1
|
Nikhil K, Shah K. CDK5: an oncogene or an anti-oncogene: location location location. Mol Cancer 2023; 22:186. [PMID: 37993880 PMCID: PMC10666462 DOI: 10.1186/s12943-023-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Recent studies have uncovered various physiological functions of CDK5 in many nonneuronal tissues. Upregulation of CDK5 and/or its activator p35 in neurons promotes healthy neuronal functions, but their overexpression in nonneuronal tissues is causally linked to cancer of many origins. This review focuses on the molecular mechanisms by which CDK5 recruits diverse tissue-specific substrates to elicit distinct phenotypes in sixteen different human cancers. The emerging theme suggests that CDK5's role as an oncogene or anti-oncogene depends upon its subcellular localization. CDK5 mostly acts as an oncogene, but in gastric cancer, it is a tumor suppressor due to its unique nuclear localization. This indicates that CDK5's access to certain nuclear substrates converts it into an anti-oncogenic kinase. While acting as a bonafide oncogene, CDK5 also activates a few cancer-suppressive pathways in some cancers, presumably due to the mislocalization of nuclear substrates in the cytoplasm. Therefore, directing CDK5 to the nucleus or exporting tumor-suppressive nuclear substrates to the cytoplasm may be promising approaches to combat CDK5-induced oncogenicity, analogous to neurotoxicity triggered by nuclear CDK5. Furthermore, while p35 overexpression is oncogenic, hyperactivation of CDK5 by inducing p25 formation results in apoptosis, which could be exploited to selectively kill cancer cells by dialing up CDK5 activity, instead of inhibiting it. CDK5 thus acts as a molecular rheostat, with different activity levels eliciting distinct functional outcomes. Finally, as CDK5's role is defined by its substrates, targeting them individually or in conjunction with CDK5 should create potentially valuable new clinical opportunities.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Kavita Shah
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Hammad S, Ogris C, Othman A, Erdoesi P, Schmidt-Heck W, Biermayer I, Helm B, Gao Y, Piorońska W, Holland CH, D'Alessandro LA, de la Torre C, Sticht C, Al Aoua S, Theis FJ, Bantel H, Ebert MP, Klingmüller U, Hengstler JG, Dooley S, Mueller NS. Tolerance of repeated toxic injuries of murine livers is associated with steatosis and inflammation. Cell Death Dis 2023; 14:414. [PMID: 37438332 DOI: 10.1038/s41419-023-05855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/13/2023] [Accepted: 05/05/2023] [Indexed: 07/14/2023]
Abstract
The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl4 injections in mice (n = 45). Based on comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease development-initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further disease progression.
Collapse
Affiliation(s)
- Seddik Hammad
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| | - Christoph Ogris
- Institute of Computational Biology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Amnah Othman
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Pia Erdoesi
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Schmidt-Heck
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Ina Biermayer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Barbara Helm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Yan Gao
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Weronika Piorońska
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian H Holland
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Lorenza A D'Alessandro
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Carolina de la Torre
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sherin Al Aoua
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz-Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
3
|
Jabeur R, Corbel C, Loyer P, Le Parc A, Le Grand A, Comte A, Bach S, André-Leroux G, Sire O, Ben Mansour H, Le Tilly V. Identification of Novel Compounds Inhibiting the Kinase Activity of the CDK5/p25 Complex via Direct Binding to p25. Biochemistry 2023; 62:1452-1463. [PMID: 37074084 DOI: 10.1021/acs.biochem.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Riheb Jabeur
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | - Caroline Corbel
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Pascal Loyer
- Univ Rennes, INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, F-35000 Rennes, France
| | | | | | - Arnaud Comte
- Compound Library, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa
| | | | - Olivier Sire
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | | |
Collapse
|
4
|
