Whole-Exome Sequencing Could Distinguish Primary Pulmonary Squamous Cell Carcinoma From Lung Metastases in Individuals With Cervical Squamous Cell Carcinoma. Pathol Oncol Res 2022; 28:1610325. [PMID: 35645619 PMCID: PMC9130473 DOI: 10.3389/pore.2022.1610325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Abstract
Aims: Metastatic cervical carcinoma is hard to cure using traditional treatment and new therapeutic approaches are needed. However, the process of clonal evolution and the molecular alterations that contribute to tumor progression from primary to metastatic carcinoma remain unclear. It is currently difficult to distinguish between the primary pulmonary squamous cell carcinoma (PPSCC) and metastatic cervical squamous cell carcinoma (CSCC). Methods: Paired primary CSCC and lung/lymph nodes metastatic lesions from eight patients were analyzed by whole-exome sequencing (WES). WES data of matched specimens and normal samples were aligned to the human reference genome and analyzed to identify somatic mutations in primary and metastatic lesions. Results: A total of 1,254 somatic variants were identified. All the primary lesions and metastatic lesions shared mutations, the percentage of shared mutations between primary lesions and corresponding metastatic lesions varied significantly, ranging from 6% to 70%. In other words, all the metastatic lesions are clonally related to primary lesions, confirming WES could prove they are metastatic from the cervix but not PPSCC. We tried to apply a gene panel to help distinguish PPSCC and metastatic CSCC but failed because the mutations were widely distributed in CSCC. Interestingly, lymph nodes metastasis (LNM) harbored fewer cancer driver mutations than primary CSCC specimens with a significant difference. Besides this, there was no significant difference in somatic mutations and copy number variation (CNV) between primary and metastatic CSCC. Conclusion: Our data demonstrate that WES is an additional helpful tool in distinguishing PPSCC and metastatic CSCC, especially for certain difficult cases.
Collapse
Affiliation(s)
- Lihong Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianqian Song
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangwen Yuan
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medvdical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Xu Y, Luo H, Hu Q, Zhu H. Identification of Potential Driver Genes Based on Multi-Genomic Data in Cervical Cancer. Front Genet 2021; 12:598304. [PMID: 33664766 PMCID: PMC7921803 DOI: 10.3389/fgene.2021.598304] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer became the third most common cancer among women, and genome characterization of cervical cancer patients has revealed the extensive complexity of molecular alterations. However, identifying driver mutation and depicting molecular classification in cervical cancer remain a challenge. Methods: We performed an integrative multi-platform analysis of a cervical cancer cohort from The Cancer Genome Atlas (TCGA) based on 284 clinical cases and identified the driver genes and possible molecular classification of cervical cancer. Results: Multi-platform integration showed that cervical cancer exhibited a wide range of mutation. The top 10 mutated genes were TTN, PIK3CA, MUC4, KMT2C, MUC16, KMT2D, SYNE1, FLG, DST, and EP300, with a mutation rate from 12 to 33%. Applying GISTIC to detect copy number variation (CNV), the most frequent chromosome arm-level CNVs included losses in 4p, 11p, and 11q and gains in 20q, 3q, and 1q. Then, we performed unsupervised consensus clustering of tumor CNV profiles and methylation profiles and detected four statistically significant expression subtypes. Finally, by combining the multidimensional datasets, we identified 10 potential driver genes, including GPR107, CHRNA5, ZBTB20, Rb1, NCAPH2, SCA1, SLC25A5, RBPMS, DDX3X, and H2BFM. Conclusions: This comprehensive analysis described the genetic characteristic of cervical cancer and identified novel driver genes in cervical cancer. These results provide insight into developing precision treatment in cervical cancer.
Collapse
Affiliation(s)
- Yuexun Xu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Luo
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qunchao Hu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Ferreira WAS, Amorim CKN, Burbano RR, Villacis RAR, Marchi FA, Medina TS, Lima MMCD, Oliveira EHCD. Genomic and transcriptomic characterization of the human glioblastoma cell line AHOL1. ACTA ACUST UNITED AC 2021; 54:e9571. [PMID: 33470396 PMCID: PMC7812907 DOI: 10.1590/1414-431x20209571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Cancer cell lines are widely used as in vitro models of tumorigenesis, facilitating fundamental discoveries in cancer biology and translational medicine. Currently, there are few options for glioblastoma (GBM) treatment and limited in vitro models with accurate genomic and transcriptomic characterization. Here, a detailed characterization of a new GBM cell line, namely AHOL1, was conducted in order to fully characterize its molecular composition based on its karyotype, copy number alteration (CNA), and transcriptome profiling, followed by the validation of key elements associated with GBM tumorigenesis. Large numbers of CNAs and differentially expressed genes (DEGs) were identified. CNAs were distributed throughout the genome, including gains at Xq11.1-q28, Xp22.33-p11.1, Xq21.1-q21.33, 4p15.1-p14, 8q23.2-q23.3 and losses at Yq11.21-q12, Yp11.31-p11.2, and 15q11.1-q11.2 positions. Nine druggable genes were identified, including HCRTR2, ETV1, PTPRD, PRKX, STS, RPS6KA6, ZFY, USP9Y, and KDM5D. By integrating DEGs and CNAs, we identified 57 overlapping genes enriched in fourteen pathways. Altered expression of several cancer-related candidates found in the DEGs-CNA dataset was confirmed by RT-qPCR. Taken together, this first comprehensive genomic and transcriptomic landscape of AHOL1 provides unique resources for further studies and identifies several druggable targets that may be useful for therapeutics and biologic and molecular investigation of GBM.
