1
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Liu G, Ling J, He L, Xu Y, Chen T, Shi C, Luo L. Theranostic Cancer Treatment Using Lentinan-Coated Selenium Nanoparticles and Label-Free CEST MRI. Pharmaceutics 2022; 15:pharmaceutics15010120. [PMID: 36678748 PMCID: PMC9864256 DOI: 10.3390/pharmaceutics15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Selenium nanoparticle (SeNP)-based nanotherapeutics have become an emerging cancer therapy, while effective drug delivery remains a technical hurdle. A theranostic approach, through which imaging companions are integrated with SeNPs, will allow image-guided drug delivery and, therefore, is highly desirable. Traditional methods require the chemical conjugation of imaging agents to the surface of nanoparticles, which may impede the later clinical translation. In this study, we developed a label-free strategy in which lentinan-functionalized SeNPs (LNT-SeNPs) are detected using MRI by the hydroxyl protons carried on LNT molecules. The in vitro phantom study showed that LNT and LNT-SeNPs have a strong CEST signal at 1.0 ppm apart from the water resonance, suggesting an in vivo detectability in the µM concentration range. Demonstrated on CT26 colon tumor cells, LNT-SeNPs exert a strong anticancer effect (IC50 = 4.8 μM), prominently attributed to the ability to generate intracellular reactive oxygen species. However, when testing in a mouse model of CT26 tumors, administration of LNT-SeNPs alone was found unable to deliver sufficient drugs to the tumor, leading to poor treatment responses. To improve the drug delivery, we co-injected LNT-SeNPs and TNF-α, a previously reported drug that could effectively damage the endothelial cells in the tumor vasculature, thereby increasing drug delivery to the tumor. Our results revealed a 75% increase in the intratumoral CEST MRI signal, indicating a markedly increased delivery efficiency of LNT-SeNPs when combined with TNF-α. The combination therapy also resulted in a significantly enhanced treatment outcome, as revealed by the tumor growth study. Taken together, our study demonstrates the first label-free, SeNP-based theranostic system, in which LNT was used for both functional surface coating and CEST MRI signal generating. Such a theranostic LNT-SeNP system is advantageous because it requires chemical labeling and, therefore, has high biocompatibility and low translatable barriers.
Collapse
Affiliation(s)
- Guanfu Liu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jiabao Ling
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuan Xu
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Correspondence: (T.C.); (C.S.); Tel.: +86-022-85223393 (T.C.); +86-020-38688848 (C.S.)
| | - Changzheng Shi
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- Correspondence: (T.C.); (C.S.); Tel.: +86-022-85223393 (T.C.); +86-020-38688848 (C.S.)
| | - Liangping Luo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
5
|
Piktel E, Ościłowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion M, Parlinska-Wojtan M, Bucki R. ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. Int J Nanomedicine 2021; 16:1993-2011. [PMID: 33727811 PMCID: PMC7955786 DOI: 10.2147/ijn.s277014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background Even with considerable improvement in treatment of epithelial ovarian cancer achieved in recent years, an increasing chemotherapy resistance and disease 5-year relapse is recorded for a majority part of patients that encourages the search for better therapeutic options. Gold nanoparticles (Au NPs) due to plethora of unique physiochemical features are thoroughly tested as drug delivery, radiosensitizers, as well as photothermal and photodynamic therapy agents. Importantly, due to highly controlled synthesis, it is possible to obtain nanomaterials with directed size and shape. Methods In this work, we developed novel elongated-type gold nanoparticles in the shape of nanopeanuts (AuP NPs) and investigated their cytotoxic potential against ovarian cancer cells SKOV-3 using colorimetric and fluorimetric methods, Western blot, flow cytometry, and fluorescence microscopy. Results Peanut-shaped gold nanoparticles showed high anti-cancer activity in vitro against SKOV-3 cells at doses of 1–5 ng/mL upon 72 hours treatment. We demonstrate that AuP NPs decrease the viability and proliferation capability of ovarian cancer cells by triggering cell apoptosis and autophagy, as evidenced by flow cytometry and Western blot analyses. The overproduction of reactive oxygen species (ROS) was noted to be a critical mediator of AuP NPs-mediated cell death. Conclusion These data indicate that gold nanopeanuts might be developed as nanotherapeutics against ovarian cancer.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, PL-31342, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, Bialystok, 15-222, Poland
| | - Przemysław Wolak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | - Tomasz Wollny
- Holy Cross Cancer Center in Kielce, Kielce, 25-734, Poland
| | - Marianna Janion
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, 25-317, Poland
| | | | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-222, Poland
| |
Collapse
|
6
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
7
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
9
