1
|
Fu X, Wu H, Li C, Deng G, Chen C. YAP1 inhibits RSL3-induced castration-resistant prostate cancer cell ferroptosis by driving glutamine uptake and metabolism to GSH. Mol Cell Biochem 2024; 479:2415-2427. [PMID: 37773303 PMCID: PMC11371892 DOI: 10.1007/s11010-023-04847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
High levels of YAP1 and ferroptosis activation in castration-resistant prostate cancer (CRPC) can inhibit CRPC progression and improve its sensitivity toward chemotherapeutics drugs. However, whether YAP1 regulates ferroptosis in CRPC cells and the underlying mechanisms are unknown. The protein levels of YAP1, SLC1A5, and GLS1 in benign prostatic hyperplasia (BPH), prostate cancer (PCa) that did not progress to CRPC, and CRPC tissue samples were evaluated using western blotting. In PC-3 and DU-145 cells, YAP1 overexpression vector, small-interfering RNA, specific inhibitor verteporfin, ferroptosis-inducer RSL3, SLC1A5-inhibitor V-9302, and GLS1-inhibitor CB-839 were used. Immunofluorescence, flow cytometry, dual-luciferase reporter gene, and related kits were used to investigate the effect of YAP1 on the ferroptosis activity in CRPC cells and its underlying mechanisms. YAP1 promoted extracellular glutamine uptake and subsequent production of glutamate and glutathione (GSH), and increases the GPX4 activity. For the activation of ferroptosis by RSL3, YAP1 decreased the levels of reactive oxygen species, malondialdehyde, and lipid peroxidation, and the proportion of dead cells. Mechanistically, YAP1 promoted the expression of SCL1A5 and GLS1 and further increased the GSH levels and GPX4 activity. Thus, inhibiting SLC1A5 or GLS1 activity could alleviate the antagonistic effect of YAP1 on the ferroptosis of RSL3-induced CRPC cells. In CRPC, the YAP1 level is high, which enters the nucleus and promotes the expressions of SLC1A5 and GLS1, thereby promoting cellular glutamine uptake and metabolism to generate glutamate and further synthesizing GSH, increasing GPX4 activity, improving cellular antioxidant capacity, and inhibiting cell death.
Collapse
Affiliation(s)
- Xian Fu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongshen Wu
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changjiu Li
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Guo J, Liang J, Wang Y, Guo T, Liao Y, Zhong B, Guo S, Cao Q, Li J, Flores-Morales A, Niu Y, Jiang N. TNIK drives castration-resistant prostate cancer via phosphorylating EGFR. iScience 2024; 27:108713. [PMID: 38226156 PMCID: PMC10788198 DOI: 10.1016/j.isci.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
The development of castration-resistant prostate cancer (CRPC) is driven by intricate genetic and epigenetic mechanisms. Traf2- and Nck-interacting kinase (TNIK) has been reported as a serine/threonine kinase associated with tumor cell proliferation or unfavorable cancer behavior. The microarray approach revealed a substantial upregulation of TNIK expression levels, enabling us to investigate the functional behaviors of the TNIK gene in CRPC. Specifically, we discovered that AR suppresses TNIK gene transcription in LNCaP and C4-2 cells by forming a complex with H3K27me3. Following the reduction of AR levels induced by androgen deprivation therapy (ADT), TNIK is recruited to activate EGFR signaling through phosphorylation in C4-2 cells, thereby promoting CRPC progression. Our findings unveil a regulatory role of AR as a repressor for TNIK while also highlighting how TNIK activates the EGFR pathway via phosphorylation to drive CRPC progression. Consequently, targeting TNIK may represent an appealing therapeutic strategy for CRPC.