Collapse
Affiliation(s)
- W A S Ferreira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - C K N Amorim
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - R R Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil.,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Belém, PA, Brasil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brasil
| | - R A R Villacis
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brasil
| | - F A Marchi
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - T S Medina
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - M M C de Lima
- Instituto de Ciências Biológicas, Faculdade de Biomedicina, Universidade Federal do Pará, Belém, PA, Brasil
| | - E H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil.,Instituto de Ciências Exatas e Naturais, Faculdade de Ciências Naturais, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
4
|
Wen Y, Zhang S, Yang J, Guo D. Identification of driver genes regulating immune cell infiltration in cervical cancer by multiple omics integration. Biomed Pharmacother 2019; 120:109546. [PMID: 31675687 DOI: 10.1016/j.biopha.2019.109546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is one of the most common cancers in women. However, copy number alteration (CNA)-driven dysregulated genes and their functions in CC are still rarely investigated. In the present study, we conducted integrative analysis of CNA and gene expression data from The Cancer Genome Atlas (TCGA) cervical cancer to identify dysregulated genes triggered by CNAs. The integration of copy number status and RNA expression revealed 763 amplified and 1,391 deleted genes significantly dysregulated by the CNAs (P-value < 1e-8). Among these CNA genes, five driver genes, including PI3KCA, PI3KCB, DVL3, WWTR1, and ERBB2, exhibited a strong association with immune cell infiltration, suggesting that the pathways that they participate in may be involved in regulating immune cell infiltration. Moreover, we also observed that the genes of immunotherapeutic targets were abundantly expressed in the wild-type samples, suggesting that immunotherapy based on these immunotherapeutic targets may be applied to wild-type samples. In addition, the two CNA driver genes, DVL3 and ERBB2, might be sensitive and resistant biomarkers for examining the tumor's response to chemoradiotherapy, respectively. Particularly, the expression of ERBB2 was also observed to be higher in responders of chemotherapy than non-responders. Furthermore, a subset of CNA genes was identified to predict the prognosis of cervical cancer. In summary, our systematic data analysis of these CNA genes not only improved our understanding of the veiled mechanism behind immune cell infiltration, but also provided the potential clinical application of these CNA genes in cervical cancer.
Collapse
Affiliation(s)
- Yanqi Wen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Silin Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Duanying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| |
Collapse
|
5
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
6
|
Chen J, Deng Y, Ao L, Song Y, Xu Y, Wang CC, Choy KW, Tony Chung KH, Du Q, Sui Y, Yang T, Yang J, Li H, Zou C, Tang T. The high-risk HPV oncogene E7 upregulates miR-182 expression through the TGF-β/Smad pathway in cervical cancer. Cancer Lett 2019; 460:75-85. [PMID: 31247272 DOI: 10.1016/j.canlet.2019.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 01/08/2023]
Abstract
Accumulating experimental evidence has shown that the aberrant expression of microRNAs (miRNAs) is involved in the development and progression of human cervical cancer. Previously, we identified miR-182 as an oncomiRNA in cervical cancer. However, the mechanism by which miR-182 is regulated and the interaction between human papillomavirus (HPV) and miR-182 in cervical cancer development remains unknown. In the present study, we explored the link between HPV E7 and miR-182 and verified that high-risk HPV E7 upregulated miR-182 expression through TGF-β/Smad4 signaling pathway in cervical cancer. By contrast, low-risk HPV E7 did not affect the expression of TGF-β and miR-182. Mechanistically, as high-risk HPV E7 bound to pRb, E2F was released from the complex and bound to the TGF-β promoter region, resulting in TGF-β overexpression. Furthermore, the Smad4 signaling pathway was activated upon TGF-β overexpression, which led to an interaction between Smad4 and the miR-182 promoter region, subsequently inducing the upregulation of miR-182 in both cervical cancer cells and the surrounding normal cells. In conclusion, this newly identified high-risk HPV E7/TGF-β/miR-182 regulatory network might inform the development of specific therapeutic strategies for cervical cancer.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Deng
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Liangfei Ao
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Song
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yan Xu
- Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwong Wai Choy
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kwok Hung Tony Chung
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking, University, Beijing, China
| | - Yi Sui
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong, Medical Center, Shanghai, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hu Li
- Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, 518020, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Department of Obstetrics & Gynaecology, Guangzhou Panyu Central Hospital, Guangzhou, China.
| |
Collapse
|