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 2020; 240:119902. [PMID: 32105817 DOI: 10.1016/j.biomaterials.2020.119902] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Nanotechnology-based drug delivery platforms have been explored for cancer treatments and resulted in several nanomedicines in clinical uses and many in clinical trials. However, current nanomedicines have not met the expected clinical therapeutic efficacy. Thus, improving therapeutic efficacy is the foremost pressing task of nanomedicine research. An effective nanomedicine must overcome biological barriers to go through at least five steps to deliver an effective drug into the cytosol of all the cancer cells in a tumor. Of these barriers, nanomedicine extravasation into and infiltration throughout the tumor are the two main unsolved blockages. Up to now, almost all the nanomedicines are designed to rely on the high permeability of tumor blood vessels to extravasate into tumor interstitium, i.e., the enhanced permeability and retention (EPR) effect or so-called "passive tumor accumulation"; however, the EPR features are not so characteristic in human tumors as in the animal tumor models. Following extravasation, the large size nanomedicines are almost motionless in the densely packed tumor microenvironment, making them restricted in the periphery of tumor blood vessels rather than infiltrating in the tumors and thus inaccessible to the distal but highly malignant cells. Recently, we demonstrated using nanocarriers to induce transcytosis of endothelial and cancer cells to enable nanomedicines to actively extravasate into and infiltrate in solid tumors, which led to radically increased anticancer activity. In this perspective, we make a brief discussion about how active transcytosis can be employed to overcome the difficulties, as mentioned above, and solve the inherent extravasation and infiltration dilemmas of nanomedicines.
Collapse
|
11
|
Ng TS, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 2020; 10:968-997. [PMID: 31938046 PMCID: PMC6956809 DOI: 10.7150/thno.37215] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Despite recent advances in the translation of therapeutic nanoparticles (TNPs) into the clinic, the field continues to face challenges in predictably and selectively delivering nanomaterials for the treatment of solid cancers. The concept of enhanced permeability and retention (EPR) has been coined as a convenient but simplistic descriptor of high TNP accumulation in some tumors. However, in practice EPR represents a number of physiological variables rather than a single one (including dysfunctional vasculature, compromised lymphatics and recruited host cells, among other aspects of the tumor microenvironment) — each of which can be highly heterogenous within a given tumor, patient and across patients. Therefore, a clear need exists to dissect the specific biophysical factors underlying the EPR effect, to formulate better TNP designs, and to identify patients with high-EPR tumors who are likely to respond to TNP. The overall pharmacology of TNP is governed by an interconnected set of spatially defined and dynamic processes that benefit from a systems-level quantitative approach, and insights into the physiology have profited from the marriage between in vivo imaging and quantitative systems pharmacology (QSP) methodologies. In this article, we review recent developments pertinent to image-guided systems pharmacology of nanomedicines in oncology. We first discuss recent developments of quantitative imaging technologies that enable analysis of nanomaterial pharmacology at multiple spatiotemporal scales, and then examine reports that have adopted these imaging technologies to guide QSP approaches. In particular, we focus on studies that have integrated multi-scale imaging with computational modeling to derive insights about the EPR effect, as well as studies that have used modeling to guide the manipulation of the EPR effect and other aspects of the tumor microenvironment for improving TNP action. We anticipate that the synergistic combination of imaging with systems-level computational methods for effective clinical translation of TNPs will only grow in relevance as technologies increase in resolution, multiplexing capability, and in the ability to examine heterogeneous behaviors at the single-cell level.
Collapse
|
12
|
Chen Z, Li Y, Airan R, Han Z, Xu J, Chan KWY, Xu Y, Bulte JWM, van Zijl PCM, McMahon MT, Zhou S, Liu G. CT and CEST MRI bimodal imaging of the intratumoral distribution of iodinated liposomes. Quant Imaging Med Surg 2019; 9:1579-1591. [PMID: 31667143 DOI: 10.21037/qims.2019.06.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background To develop liposomes loaded with iodinated agents as nanosized CT/MRI bimodal contrast agents for monitoring liposome-mediated drug delivery. Methods Rhodamine-labeled iodixanol (VisipaqueTM)-loaded liposomes (IX-lipo) were prepared and tested for their properties as a diamagnetic CEST contrast agent in vitro. Mice bearing subcutaneous CT26 colon tumors were injected i.v. with 1 g/kg (535 mg iodine/kg) IX-lipo, and in vivo CT and CEST MR images were acquired on day 3. CT and CEST MR images were also acquired for tumor-bearing mice co-injected with IX-lipo and tumor necrosis factor (TNF-α). Results In addition to CT contrast, IX-lipo exhibited a strong CEST contrast similar to its non-liposomal form, with a detectability of ~2 nM per liposome. Both CT imaging and CEST MRI showed that i.v. injection of IX-lipo resulted in a rim enhancement of CT26 tumors with a heterogeneous central distribution. In contrast, co-injection of TNF-α caused a significantly augmented CT/MRI contrast in the tumor center. The intratumoral biodistribution of IX-lipo correlated well to the rhodamine patterns observed with fluorescence microscopy. Conclusions We have developed a CT/MRI bimodal imaging approach for monitoring the delivery and biodistribution of liposomes by loading them with the clinically approved X-ray/CT contrast agent iodixanol. Our approach may be easily adapted for other-FDA approved iodinated agents and thus has great translational potential.