Sui R, Shi W, Han S, Fan X, Zhang X, Wang N, Zhang H, Xu A, Liu C. MiR-142-5p directly targets cyclin-dependent kinase 5-mediated upregulation of the inflammatory process in acquired middle ear cholesteatoma. Mol Immunol 2021; 141:236-245. [PMID: 34875451 DOI: 10.1016/j.molimm.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cell proliferation, differentiation, apoptosis, and inflammatory responses. MiR-142-5p is an important inflammation-associated miRNA, whose abnormal expression has been associated with a variety of inflammation-related diseases. However, the role and signaling pathways targeted by miR-142-5p in acquired middle ear cholesteatoma (AMEC) have not been fully elucidated. Cyclin-dependent kinase 5 (CDK5), a special member of the CDK family compared with classic cyclins that plays a critical role in the inflammatory response. In this study, we investigated the roles of miR-142-5p and CDK5 in inflammatory responses in AMEC. Our results revealed that the expression of miR-142-5p was significantly reduced in AMEC, and was negatively correlated with the expression of CDK5 (r=-0.5451). We also found that miR-142-5p can inhibit CDK5 expression by directly target 3' untranslated region (UTR) of CDK5. Additionally, our findings indicated that the increased expression of CDK5 induces the secretion of inflammatory cytokines. In order to further confirm the involvement of miR-142-5p in the regulation of the inflammatory response in AMEC through its inhibitory effect on CDK5 expression, we studied the inflammatory response in HaCaT cells transfected with small interfering RNA against CDK5 (si-CDK5) and a miR-142-5p inhibitor. The results confirmed that miR-142-5p regulates the inflammatory response in AMEC by downregulating CDK5. In summary, miR-142-5p directly inhibits the CDK5-mediated upregulation of inflammatory cytokines in AMEC, which makes it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Rongcui Sui
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Wei Shi
- Department of Otolaryngology, Zhoucun District People's Hospital, 72 Mianhua Shi Road, Zibo, Shandong, China
| | - Shuhui Han
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xintai Fan
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Xianzhao Zhang
- Department of Otolaryngology, The First People's Hospital of Jining, 6 Health Road, Jining, Shandong, China
| | - Na Wang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Hao Zhang
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; National Health Commission Key Laboratory of Otorhinolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China.
| | - Chengcheng Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 274 Beiyuan Road, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Jinan, Shandong, China.
| |
Collapse
|
5
|
The cyclin dependent kinase inhibitor Roscovitine prevents diet-induced metabolic disruption in obese mice. Sci Rep 2021; 11:20365. [PMID: 34645915 PMCID: PMC8514475 DOI: 10.1038/s41598-021-99871-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Most strategies to treat obesity-related disorders have involved prevention of diet-induced weight gain in lean mice. Treatment of obese individuals will require therapies that reverse the detrimental effects of excess body weight. Cyclin-dependent kinases have been shown to contribute to obesity and its adverse complications. Here, we show that roscovitine; a an orally available cyclin-dependent kinase inhibitor; given to male mice during the last six weeks of a 19-week high fat diet, reduced weight gain and prevented accompanying insulin resistance, hepatic steatosis, visceral adipose tissue (eWAT) inflammation/fibrosis as well as restored insulin secretion and enhanced whole body energy expenditure. Proteomics and phosphoproteomics analysis of eWAT demonstrated that roscovitine suppressed expression of peptides and phosphopeptides linked to inflammation and extracellular matrix proteins. It also identified 17 putative protein kinases perturbed by roscovitine, including CMGC kinases, AGC kinases and CAMK kinases. Pathway enrichment analysis showed that lipid metabolism, TCA cycle, fatty acid beta oxidation and creatine biosynthesis are enriched following roscovitine treatment. For brown adipose tissue (BAT), analysis of upstream kinases controlling the phosphoproteome revealed two major kinase groups, AGC and CMGC kinases. Among the top enriched pathways were insulin signaling, regulation of lipolysis in adipocytes, thyroid hormone signaling, thermogenesis and cAMP-PKG signaling. We conclude that roscovitine is effective at preventing prolonged diet-induced metabolic disruption and restoring mitochondrial activity in BAT and eWAT.