Collapse
Affiliation(s)
- Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Youzhi Wang
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tao Guo
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yihao Liao
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Boqiang Zhong
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Shuyue Guo
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Amilcar Flores-Morales
- Department of Drug Design and Pharmacology, Københavns Universitet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology. The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
3
|
Salem O, Jia S, Qian BZ, Hansen CG. AR activates YAP/TAZ differentially in prostate cancer. Life Sci Alliance 2023; 6:e202201620. [PMID: 37385752 PMCID: PMC10310930 DOI: 10.26508/lsa.202201620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The Hippo signalling pathway is a master regulator of cell growth, proliferation, and cancer. The transcriptional coregulators of the Hippo pathway, YAP and TAZ, are central in various cancers. However, how YAP and TAZ get activated in most types of cancers is not well understood. Here, we show that androgens activate YAP/TAZ via the androgen receptor (AR) in prostate cancer (PCa), and that this activation is differential. AR regulates YAP translation while inducing transcription of the TAZ encoding gene, WWTR1 Furthermore, we show that AR-mediated YAP/TAZ activation is regulated by the RhoA GTPases transcriptional mediator, serum response factor (SRF). Importantly, in prostate cancer patients, SRF expression positively correlates with TAZ and the YAP/TAZ target genes CYR61 and CTGF We demonstrate that YAP/TAZ are not essential for sustaining AR activity, however, targeting YAP/TAZ or SRF sensitize PCa cells to AR inhibition in anchorage-independent growth conditions. Our findings dissect the cellular roles of YAP, TAZ, and SRF in prostate cancer cells. Our data emphasize the interplay between these transcriptional regulators and their roles in prostate tumorigenesis and highlight how these insights might be exploited therapeutically.
Collapse
Affiliation(s)
- Omar Salem
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Siyang Jia
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Bin-Zhi Qian
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Carsten Gram Hansen
- The University of Edinburgh, Centre for Inflammation Research, Edinburgh BioQuarter, Edinburgh, UK
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| |
Collapse
|
4
|
Wang K, Ma F, Arai S, Wang Y, Varkaris A, Poluben L, Voznesensky O, Xie F, Zhang X, Yuan X, Balk SP. WNT5a Signaling through ROR2 Activates the Hippo Pathway to Suppress YAP1 Activity and Tumor Growth. Cancer Res 2023; 83:1016-1030. [PMID: 36622276 PMCID: PMC10073315 DOI: 10.1158/0008-5472.can-22-3003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Noncanonical Wnt signaling by WNT5a has oncogenic and tumor suppressive activities, but downstream pathways mediating these specific effects remain to be fully established. In a subset of prostate cancer organoid culture and xenograft models, inhibition of Wnt synthesis stimulated growth, whereas WNT5a or a WNT5a mimetic peptide (Foxy5) markedly suppressed tumor growth. WNT5a caused a ROR2-dependent decrease in YAP1 activity, which was associated with increased phosphorylation of MST1/2, LATS1, MOB1, and YAP1, indicating Hippo pathway activation. Deletion of MST1/2 abrogated the WNT5a response. WNT5a similarly activated Hippo in ROR2-expressing melanoma cells, whereas WNT5a in ROR2-negative cells suppressed Hippo. This suppression was associated with increased inhibitory phosphorylation of NF2/Merlin that was not observed in ROR2-expressing cells. WNT5a also increased mRNA encoding Hippo pathway components including MST1 and MST2 and was positively correlated with these components in prostate cancer clinical datasets. Conversely, ROR2 and WNT5a expression was stimulated by YAP1, and correlated with increased YAP1 activity in clinical datasets, revealing a WNT5a/ROR2 negative feedback loop to modulate YAP1 activity. Together these findings identify Hippo pathway activation as a mechanism that mediates the tumor suppressive effects of WNT5a and indicate that expression of ROR2 may be a predictive biomarker for responsiveness to WNT5a-mimetic drugs. SIGNIFICANCE WNT5a signaling through ROR2 activates the Hippo pathway to downregulate YAP1/TAZ activity and suppress tumor growth, identifying ROR2 as a potential biomarker to identify patients that could benefit from WNT5a-related agents.