Collapse
Affiliation(s)
- Zelong Chen
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Raag Airan
- Department of Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - Zheng Han
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Chen H, Liu D, Li Y, Xu X, Xu J, Yadav NN, Zhou S, van Zijl PCM, Liu G. CEST MRI monitoring of tumor response to vascular disrupting therapy using high molecular weight dextrans. Magn Reson Med 2019; 82:1471-1479. [PMID: 31106918 PMCID: PMC7029807 DOI: 10.1002/mrm.27818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Vascular disrupting therapy of cancer has become a promising approach not only to regress tumor growth directly but also to boost the delivery of chemotherapeutics in the tumor. An imaging approach to monitor the changes in tumor vascular permeability, therefore, has important applications for monitoring of vascular disrupting therapies. METHODS Mice bearing CT26 subcutaneous colon tumors were injected intravenously with 150 kD dextran (Dex150, diameter, d~ 20 nm, 375 mg/kg), tumor necrosis factor-alpha (TNF-α; 1 µg per mouse), or both (n = 3 in each group). The Z-spectra were acquired before and 2 h after the injection, and the chemical exchange saturation transfer (CEST) signals in the tumors as quantified by asymmetric magnetization transfer ratio (MTRasym ) at 1 ppm were compared. RESULTS The results showed a significantly stronger CEST contrast enhancement at 1 ppm (∆MTRasym = 0.042 ± 0.002) in the TNF-α-treated tumors than those by Dex150 alone (∆MTRasym = 0.000 ± 0.005, P = 0.0229) or TNF-α alone (∆MTRasym = 0.002 ± 0.004, P = 0.0264), indicating that the TNF-α treatment strongly augmented the tumor uptake of 150 kD dextran. The MRI findings were verified by fluorescence imaging and immunofluorescence microscopy. CONCLUSIONS High molecular weight dextrans can be used as safe and sensitive CEST MRI contrast agents for monitoring tumor response to vascular disrupting therapy and, potentially, for developing dextran-based theranostic drug delivery systems.
Collapse
Affiliation(s)
- Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dexiang Liu
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Nirbhay N. Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Shibin Zhou
- Ludwig Center, Howard Hughes Medical Institute and Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
14
|
Josephs SF, Ichim TE, Prince SM, Kesari S, Marincola FM, Escobedo AR, Jafri A. Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J Transl Med 2018; 16:242. [PMID: 30170620 PMCID: PMC6119315 DOI: 10.1186/s12967-018-1611-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/18/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor (TNF)-alpha was originally identified in the 1970s as the serum mediator of innate immunity capable of inducing hemorrhagic necrosis in tumors. Today, a wide spectrum of biological activities have been attributed to this molecule, and clinical translation has mainly occurred not in using it to treat cancer, but rather to inhibit its effects to treat autoimmunity. Clinical trials utilizing systemic TNF-alpha administration have resulted in an unacceptable level of toxicities, which blocked its development. In contrast, localized administration of TNF-alpha in the form of isolated limb perfusion have yielded excellent results in soft tissue sarcomas. Here we describe a novel approach to leveraging the potent antineoplastic activities of TNF-alpha by enhancing activity of locally produced TNF-alpha through extracorporeal removal of soluble TNF-alpha receptors. Specifically, it is known that cancerous tissues are infiltrated with monocytes, T cells, and other cells capable of producing TNF-alpha. It is also known that tumors, as well as cells in the tumor microenvironment produce soluble TNF-alpha receptors. The authors believe that by selectively removing soluble TNF-alpha receptors local enhancement of endogenous TNF-alpha activity may provide for enhanced tumor cell death without associated systemic toxicities.