Collapse
|
6
|
Bazzi ZA, Tai IT. CDK10 in Gastrointestinal Cancers: Dual Roles as a Tumor Suppressor and Oncogene. Front Oncol 2021; 11:655479. [PMID: 34277407 PMCID: PMC8278820 DOI: 10.3389/fonc.2021.655479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| |
Collapse
|
7
|
Elevated CDK5R1 predicts worse prognosis in hepatocellular carcinoma based on TCGA data. Biosci Rep 2021; 41:227408. [PMID: 33346796 PMCID: PMC7791553 DOI: 10.1042/bsr20203594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignant tumor with rapid progression, high recurrence rate and poor prognosis. The objective of our investigation was to explore the prognostic value of CDK5R1 in HCC. Methods: The raw data of HCC raw data were downloaded from The Cancer Genome Atlas (TCGA) database. The Wilcoxon signed-rank test, Kruskal–Wallis test and logistic regression were applied to investigate the relevance between the CDK5R1 expression and clinicopathologic characteristics in HCC. Kaplan–Meier and Cox regression analysis were employed to examine the association between clinicopathologic features and survival. Gene set enrichment analysis (GSEA) was applied to annotate the biological function of CDK5R1. Results: CDK5R1 was highly expressed in HCC tissues. The high expression of CDK5R1 in HCC tissues was significantly associated with tumor status (P=0.00), new tumor event (P=0.00), clinical stage (P=0.00) and topography (P=0.00). Elevated CDK5R1 had significant correlation with worse overall survival (OS; P=7.414e−04), disease-specific survival (DSS; P=5.642e−04), disease-free interval (DFI; P=1.785e−05) and progression-free interval (PFI; P=2.512e−06). Besides, univariate and multivariate Cox regression analysis uncovered that increased CDK5R1 can independently predict adverse OS (P=0.037, hazard ratio [HR]= 1.7 (95% CI [1.0–2.7])), DFI (P=0.007, hazard ratio [HR]= 3.0 (95% CI [1.4–6.7])), PFI (P=0.007, hazard ratio [HR]= 2.8 (95% CI [1.3–5.9])). GSEA disclosed that notch signaling pathway and non-small cell lung cancer were prominently enriched in CDK5R1 high expression phenotype. Conclusions: Increased CDK5R1 may act as a promising independent prognostic factor of poor survival in HCC.
Collapse
|
8
|
Li M, Wei L, Liu PY, Zhang XM, Liu F, Yang F, Hu XS, Mo ZC. Lnc-ATG9B-4 aggravates progress of hepatocellular carcinoma through cell proliferation and migration by upregulating CDK5. Exp Biol Med (Maywood) 2020; 246:177-186. [PMID: 33023330 DOI: 10.1177/1535370220963197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Long noncoding RNAs play an important role in the occurrence, invasion, as well as metastasis of various human cancers, including hepatocellular carcinoma. Long noncoding RNAs can affect the biological functions of hepatocellular carcinoma cells by regulating various genes; however, only a small fraction of molecular mechanisms of long noncoding RNAs have been elucidated. In the present study, lnc AC010973.1 (lnc-ATG9B-4) was first identified by microarray analysis from 8 patients with hepatocellular carcinoma and confirmed by quantitative PCR in 176 patients with hepatocellular carcinoma. We demonstrated that lnc-ATG9B-4 was tightly relative to the tumorous size, TNM stages, portal vein tumor thrombus (PVTT), the tumor capsule, metastasis, degree of differentiation, and poor prognosis of hepatocellular carcinoma according to long-term follow-up data. In hepatocellular carcinoma cells, overexpression of lnc-ATG9B-4 promoted proliferation, invasion, as well as migration, while inhibiting lnc-ATG9B-4 by siRNA significantly attenuated the proliferation, invasion, as well as migration. Interestingly, lnc-ATG9B-4 increased the expression of cyclin-dependent kinase 5 (CDK5), which was closely related to the development and chemotherapy sensitivity of hepatocellular carcinoma. In summary, our results revealed that lnc-ATG9B-4 suggests an unfavorable prognosis of hepatocellular carcinoma and facilitates the proliferation, invasion, as well as migration of hepatocellular carcinoma cells by upregulating CDK5. This research suggests that lnc-ATG9B-4 may be a new biomarker for predicting the prognosis of hepatocellular carcinoma; meanwhile, targeting lnc-ATG9B-4 might serve as a potential strategy for the treatment hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ming Li
- Department of Histology and Embryology, Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Hunan 418000, China.,Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, China