Collapse
Affiliation(s)
- Keshan Wang
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Ma
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Seiji Arai
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Yun Wang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, PR, China
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Larysa Poluben
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Olga Voznesensky
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Fang Xie
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin Yuan
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
5
|
Zhu S, Yang Z, Zhang Z, Zhang H, Li S, Wu T, Chen X, Guo J, Wang A, Tian H, Yu J, Zhang C, Su L, Shang Z, Quan C, Niu Y. HOXB3 drives WNT-activation associated progression in castration-resistant prostate cancer. Cell Death Dis 2023; 14:215. [PMID: 36973255 PMCID: PMC10042887 DOI: 10.1038/s41419-023-05742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Enabled resistance or innate insensitiveness to antiandrogen are lethal for castration-resistant prostate cancer (CRPC). Unfortunately, there seems to be little can be done to overcome the antiandrogen resistance because of the largely unknown mechanisms. In prospective cohort study, we found that HOXB3 protein level was an independent risk factor of PSA progression and death in patients with metastatic CRPC. In vivo, upregulated HOXB3 contributed to CRPC xenografts progression and abiraterone resistance. To uncover the mechanism of HOXB3 driving tumor progression, we performed RNA-sequencing in HOXB3 negative (HOXB3-) and HOXB3 high (HOXB3 + ) staining CRPC tumors and determined that HOXB3 activation was associated with the expression of WNT3A and enriched WNT pathway genes. Furthermore, extra WNT3A and APC deficiency led HOXB3 to be isolated from destruction-complex, translocated to nuclei, and then transcriptionally regulated multiple WNT pathway genes. What's more, we also observed that the suppression of HOXB3 could reduce cell proliferation in APC-downregulated CRPC cells and sensitize APC-deficient CRPC xenografts to abiraterone again. Together, our data indicated that HOXB3 served as a downstream transcription factor of WNT pathway and defined a subgroup of CRPC resistant to antiandrogen which would benefit from HOXB3-targeted therapy.
Collapse
Affiliation(s)
- Shimiao Zhu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Zhao Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Zheng Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Hongli Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Songyang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xuanrong Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Jianing Guo
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Aixiang Wang
- Institute of Urology, Peking University; National Urological Cancer Center, Beijing, China
| | - Hao Tian
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Jianpeng Yu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China
| | - Lei Su
- Department of Urology, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| | - Changyi Quan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Meidical University, Tianjin, 300211, China.
| |
Collapse
|
6
|
Moline DC, Zenner ML, Burr A, Vellky JE, Nonn L, Vander Griend DJ. Single-cell RNA-Seq identifies factors necessary for the regenerative phenotype of prostate luminal epithelial progenitors. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:425-439. [PMID: 36636696 PMCID: PMC9831919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Benign prostate hyperplasia and prostate cancer are common diseases that involve the overgrowth of prostatic tissue. Although their pathologies and symptoms differ, both diseases show aberrant activation of prostate progenitor cell phenotypes in a tissue that should be relatively quiescent. This phenomenon prompts a need to better define the normal prostate progenitor cell phenotype and pursue the discovery of causal networks that could yield druggable targets to combat hyperplastic prostate diseases. We used single-cell (sc) RNA-Seq analysis to confirm the identity of a luminal progenitor cell population in both the hormonally intact and castrated mouse prostate. Using marker genes from our scRNA-Seq analysis, we identified factors necessary for the regeneration phenotype of prostate organoids derived from mice and humans in vitro. These data outline potential factors necessary for prostate regeneration and utilization of scRNA-Seq approaches for the identification of pharmacologic strategies targeting critical cell populations that drive prostate disease.
Collapse
Affiliation(s)
- Daniel C Moline
- Committee on Development, Regeneration, and Stem Cell Biology (DRSB), The University of ChicagoChicago, IL 60612, USA
| | - Morgan L Zenner
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Alex Burr
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Jordan E Vellky
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | | |
Collapse
|
7
|
Koinis F, Chantzara E, Samarinas M, Xagara A, Kratiras Z, Leontopoulou V, Kotsakis A. Emerging Role of YAP and the Hippo Pathway in Prostate Cancer. Biomedicines 2022; 10:2834. [PMID: 36359354 PMCID: PMC9687800 DOI: 10.3390/biomedicines10112834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
The Hippo pathway regulates and contributes to several hallmarks of prostate cancer (PCa). Although the elucidation of YAP function in PCa is in its infancy, emerging studies have shed light on the role of aberrant Hippo pathway signaling in PCa development and progression. YAP overexpression and nuclear localization has been linked to poor prognosis and resistance to treatment, highlighting a therapeutic potential that may suggest innovative strategies to treat cancer. This review aimed to summarize available data on the biological function of the dysregulated Hippo pathway in PCa and identify knowledge gaps that need to be addressed for optimizing the development of YAP-targeted treatment strategies in patients likely to benefit.