Collapse
Affiliation(s)
| | | | | | - Santosh Kesari
- John Wayne Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA, USA
| | | | | | | |
Collapse
|
15
|
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130:17-38. [PMID: 30009886 PMCID: PMC6130746 DOI: 10.1016/j.addr.2018.07.007] [Citation(s) in RCA: 765] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5-10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.
Collapse
Affiliation(s)
- Susanne K Golombek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Lia Appold
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
16
|
Li Y, Qiao Y, Chen H, Bai R, Staedtke V, Han Z, Xu J, Chan KWY, Yadav N, Bulte JWM, Zhou S, van Zijl PCM, Liu G. Characterization of tumor vascular permeability using natural dextrans and CEST MRI. Magn Reson Med 2017; 79:1001-1009. [PMID: 29193288 DOI: 10.1002/mrm.27014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE To investigate the use of natural dextrans as nano-sized chemical exchange saturation transfer (CEST) MRI probes for characterizing size-dependent tumor vascular permeability. METHODS Dextrans of different molecular weight (10, 70, 150, and 2000 kD) were characterized for their CEST contrast. Mice (N = 5) bearing CT26 subcutaneous colon tumors were injected intravenously with 10 kD (D10, 6 nm) and 70 kD (D70, 12 nm) dextran at a dose of 375 mg/kg. The CEST-MRI signal in the tumors was assessed before and approximately 40 min after each injection using a dynamic CEST imaging scheme. RESULTS All dextrans of different molecular weights have a strong CEST signal with an apparent maximum of approximately 0.9 ppm. The detectability and effects of pH and saturation conditions (B1 and Tsat ) were investigated. When applied to CT26 tumors, the injection of D10 could produce a significant "dexCEST" enhancement in the majority of the tumor area, whereas the injection of D70 only resulted in an increase in the tumor periphery. Quantitative analysis revealed the differential permeability of CT26 tumors to different size particles, which was validated by fluorescence imaging and immunohistochemistry. CONCLUSIONS As a first application, we used 10- and 70-kD dextrans to visualize the spatially variable, size-dependent permeability in the tumor, indicating that nano-sized dextrans can be used for characterizing tumor vascular permeability with dexCEST MRI and, potentially, for developing dextran-based theranostic drug delivery systems. Magn Reson Med 79:1001-1009, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuan Qiao
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwei Chen
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Renyuan Bai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Verena Staedtke
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zheng Han
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Nirbhay Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeff W M Bulte
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zeng F, Ju RJ, Liu L, Xie HJ, Mu LM, Lu WL. Efficacy in Treating Lung Metastasis of Invasive Breast Cancer with Functional Vincristine Plus Dasatinib Liposomes. Pharmacology 2017; 101:43-53. [DOI: 10.1159/000480737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022]
Abstract
Background: The metastasis of breast cancer is the leading cause of death, while lung metastasis is a major clinical phenomenon in patients with invasive breast cancer. The current treatment option comprising surgery, radiation, and standard chemotherapy cannot achieve a satisfactory effect on the treatment of lung metastasis of breast cancer. In this study, we report the potential of preventing lung metastasis of invasive breast cancer using the newly developed functional vincristine plus dasatinib liposomes. Methods: The investigations were performed on invasive breast cancer MDA-MB-231 cells in vitro and in lung metastatic model of invasive breast cancer MDA-MB-231 cells in nude mice. Results: The functional drug liposomes were able to induce cell cycle arrest at G2/M phase, induce apoptosis, inhibit adhesion, migration, and invasion of breast cancer cells in vitro, and prevent lung metastasis of breast cancer in nude mice. Conclusion: These findings indicate a potential clinical use of functional vincristine plus dasatinib liposomes for treating metastatic breast cancer.