| | - Le Wei
- Department of Histology and Embryology, Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Hunan 418000, China
| | - Pin-Yue Liu
- Department of Histology and Embryology, Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Hunan 418000, China
| | - Xue-Mei Zhang
- Department of Histology and Embryology, Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Hunan 418000, China
| | - Fang Liu
- Department of Histology and Embryology, Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Hunan 418000, China
| | - Fen Yang
- The First People's Hospital of Huaihua, Huaihua 418000, China
| | - Xiang-Shang Hu
- Department of Human Anatomy, Hunan University of Medicine, Huaihua418000, China
| | - Zhong-Cheng Mo
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin 541001, China
| |
Collapse
|
9
|
Tang H, Xu L, Cen X, Yang L, Feng J, Li G, Zhu H, Gao S, Yu Y, Zhao Y, Tian Z, Hou L, Yu S, Gao G. CDK5 inhibition in vitro and in vivo induces cell death in myeloma and overcomes the obstacle of bortezomib resistance. Int J Mol Med 2020; 45:1661-1672. [PMID: 32236619 PMCID: PMC7169959 DOI: 10.3892/ijmm.2020.4553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of new drugs is a major feature of the treatment history of multiple myeloma (MM), which also reflects the current incurability of MM. As a unique member of cyclin dependent kinase (CDK) family, CDK5 participates in numerous tumorigenic or non-tumorigenic processes. The aim of this study is to investigate the effects of CDK5 on the viability of MM cells and bortezomib resistance using western blotting, immunohistochemistry, transient transfection, MTT assays, cell cycle analysis, apoptosis assays and a myeloma xenograft mouse model. The present study found that MM patients with high CDK5 expression in the bone marrow do not respond well to bortezomib, have higher DS stage and worse prognosis. Genetic and pharmacological (dinaciclib) inhibition of CDK5 triggers MM cell viability inhibition. Dinaciclib induces G2/M arrest and apoptosis of MM cells. In vivo experiments with myeloma xenograft mice indicate that dinaciclib significantly reduces the volume of tumors with good tolerance. Dinaciclib combined with bortezomib exerts a synergistic anti-myeloma activity accompanied by inhibiting the activation of the nuclear factor-κB pathway. This study demonstrates the important role of CDK5 in the pathogenesis, viability, prognosis and resistance to bortezomib of MM, laying a solid theoretical foundation for further clinical use of CDK5 inhibitors.
Collapse
Affiliation(s)
- Hailong Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Li Xu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xi Cen
- Department of Public Health Sciences, University of Rochester, Rochester, NY 14642, USA
| | - Li Yang
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Juan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guang Li
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Huafeng Zhu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shan Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Yu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yaping Zhao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhiqiang Tian
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liping Hou
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuchun Yu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Guangxun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
10
|
Abstract
The cyclin-dependent kinase 5 (CDK5), originally described as a neuronal-specific kinase, is also frequently activated in human cancers. Using conditional CDK5 knockout mice and a mouse model of highly metastatic melanoma, we found that CDK5 is dispensable for the growth of primary tumors. However, we observed that ablation of CDK5 completely abrogated the metastasis, revealing that CDK5 is essential for the metastatic spread. In mouse and human melanoma cells CDK5 promotes cell invasiveness by directly phosphorylating an intermediate filament protein, vimentin, thereby inhibiting assembly of vimentin filaments. Chemical inhibition of CDK5 blocks the metastatic spread of patient-derived melanomas in patient-derived xenograft (PDX) mouse models. Hence, inhibition of CDK5 might represent a very potent therapeutic strategy to impede the metastatic dissemination of malignant cells.