Collapse
Affiliation(s)
- Filippos Koinis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Evangelia Chantzara
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
| | - Michael Samarinas
- Department of Urology, General Hospital “Koutlibanio”, 41221 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| | - Zisis Kratiras
- 3rd Urology Department University of Athens, “Attikon” University General Hospital, 12462 Chaidari, Greece
| | - Vasiliki Leontopoulou
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, 41221 Larissa, Greece
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
8
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
9
|
Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, Gregory A. The Hippo pathway: an emerging role in urologic cancers. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:301-317. [PMID: 34541029 PMCID: PMC8446764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The Hippo pathway controls several biological processes, including cell growth, differentiation, motility, stemness, cell contact, immune cell maturation, organ size, and tumorigenesis. The Hippo pathway core kinases MST1/2 and LATS1/2 in mammals phosphorylate and inactivate YAP1 signaling. Increasing evidence indicates that loss of MST1/2 and LATS1/2 function is linked to the biology of many cancer types with poorer outcomes, likely due to the activation of oncogenic YAP1/TEAD signaling. Therefore, there is a renewed interest in blocking the YAP1/TEAD functions to prevent cancer growth. This review introduces the Hippo pathway components and examines their role and therapeutic potentials in prostate, kidney, and bladder cancer.
Collapse
Affiliation(s)
- Bekir Cinar
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Esma Alp
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Marwah Al-Mathkour
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Ava Boston
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Abdulrahman Dwead
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Kezhan Khazaw
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| | - Alexis Gregory
- The Center for Cancer Research and Therapeutic Development, Department of Biological Sciences, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
10
|
Lee AWT, Ng JKW, Liao J, Luk AC, Suen AHC, Chan TTH, Cheung MY, Chu HT, Tang NLS, Zhao MP, Lian Q, Chan WY, Chan DYL, Leung TY, Chow KL, Wang W, Wang LH, Chen NCH, Yang WJ, Huang JY, Li TC, Lee TL. Single-cell RNA sequencing identifies molecular targets associated with poor in vitro maturation performance of oocytes collected from ovarian stimulation. Hum Reprod 2021; 36:1907-1921. [PMID: 34052851 DOI: 10.1093/humrep/deab100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What is the transcriptome signature associated with poor performance of rescue IVM (rIVM) oocytes and how can we rejuvenate them? SUMMARY ANSWER The GATA-1/CREB1/WNT signalling axis was repressed in rIVM oocytes, particularly those of poor quality; restoration of this axis may produce more usable rIVM oocytes. WHAT IS KNOWN ALREADY rIVM aims to produce mature oocytes (MII) for IVF through IVM of immature oocytes collected from stimulated ovaries. It is not popular due to limited success rate in infertility treatment. Genetic aberrations, cellular stress and the absence of cumulus cell support in oocytes could account for the failure of rIVM. STUDY DESIGN, SIZE, DURATION We applied single-cell RNA sequencing (scRNA-seq) to capture the transcriptomes of human in vivo oocytes (IVO) (n = 10) from 7 donors and rIVM oocytes (n = 10) from 10 donors. The effects of maternal age and ovarian responses on rIVM oocyte transcriptomes were also studied. In parallel, we studied the effect of gallic acid on the maturation rate of mouse oocytes cultured in IVM medium with (n = 84) and without (n = 85) gallic acid. PARTICIPANTS/MATERIALS, SETTING, METHODS Human oocytes were collected from donors aged 28-41 years with a body mass index of <30. RNA extraction, cDNA generation, library construction and sequencing were performed in one preparation. scRNA-seq data were then processed and analysed. Selected genes in the rIVM versus IVO comparison were validated by quantitative real-time PCR. For the gallic acid study, we collected immature oocytes from 5-month-old mice and studied the effect of 10-μM gallic acid on their maturation rate. MAIN RESULTS AND THE ROLE OF CHANCE The transcriptome profiles of rIVM/IVO oocytes showed distinctive differences. A total of 1559 differentially expressed genes (DEGs, genes with at least 2-fold change and adjusted P < 0.05) were found to be enriched in metabolic processes, biosynthesis and oxidative phosphorylation. Among these DEGs, we identified a repression of WNT/β-catenin signalling in rIVM when compared with IVO oocytes. We found that oestradiol levels exhibited a significant age-independent correlation with the IVO mature oocyte ratio (MII ratio) for each donor. rIVM oocytes from women with a high MII ratio were found to have over-represented cellular processes such as anti-apoptosis. To further identify targets that contribute to the poor clinical outcomes of rIVM, we compared oocytes collected from young donors with a high MII ratio with oocytes from donors of advanced maternal age and lower MII ratio, and revealed that CREB1 is an important regulator. Thus, our study identified that GATA-1/CREB1/WNT signalling was repressed in both rIVM oocytes versus IVO oocytes and in rIVM oocytes of lower versus higher quality. Consequently we investigated gallic acid, as a potential antioxidant substrate in human rIVM medium, and found that it increased the mouse oocyte maturation rate by 31.1%. LARGE SCALE DATA Raw data from this study can be accessed through GSE158539. LIMITATIONS, REASONS FOR CAUTION In the rIVM oocytes of the high- and low-quality comparison, the number of samples was limited after data filtering with stringent selection criteria. For the oocyte stage identification, we were unable to predict the presence of oocyte spindle, so polar body extrusion was the only indicator. WIDER IMPLICATIONS OF THE FINDINGS This study showed that GATA-1/CREB1/WNT signalling was repressed in rIVM oocytes compared with IVO oocytes and was further downregulated in low-quality rIVM oocytes, providing us the foundation of subsequent follow-up research on human oocytes and raising safety concerns about the clinical use of rescued oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Collaborative Research Fund, Research Grants Council, C4054-16G, and Research Committee Funding (Research Sustainability of Major RGC Funding Schemes), The Chinese University of Hong Kong. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A W T Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J K W Ng