Collapse
|
18
|
Kienzle A, Kurch S, Schlöder J, Berges C, Ose R, Schupp J, Tuettenberg A, Weiss H, Schultze J, Winzen S, Schinnerer M, Koynov K, Mezger M, Haass NK, Tremel W, Jonuleit H. Dendritic Mesoporous Silica Nanoparticles for pH-Stimuli-Responsive Drug Delivery of TNF-Alpha. Adv Healthc Mater 2017; 6. [PMID: 28557249 DOI: 10.1002/adhm.201700012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune stimulatory cytokine and natural endotoxin that can induce necrosis and regression in solid tumors. However, systemic administration of TNF-α is not feasible due to its short half-life and acute toxicity, preventing its widespread use in cancer treatment. Dendritic mesoporous silica nanoparticles (DMSN) are used coated with a pH-responsive block copolymer gate system combining charged hyperbranched polyethylenimine and nonionic hydrophilic polyethylenglycol to encapsulate TNF-α and deliver it into various cancer cell lines and dendritic cells. Half-maximal effective concentration (EC50 ) for loaded TNF-α is reduced by more than two orders of magnitude. Particle stability and premature cargo release are assessed with enzyme-linked immunosorbent assay. TNF-α-loaded particles are stable for up to 5 d in medium. Tumor cells are grown in vitro as 3D fluorescent ubiquitination-based cell cycle indicator spheroids that mimic in vivo tumor architecture and microenvironment, allowing real-time cell cycle imaging. DMSN penetrate these spheroids, release TNF-α from its pores, preferentially affect cells in S/G2/M phase, and induce cell death in a time- and dose-dependent manner. In conclusion, DMSN encapsulation is demonstrated, which is a promising approach to enhance delivery and efficacy of antitumor drugs, while minimizing adverse side effects.
Collapse
Affiliation(s)
- Arne Kienzle
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
- Laboratory of Adaptive and Regenerative Biology; Brigham and Women's Hospital; Harvard Medical School; 75 Francis St Boston MA 02115 USA
- The University of Queensland; The University of Queensland Diamantina Institute; Translational Research Institute; 37 Kent Street Brisbane QLD 4102 Australia
| | - Sven Kurch
- Institute for Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14, 55128 Mainz Germany
| | - Janine Schlöder
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| | - Carsten Berges
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| | - Robert Ose
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| | - Jonathan Schupp
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| | - Andrea Tuettenberg
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| | - Henning Weiss
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
| | - Svenja Winzen
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
| | - Meike Schinnerer
- Institute for Physical Chemistry; Johannes Gutenberg-University Mainz; Welder Weg 11 55099 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
| | - Markus Mezger
- Max Planck Institute for Polymer Research; Ackermannweg 10, 55128 Mainz Germany
| | - Nikolas K. Haass
- The University of Queensland; The University of Queensland Diamantina Institute; Translational Research Institute; 37 Kent Street Brisbane QLD 4102 Australia
| | - Wolfgang Tremel
- Institute for Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14, 55128 Mainz Germany
| | - Helmut Jonuleit
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University Mainz; Langenbeckstrasse 1, 55131 Mainz Germany
| |
Collapse
|
19
|
Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115:46-56. [PMID: 28433739 DOI: 10.1016/j.addr.2017.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.
Collapse
|
20
|
Zeng F, Ju RJ, Liu L, Xie HJ, Mu LM, Zhao Y, Yan Y, Hu YJ, Wu JS, Lu WL. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget 2017; 6:36625-42. [PMID: 26429872 PMCID: PMC4742200 DOI: 10.18632/oncotarget.5382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
Standard chemotherapy cannot eradicate triple-negative breast cancer (TNBC) while the residual cancer cells readily form the vasculogenic mimicry (VM) channels, which lead to the relapse of cancer after treatment. In this study, the functional vincristine plus dasatinib liposomes, modified by a targeting molecule DSPE-PEG2000-c(RGDyK), were fabricated to address this issue. The investigations were performed on TNBC MDA-MB-231 cells and MDA-MB-231 xenografts in nude mice. The liposomes exhibited the superior performances in the following aspects: the enhancement of cellular uptake via targeted action; the induction of apoptosis via activation of caspase 8, 9, and 3, increased expression of Bax, decreased expression of Mcl-1, and generation of reactive oxygen species (ROS); and the deletion of VM channels via inhibitions on the VM channel indicators, which consisted of vascular endothelial-cadherin (VE-Cad), focal adhesion kinase (FAK), phosphatidylinositide 3-kinase (PI3K), and matrix metallopeptidases (MMP-2, and MMP-9). Furthermore, the liposomes displayed the prolonged circulation time in the blood, the increased accumulation in tumor tissue, and the improved therapeutic efficacy along with deletion of VM channels in the TNBC-bearing mice. In conclusion, the nanostructured functional drug-loaded liposomes may provide a promising strategy for the treatment of invasive TNBC along with deletion of VM channels.
