1
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Kidnapillai S, Richardson MF, Gray L, Dean OM, McGee SL, Berk M, Walder K. Effects of Psychotropic Drugs on Ribosomal Genes and Protein Synthesis. Int J Mol Sci 2022; 23:ijms23137180. [PMID: 35806181 PMCID: PMC9266764 DOI: 10.3390/ijms23137180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Altered protein synthesis has been implicated in the pathophysiology of several neuropsychiatric disorders, particularly schizophrenia. Ribosomes are the machinery responsible for protein synthesis. However, there remains little information on whether current psychotropic drugs affect ribosomes and contribute to their therapeutic effects. We treated human neuronal-like (NT2-N) cells with amisulpride (10 µM), aripiprazole (0.1 µM), clozapine (10 µM), lamotrigine (50 µM), lithium (2.5 mM), quetiapine (50 µM), risperidone (0.1 µM), valproate (0.5 mM) or vehicle control for 24 h. Transcriptomic and gene set enrichment analysis (GSEA) identified that the ribosomal pathway was altered by these drugs. We found that three of the eight drugs tested significantly decreased ribosomal gene expression, whilst one increased it. Most changes were observed in the components of cytosolic ribosomes and not mitochondrial ribosomes. Protein synthesis assays revealed that aripiprazole, clozapine and lithium all decreased protein synthesis. Several currently prescribed psychotropic drugs seem to impact ribosomal gene expression and protein synthesis. This suggests the possibility of using protein synthesis inhibitors as novel therapeutic agents for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zoe S. J. Liu
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Trang T. T. Truong
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Chiara C. Bortolasci
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Briana Spolding
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Bruna Panizzutti
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Courtney Swinton
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Jee Hyun Kim
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Srisaiyini Kidnapillai
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Mark F. Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Australia;
| | - Laura Gray
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Olivia M. Dean
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Sean L. McGee
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia
| | - Ken Walder
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong 3220, Australia; (Z.S.J.L.); (T.T.T.T.); (C.C.B.); (B.S.); (B.P.); (C.S.); (J.H.K.); (S.K.); (L.G.); (O.M.D.); (S.L.M.); (M.B.)
- Correspondence:
| |
Collapse
|
2
|
Heo HJ, Park SY, Lee YS, Shin HK, Hong KW, Kim CD. Combination therapy with cilostazol, aripiprazole, and donepezil protects neuronal cells from β-amyloid neurotoxicity through synergistically enhanced SIRT1 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:299-310. [PMID: 32587124 PMCID: PMC7317180 DOI: 10.4196/kjpp.2020.24.4.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aβ accumulation, GSK-3β, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased β-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, β-catenin and a7-nicotinic cholinergic receptors in neuronal cells in the presence of Aβ1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.
Collapse
Affiliation(s)
- Hye Jin Heo
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - So Youn Park
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Yi Sle Lee
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, Pusan National University School of Korean Medicine, Yangsan 50612, Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, Pusan National University School of Medicine, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
3
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
4
|
Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 2020; 27:18. [PMID: 31906949 PMCID: PMC6943903 DOI: 10.1186/s12929-019-0609-7] [Citation(s) in RCA: 396] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer disease (AD) accounts for 60-70% of dementia cases. Given the seriousness of the disease and continual increase in patient numbers, developing effective therapies to treat AD has become urgent. Presently, the drugs available for AD treatment, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate receptor, can only inhibit dementia symptoms for a limited period of time but cannot stop or reverse disease progression. On the basis of the amyloid hypothesis, many global drug companies have conducted many clinical trials on amyloid clearing therapy but without success. Thus, the amyloid hypothesis may not be completely feasible. The number of anti-amyloid trials decreased in 2019, which might be a turning point. An in-depth and comprehensive understanding of the contribution of amyloid beta and other factors of AD is crucial for developing novel pharmacotherapies.In ongoing clinical trials, researchers have developed and are testing several possible interventions aimed at various targets, including anti-amyloid and anti-tau interventions, neurotransmitter modification, anti-neuroinflammation and neuroprotection interventions, and cognitive enhancement, and interventions to relieve behavioral psychological symptoms. In this article, we present the current state of clinical trials for AD at clinicaltrials.gov. We reviewed the underlying mechanisms of these trials, tried to understand the reason why prior clinical trials failed, and analyzed the future trend of AD clinical trials.
Collapse
Affiliation(s)
- Li-Kai Huang
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan
| | - Shu-Ping Chao
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chaur-Jong Hu
- Dementia Center, Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, National Health Research Institute, Taipei, Taiwan.
- Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Lee YS, Park SY, Heo HJ, Lee WS, Hong KW, Kim CD. Multitarget-directed cotreatment with cilostazol and aripiprazole for augmented neuroprotection against oxidative stress-induced toxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 2019; 857:172454. [PMID: 31202803 DOI: 10.1016/j.ejphar.2019.172454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
Cerebrovascular dysfunction is crucially associated with cognitive impairment and a high prevalence of psychotic symptoms in the vascular dementia characterized by oxidative stress and multifactorial neurodegeneration. In this study, the significant decrease in BDNF expression in HT22 cells due to H2O2 (0.25 mM) was little affected by either aripiprazole (1 μM) or cilostazol (1 μM) alone, but significantly increased by cotreatment with both drugs. Even in the presence of H2O2, P-CK2α (Tyr 255), nuclear P-CREB (Ser 133), and nuclear P-β-catenin (Ser 675) levels were significantly increased in a synergistic manner by aripiprazole plus cilostazol cotreatment. Aripiprazole and cilostazol cotreatment synergistically increased P-GSK-3β (Ser 9) level. Nrf2/HO-1 expression was significantly elevated time- and concentration-dependently by either aripiprazole or cilostazol. In line with these, concurrent treatment with aripiprazole (1 μM) plus cilostazol (1 μM) significantly increased Nrf2 and HO-1 expression in a synergistic manner, accompanying with increased ARE luciferase activity, while each drug monotherapy showed little effects. Consequently, this cotreatment synergistically ameliorated the attenuated neurite outgrowth induced by H2O2 in the HT22 cells, and these were inhibited by K252A (inhibitor of BDNF receptor), TBCA (CK2 inhibitor), imatinib (β-catenin inhibitor) and ZnPP (inhibitor of HO-1), indicating that BDNF, P-CK2α, β-catenin and HO-1 activation are implicated in the enhanced neurite outgrowth. This study highlights that cotreatment with low concentrations of aripiprazole and cilostazol synergistically elicits neuroprotective effects by overcoming oxidative stress-evoked neurotoxicity associated with increased neurite outgrowth, providing a rationale for the use of this combinatorial treatment in vascular dementia.
Collapse
Affiliation(s)
- Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
6
|
Park SY, Kim HY, Lee YS, Heo HJ, Shin HK, Lee WS, Hong KW, Kim CD. Augmented improvement of cognition and memory by aripiprazole add-on for cilostazol treatment in the chronic cerebral hypoperfusion mouse model. Behav Brain Res 2019; 365:133-140. [PMID: 30851315 DOI: 10.1016/j.bbr.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/27/2022]
Abstract
Cerebrovascular dysfunction is associated with cognitive impairment in vascular dementia patients. This study aimed to explore augmented improvement of cognition and memory by aripiprazole add-on for cilostazol treatment in vascular dementia model. Male C57BL/6 mice were subjected to BCAS, and spatial probe and memory retention were examined using the Morris water maze (MWM) test. In the present study, the escape latency on the first day after 3rd week was 21.4 ± 4.0 s in sham-operated mice, and 76.3 ± 4.2 s in the vehicle-treated BCAS mice. In the spatial probe tests in the 3rd week, aripiprazole (1 mg/kg/day) showed time-dependently amelioration in spatial learning and memory impairments in contrast to 0.5 mg/kg/day. After treatment with 20 mg/kg/day of cilostazol for 3 weeks, the escape latency significantly decreased to 26.6 ± 5.8 s on the first day and further shortened to 21.6 ± 6.8 s on the fourth day. When the BCAS mice were concurrently treated with 0.5 mg/kg/day aripiprazole plus 20 mg/kg/day of cilostazol for 3 weeks, the escape latency was more shortened from 20.4 ± 1.2 s (1st day) to 14.9 ± 1.7 s on the 4th day of the 3-week trials. Furthermore, decreased spatial memory retention in BCAS mice was significantly alleviated by aripiprazole plus cilostazol cotreatment, indicating the benefit of aripiprazole add-on therapy. In line with these, significantly increased mBDNF and P-CREB levels and reduced apoptosis were identified in the BCAS mouse brain dentate gyrus by cotreatment as contrasted to each monotherapy. These results may provide the synergistic therapeutic avenues for augmented improvement of cognition and memory by cotreatment with aripiprazole plus cilostazol in cases of vascular dementia.
Collapse
Affiliation(s)
- So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hae Young Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Yi Sle Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hye Jin Heo
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Won Suk Lee
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Ki Whan Hong
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongsangnam-do, Republic of Korea; Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
7
|
Wang Y, Jia A, Ma W. Dexmedetomidine attenuates the toxicity of β‑amyloid on neurons and astrocytes by increasing BDNF production under the regulation of HDAC2 and HDAC5. Mol Med Rep 2018; 19:533-540. [PMID: 30483749 DOI: 10.3892/mmr.2018.9694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Cytotoxicity of β-Amyloid (Aβ) is a major contributor to the pathogenesis of Alzheimer's disease. Dexmedetomidine (Dex) has been revealed to have multiple neuroprotective actions as a clinical anesthetic agent. The aim of the present study was to investigate the protection of Dex against Aβ in neurons and astrocytes, and the possible protective mechanisms. Primary neurons and astrocytes were isolated respectively from the hippocampus and cerebral cortex of neonatal Sprague Dawley rats. The neurons and astrocytes were incubated with Aβ in the presence or absence of Dex, which was followed by evaluation of the cell viability and apoptosis. Reverse transcription‑quantitative polymerase chain reaction, western blotting and ELISA assays were performed to assess the levels of specific genes or proteins. The results revealed that Aβ decreased the viabilities of neurons and astrocytes in a dose‑dependent manner, and elevated the rate of apoptosis. However, Dex attenuated the detrimental effects of Aβ. Aβ caused deacetylation of histone H3 by promoting the accumulation of histone deacetylase (HDAC)‑2 and HDAC5 in the cell nucleus, resulting in the reduced production of brain‑derived neurotrophic factor (BDNF). However, Dex reversed the Aβ‑induced deacetylation of histone H3 and thus, increased BDNF production. Using a HDAC inhibitor or recombinant BDNF protein also protected the neurons and astrocytes against Aβ cytotoxicity. These results suggested that the protective effect of Dex against Aβ is particularly relevant to BDNF. Thus, the present study provides a foundation for the further study of Dex protection against Aβ in animal models and pre‑clinical researches.
Collapse
Affiliation(s)
- Yueling Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Aijun Jia
- Department of Respiratory Medicine and Intensive Care Unit, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Wenjuan Ma
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|