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A C Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A H C Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T T H Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M Y Cheung
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - H T Chu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - N L S Tang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M P Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Q Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Y Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - D Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T Y Leung
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - K L Chow
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, PR China.,Division of Life Science, Hong Kong University of Science and Technology, Shatin, N.T., Hong Kong SAR, PR China
| | - W Wang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - L H Wang
- Institute of Molecular and Cellular Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - N C H Chen
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - W J Yang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - J Y Huang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - T C Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T L Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| |
Collapse
|
11
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
12
|
Lee HC, Ou CH, Huang YC, Hou PC, Creighton CJ, Lin YS, Hu CY, Lin SC. YAP1 overexpression contributes to the development of enzalutamide resistance by induction of cancer stemness and lipid metabolism in prostate cancer. Oncogene 2021; 40:2407-2421. [PMID: 33664454 PMCID: PMC8016667 DOI: 10.1038/s41388-021-01718-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a malignant and lethal disease caused by relapse after androgen-deprivation (ADT) therapy. Since enzalutamide is innovated and approved by US FDA as a new treatment option for mCRPC patients, drug resistance for enzalutamide is a critical issue during clinical usage. Although several underlying mechanisms causing enzalutamide resistance were previously identified, most of them revealed that drug resistant cells are still highly addicted to androgen and AR functions. Due to the numerous physical functions of AR in men, innovated AR-independent therapy might alleviate enzalutamide resistance and prevent production of adverse side effects. Here, we have identified that yes-associated protein 1 (YAP1) is overexpressed in enzalutamide-resistant (EnzaR) cells. Furthermore, enzalutamide-induced YAP1 expression is mediated through the function of chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII) at the transcriptional and the post-transcriptional levels. Functional analyses reveal that YAP1 positively regulates numerous genes related to cancer stemness and lipid metabolism and interacts with COUP-TFII to form a transcriptional complex. More importantly, YAP1 inhibitor attenuates the growth and cancer stemness of EnzaR cells in vitro and in vivo. Finally, YAP1, COUP-TFII, and miR-21 are detected in the extracellular vesicles (EVs) isolated from EnzaR cells and sera of patients. In addition, treatment with EnzaR-EVs induces the abilities of cancer stemness, lipid metabolism and enzalutamide resistance in its parental cells. Taken together, these results suggest that YAP1 might be a crucial factor involved in the development of enzalutamide resistance and can be an alternative therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Hsiu-Chi Lee
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hui Ou
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Chen Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chi Hou
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX, USA
| | - Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Che-Yuan Hu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
14
|
Fusco P, Mattiuzzo E, Frasson C, Viola G, Cimetta E, Esposito MR, Tonini GP. Verteporfin induces apoptosis and reduces the stem cell-like properties in Neuroblastoma tumour-initiating cells through inhibition of the YAP/TAZ pathway. Eur J Pharmacol 2020; 893:173829. [PMID: 33347823 DOI: 10.1016/j.ejphar.2020.173829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is an embryonal malignancy of early childhood arising from the embryonic sympatho-adrenal lineage of the neural crest. About half of all cases are currently classified as high-risk of disease recurrence, with an overall survival rate of less than 40% at 5 years despite intensive therapy. Recent studies on matched primary tumours and at the relapse revealed downregulation of genes transcriptionally silenced by YAP as significant association with neuroblastoma relapse. Here, we evaluated the pharmacological targeting of YAP/TAZ with the YAP/TAZ-TEAD inhibitor Verteporfin (VP) in Tumour Initiating Cells (TICs) derived from High-Risk Neuroblastoma patients. VP treatment suppresses YAP/TAZ expression, induces apoptosis and causes the re-organization of the cytoskeleton reducing cells migration and clonogenic ability. Moreover, VP reduces the percentage of side population cells and ABC transporters involved in drug resistance, and the percentage of stem cell subpopulations CD133+ and CD44+ of TICs. Finally, we demonstrated that VP sensitizes TICs to the standard drugs used for neuroblastoma therapy etoposide and cis-platin opening the way to use VP as drug repositioning candidate for recurrent neuroblastoma.