Collapse
Affiliation(s)
- Fan Zeng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong-Jun Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Xiong X, Arvizo RR, Saha S, Robertson DJ, McMeekin S, Bhattacharya R, Mukherjee P. Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget 2015; 5:6453-65. [PMID: 25071019 PMCID: PMC4171643 DOI: 10.18632/oncotarget.2203] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently we reported that gold nanoparticles (AuNPs) inhibit ovarian tumor growth and metastasis in mice by reversing epithelial-mesenchymal transition (EMT). Since EMT is known to confer drug resistance to cancer cells, we wanted to investigate whether anti-EMT property of AuNP could be utilized to sensitize ovarian cancer cells to cisplatin. Herein, we report that AuNPs prevent cisplatin-induced acquired chemoresistance and stemness in ovarian cancer cells and sensitize them to cisplatin. AuNPs inhibit cisplatin induced EMT, decrease the side population cells and key stem cell markers such as ALDH1, CD44, CD133, Sox2, MDR1 and ABCG2 in ovarian cancer cells. Mechanistically, AuNPs prevent cisplatin-induced activation of Akt and NF-κB signaling axis in ovarian cancer cells that are critical for EMT, stem cell maintenance and drug resistance. In vivo, AuNPs sensitize orthotopically implanted ovarian tumor to a low dose of cisplatin and significantly inhibit tumor growth via facilitated delivery of both AuNP and cisplatin. These findings suggest that by depleting stem cell pools and inhibiting key molecular pathways gold nanoparticles sensitize ovarian cancer cells to cisplatin and may be used in combination to inhibit tumor growth and metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Xunhao Xiong
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; These authors contributed equally to this work
| | - Rochelle R Arvizo
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN; These authors contributed equally to this work
| | - Sounik Saha
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - David J Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, Missouri
| | - Scott McMeekin
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
22
|
Sur S, Qiao Y, Fries A, O'Meally RN, Cole RN, Kinzler KW, Vogelstein B, Zhou S. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity. Sci Rep 2015; 5:18363. [PMID: 26678960 PMCID: PMC4683619 DOI: 10.1038/srep18363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022] Open
Abstract
Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics.
Collapse
Affiliation(s)
- Surojit Sur
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Yuan Qiao
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Anja Fries
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Kenneth W Kinzler
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| | - Shibin Zhou
- The Ludwig Center for Cancer Genetics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
23
|
Kafshdooz L, Kafshdooz T, Razban Z, Akbarzadeh A. The application of gold nanoparticles as a promising therapeutic approach in breast and ovarian cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1222-7. [DOI: 10.3109/21691401.2015.1029625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Leila Kafshdooz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taiebeh Kafshdooz
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Razban
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Chan KWY, Yu T, Qiao Y, Liu Q, Yang M, Patel H, Liu G, Kinzler KW, Vogelstein B, Bulte JWM, van Zijl PCM, Hanes J, Zhou S, McMahon MT. A diaCEST MRI approach for monitoring liposomal accumulation in tumors. J Control Release 2014; 180:51-9. [PMID: 24548481 DOI: 10.1016/j.jconrel.2014.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/30/2014] [Accepted: 02/07/2014] [Indexed: 11/28/2022]
Abstract
Nanocarrier-based chemotherapy allows preferential delivery of therapeutics to tumors and has been found to improve the efficacy of cancer treatment. However, difficulties in tracking nanocarriers and evaluating their pharmacological fates in patients have limited judicious selection of patients to those who might most benefit from nanotherapeutics. To enable the monitoring of nanocarriers in vivo, we developed MRI-traceable diamagnetic Chemical Exchange Saturation Transfer (diaCEST) liposomes. The diaCEST liposomes were based on the clinical formulation of liposomal doxorubicin (i.e. DOXIL®) and were loaded with barbituric acid (BA), a small, organic, biocompatible diaCEST contrast agent. The optimized diaCEST liposomal formulation with a BA-to-lipid ratio of 25% exhibited 30% contrast enhancement at B1=4.7μT in vitro. The contrast was stable, with ~80% of the initial CEST signal sustained over 8h in vitro. We used the diaCEST liposomes to monitor the response to tumor necrosis factor-alpha (TNF-α), an agent in clinical trials that increases vascular permeability and uptake of nanocarriers into tumors. After systemic administration of diaCEST liposomes to mice bearing CT26 tumors, we found an average diaCEST contrast at the BA frequency (5ppm) of 0.4% at B1=4.7μT while if TNF-α was co-administered the contrast increased to 1.5%. This novel approach provides a non-radioactive, non-metallic, biocompatible, semi-quantitative, and clinically translatable approach to evaluate the tumor targeting of stealth liposomes in vivo, which may enable personalized nanomedicine.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Tao Yu
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Yuan Qiao
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Qiang Liu
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Ming Yang
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Himatkumar Patel
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA
| | - Kenneth W Kinzler
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Bert Vogelstein
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA
| | - Justin Hanes
- Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore 21205, USA; Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore 21287, USA
| | - Shibin Zhou
- The Ludwig Center and Howard Hughes Medical Institute at the Hopkins-Kimmel Comprehensive Cancer Center, Baltimore 21287, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore 21205, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore 21287, USA.