Collapse
|
11
|
Cervello M, Emma MR, Augello G, Cusimano A, Giannitrapani L, Soresi M, Akula SM, Abrams SL, Steelman LS, Gulino A, Belmonte B, Montalto G, McCubrey JA. New landscapes and horizons in hepatocellular carcinoma therapy. Aging (Albany NY) 2020; 12:3053-3094. [PMID: 32018226 PMCID: PMC7041742 DOI: 10.18632/aging.102777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/12/2020] [Indexed: 04/12/2023]
Abstract
Hepatocellular carcinoma (HCC), is the sixth most frequent form of cancer and leads to the fourth highest number of deaths each year. HCC results from a combination of environmental factors and aging as there are driver mutations at oncogenes which occur during aging. Most of HCCs are diagnosed at advanced stage preventing curative therapies. Treatment in advanced stage is a challenging and pressing problem, and novel and well-tolerated therapies are urgently needed. We will discuss further advances beyond sorafenib that target additional signaling pathways and immune checkpoint proteins. The scenario of possible systemic therapies for patients with advanced HCC has changed dramatically in recent years. Personalized genomics and various other omics approaches may identify actionable biochemical targets, which are activated in individual patients, which may enhance therapeutic outcomes. Further studies are needed to identify predictive biomarkers and aberrantly activated signaling pathways capable of guiding the clinician in choosing the most appropriate therapy for the individual patient.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alessandro Gulino
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
12
|
Chi TF, Horbach T, Götz C, Kietzmann T, Dimova EY. Cyclin-Dependent Kinase 5 (CDK5)-Mediated Phosphorylation of Upstream Stimulatory Factor 2 (USF2) Contributes to Carcinogenesis. Cancers (Basel) 2019; 11:cancers11040523. [PMID: 31013770 PMCID: PMC6521020 DOI: 10.3390/cancers11040523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
The transcription factor USF2 is supposed to have an important role in tumor development. However, the regulatory mechanisms contributing to the function of USF2 are largely unknown. Cyclin-dependent kinase 5 (CDK5) seems to be of importance since high levels of CDK5 were found in different cancers associated with high USF2 expression. Here, we identified USF2 as a phosphorylation target of CDK5. USF2 is phosphorylated by CDK5 at two serine residues, serine 155 and serine 222. Further, phosphorylation of USF2 at these residues was shown to stabilize the protein and to regulate cellular growth and migration. Altogether, these results delineate the importance of the CDK5-USF2 interplay in cancer cells.
Collapse
Affiliation(s)
- Tabughang Franklin Chi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Tina Horbach
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
| | - Elitsa Y. Dimova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland; (T.F.C.); (T.K.)
- Correspondence: ; Tel.: +358-0-294-485-785; Fax: +358-8-553-114
| |
Collapse
|
13
|
Cortés N, Guzmán-Martínez L, Andrade V, González A, Maccioni RB. CDK5: A Unique CDK and Its Multiple Roles in the Nervous System. J Alzheimers Dis 2019; 68:843-855. [DOI: 10.3233/jad-180792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicole Cortés
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Andrea González
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, East Campus, University of Chile, Santiago, Chile
| |
Collapse
|
14
|
Hou JY, Wu HY, He RQ, Lin P, Dang YW, Chen G. Clinical and prognostic value of chaperonin containing T-complex 1 subunit 3 in hepatocellular carcinoma: A Study based on microarray and RNA-sequencing with 4272 cases. Pathol Res Pract 2018; 215:177-194. [PMID: 30473171 DOI: 10.1016/j.prp.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022]
Abstract
Liver cancer is one of the few tumors with a steadily increasing morbidity and mortality; hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. We combined the expression profiles of Chaperonin Containing T-complex 1 Subunit 3 (CCT3) in HCC tissues based on microarray and RNA-sequencing data. The CCT3 expression levels were extracted and examined based on 421 samples from The Cancer Genome Atlas (TCGA) (HCC, n = 371; non-HCC, n = 50) and 3851 samples from 31 microarray or RNA-sequencing datasets (HCC, n = 1975; non-tumor = 1876). We used a variety of meta-analytic methods, including SMD forest maps, sensitivity analysis, subgroup analysis and sROC curves, to confirm the final results. Meanwhile, database-derived immunohistochemistry data was used for validation. We also further explained the potential mechanism of CCT3 in HCC through signal pathway analyses and PPI network construction with the CCT3 co-expressed genes. The mRNA and protein expression of CCT3 in HCC tissues were higher than in non-HCC tissues. The expression of CCT3 differed between groups when grouped according to clinicopathological parameters, such as race, family history, and histological grade. The results of standardised mean difference (SMD) forest map and summary receiver operating characteristic (sROC) curve revealed that CCT3 was highly expressed in HCC tissues and had a high ability to distinguish between cancer tissues and non-cancer tissues. The main form of CCT3 gene alteration in HCC was mRNA up-regulation and amplification (23%), and the most common mutation type was missense. The mRNA expression of CCT3 in HCC was negatively correlated with DNA methylation. According to the Kyoto Encyclopedia of Genes and Genomes pathway analysis, CCT3 can influence HCC occurrence and development through cell cycle and DNA replication pathways. In summary, this study carries out the staging and prognostic analysis of HCC. It suggests that CCT3 might play an important part in the tumorigenesis and progression of HCC and may have a certain prognostic value in HCC. Moreover, CCT3 might represent a promising biomarker for HCC.
Collapse
Affiliation(s)
- Jia-Yin Hou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|