| |
Collapse
|
25
|
Liu G, Bettegowda C, Qiao Y, Staedtke V, Chan KWY, Bai R, Li Y, Riggins GJ, Kinzler KW, Bulte JWM, McMahon MT, Gilad AA, Vogelstein B, Zhou S, van Zijl PCM. Noninvasive imaging of infection after treatment with tumor-homing bacteria using Chemical Exchange Saturation Transfer (CEST) MRI. Magn Reson Med 2013; 70:1690-8. [PMID: 24123389 DOI: 10.1002/mrm.24955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 08/22/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE To develop a noninvasive MRI method for determining the germination and infection of tumor-homing bacteria in bacteriolytic cancer therapy using endogenous CEST contrast. METHODS The CEST parameters of the anaerobic gram-positive bacterium Clostridium novyi-NT (C. novyi-NT) were first characterized in vitro, then used to detect C. novyi-NT germination and infection in subcutaneous CT26 colorectal tumor-bearing mice (n = 6) after injection of 300 million bacterial spores. Lipopolysacharide (LPS) injected mice were used to exclude that the changes of CEST MRI were due to inflammation. RESULTS CEST contrast was observed over a broad frequency range for bacterial suspensions in vitro, with the maximum contrast around 2.6 ppm from the water resonance. No signal could be detected for bacterial spores, demonstrating the specificity for germination. In vivo, a significant elevation of CEST contrast was identified in C. novyi-NT infected tumors as compared to those before bacterial germination and infection (P < 0.05; n = 6). No significant change was observed in tumors with LPS-induced sterile inflammation (P > 0.05; n = 4). CONCLUSION Endogenous bacterial CEST contrast (bacCEST) can be used to monitor the germination and proliferation of the therapeutic bacterium C. novyi-NT without a need for exogenous cell labeling probes.
Collapse
Affiliation(s)
- Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Baumann BC, Kao GD, Mahmud A, Harada T, Swift J, Chapman C, Xu X, Discher DE, Dorsey JF. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 2013; 4:64-79. [PMID: 23296073 PMCID: PMC3702208 DOI: 10.18632/oncotarget.777] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by >50% (p<0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.
Collapse
Affiliation(s)
- Brian C Baumann
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Relationship between circulating BAFF serum levels with proliferating markers in patients with multiple myeloma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:389579. [PMID: 23936794 PMCID: PMC3727116 DOI: 10.1155/2013/389579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/09/2013] [Accepted: 06/23/2013] [Indexed: 01/07/2023]
Abstract
In multiple myeloma, there are many factors influencing the growth of the malignant clone in direct and indirect manners. BAFF is a growth factor for myeloma cells. The aim of the study was to measure its circulating levels in 54 pretreatment patients, along with serum levels of other proliferation markers, such as interleukins-6, -10, and -15, CRP, and beta-2 microglobulin, as well as bone marrow plasma cell infiltration and expression of Ki-67 PI, in various stages of the disease and after effective treatment in 28 of them. Serum levels of the previously mentioned factors were measured by ELISA, whereas bone marrow plasma cell infiltration and Ki-67 expression were estimated immunohistochemically. All measured parameters were higher in pretreated myeloma patients compared to healthy population and were also increasing with the progression of the disease. They all also decreased after effective therapy. Furthermore, all pretreatment values correlated to each other. BAFF seems to be an important growth factor for myeloma plasma cells. Measuring its serum levels, along with the previously mentioned cytokines, may provide important information regarding the degree of myeloma cells' proliferation. Therefore, they all could be used as markers of proliferation and disease activity.
Collapse
|
28
|
Abstract
In recent years, numerous new targets have been identified and new experimental therapeutics have been developed. Importantly, existing non-cancer drugs found novel use in cancer therapy. And even more importantly, new original therapeutic strategies to increase potency, selectivity and decrease detrimental side effects have been evaluated. Here we review some recent advances in targeting cancer.
Collapse
Affiliation(s)
- Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|
29
|
Roberts NJ, Zhou S, Diaz LA, Holdhoff M. Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget 2012; 2:739-51. [PMID: 22036896 PMCID: PMC3248159 DOI: 10.18632/oncotarget.344] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) has been discussed as a potential anticancer agent for many years, however initial enthusiasm about its clinical use as a systemic agent was curbed due to significant toxicities and lack of efficacy. Combination of TNF-α with chemotherapy in the setting of hyperthermic isolated limb perfusion (ILP), has provided new insights into a potential therapeutic role of this agent. The therapeutic benefit from TNF-α in ILP is thought to be not only due to its direct anti-proliferative effect, but also due to its ability to increase penetration of the chemotherapeutic agents into the tumor tissue. New concepts for the use of TNF-α as a facilitator rather than as a direct actor are currently being explored with the goal to exploit the ability of this agent to increase drug delivery and to simultaneously reduce systemic toxicity. This review article provides a comprehensive overview on the published previous experience with systemic TNF-α. Data from 18 phase I and 10 phase II single agent as well as 18 combination therapy studies illustrate previously used treatment and dose schedules, response data as well as the most prominently observed adverse effects. Also discussed, based on recent preclinical data, is a potential future role of systemic TNF-α in combination with liposomal chemotherapy to facilitate increased drug uptake into tumors.
Collapse
Affiliation(s)
- Nicholas J Roberts
- Ludwig Center for Cancer Genetics and Therapeutics, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
30
|
Zhao M, Suetsugu A, Ma H, Zhang L, Liu F, Zhang Y, Tran B, Hoffman RM. Efficacy against lung metastasis with a tumor-targeting mutant of Salmonella typhimurium in immunocompetent mice. Cell Cycle 2012; 11:187-93. [PMID: 22186786 DOI: 10.4161/cc.11.1.18667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salmonella typhimurium double leu-arg auxotrophs have been shown to be highly effective as antitumor agents in nude mouse models of human metastatic cancer. In order to proceed to clinical development of the S. typhimurium double auxotroph, termed A1-R, it is necessary to evaluate antitumor efficacy in immunocompetent mice. In the present study, we have observed the efficacy of A1-R on the Lewis lung (LLC) carcinoma in vitro as well as in C57BL/6 (C57) immunocompetent mice. In vitro, A1-R treatment of LLC began to induce cell death within one hour. Various doses and schedules of A1-R were administered to C57 mice implanted with LLC, including bolus single intravenous injection; medium dose with weekly intravenous administration and metronomic treatment with small intravenous doses twice a week. Bolus treatment was toxic to the immunocompetent host, in contrast to nude mice. Lower-dose weekly doses and metronomic doses were well tolerated by the immunocompetent host. Weekly intravenous injection with 2 × 10(7) bacteria and twice a week intravenous injection with 10(7) bacteria significantly inhibited metastasis formation, while bolus injection was toxic. Intra-thoracic administration was carried out with 10(8) bacteria A1-R injected into Lewis lung-bearing C57 mice weekly for three weeks. Lung metastasis was significantly inhibited by intrathoracic bacterial administration, without toxicity. The results in this report, demonstrating the anti-metastatic efficacy of S. typhimurium A1-R in immunocompetent mice, indicate the clinical potential of bacterial therapy of cancer.
Collapse
Affiliation(s)
- Ming Zhao
- AntiCancer, Inc., San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Mann AP, Bhavane RC, Somasunderam A, Liz Montalvo-Ortiz B, Ghaghada KB, Volk D, Nieves-Alicea R, Suh KS, Ferrari M, Annapragada A, Gorenstein DG, Tanaka T. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2011; 2:298-304. [PMID: 21666286 PMCID: PMC3248173 DOI: 10.18632/oncotarget.261] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent developments in multi-functional nanoparticles offer a great potential for targeted delivery of therapeutic compounds and imaging contrast agents to specific cell types, in turn, enhancing therapeutic effect and minimizing side effects. Despite the promise, site specific delivery carriers have not been translated into clinical reality. In this study, we have developed long circulating liposomes with the outer surface decorated with thioated oligonucleotide aptamer (thioaptamer) against E-selectin (ESTA) and evaluated the targeting efficacy and PK parameters. In vitro targeting studies using Human Umbilical Cord Vein Endothelial Cell (HUVEC) demonstrated efficient and rapid uptake of the ESTA conjugated liposomes (ESTA-lip). In vivo, the intravenous administration of ESTA-lip resulted in their accumulation at the tumor vasculature of breast tumor xenografts without shortening the circulation half-life. The study presented here represents an exemplary use of thioaptamer for targeting and opens the door to testing various combinations of thioaptamer and nanocarriers that can be constructed to target multiple cancer types and tumor components for delivery of both therapeutics and imaging agents.
Collapse
Affiliation(s)
- Aman P Mann
- Department of Nanomedicine, University of Texas Health Science Center at Houston, 1825 Hermann Pressler, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|