Collapse
Affiliation(s)
- Pina Fusco
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Elena Mattiuzzo
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Italy.
| | - Elisa Cimetta
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padova, Italy; University of Padua, Department of Industrial Engineering (DII), Via Marzolo 9, 35131, Padova, Italy.
| | - Maria Rosaria Esposito
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Gian Paolo Tonini
- Fondazione Istituto di Ricerca Pediatrica Città Della Speranza (IRP) - Neuroblastoma Laboratory, Corso Stati Uniti 4, 35127, Padova, Italy
| |
Collapse
|
15
|
Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:213. [PMID: 33032653 PMCID: PMC7545949 DOI: 10.1186/s13046-020-01723-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the introduction of several novel therapeutic approaches that improved survival, metastatic castration-resistant prostate cancer (mCRPC) remains an incurable disease. Herein we report the synergistic antitumor interaction between two well-known drugs used for years in clinical practice, the antiepileptic agent with histone deacetylase inhibitory activity valproic acid and the cholesterol lowering agent simvastatin, in mCRPC models. METHODS Synergistic anti-tumor effect was assessed on PC3, 22Rv1, DU145, DU145R80, LNCaP prostate cancer cell lines and EPN normal prostate epithelial cells, by calculating combination index (CI), caspase 3/7 activation and colony formation assays as well as on tumor spheroids and microtissues scored with luminescence 3D-cell viability assay. Cancer stem cells (CSC) compartment was studied evaluating specific markers by RT-PCR, western blotting and flow cytometry as well as by limiting dilution assay. Cholesterol content was evaluated by 1H-NMR. Overexpression of wild-type YAP and constitutively active YAP5SA were obtained by lipofectamine-based transfection and evaluated by immunofluorescence, western blotting and RT-PCR. 22Rv1 R_39 docetaxel resistant cells were selected by stepwise exposure to increasing drug concentrations. In vivo experiments were performed on xenograft models of DU145R80, 22Rv1 parental and docetaxel resistant cells, in athymic mice. RESULTS We demonstrated the capacity of the combined approach to target CSC compartment by a novel molecular mechanism based on the inhibition of YAP oncogene via concurrent modulation of mevalonate pathway and AMPK. Because both CSCs and YAP activation have been associated with chemo-resistance, we tested if the combined approach can potentiate docetaxel, a standard of care in mCRCP treatment. Indeed, we demonstrated, both in vitro and in vivo models, the ability of valproic acid/simvastatin combination to sensitize mCRPC cells to docetaxel and to revert docetaxel-resistance, by mevalonate pathway/YAP axis modulation. CONCLUSION Overall, mCRPC progression and therapeutic resistance driven by CSCs via YAP, can be tackled by the combined repurposing of two generic and safe drugs, an approach that warrants further clinical development in this disease.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Simona De Rienzo
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Angela Sorice
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Susan Costantini
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy. .,Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via Ammiraglio Bianco, 83013, Mercogliano, AV, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
16
|
Samy ALPA, Bakthavachalam V, Vudutha M, Vinjamuri S, Chinnapaka S, Munirathinam G. Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis. Toxicol Appl Pharmacol 2020; 401:115071. [PMID: 32454055 PMCID: PMC7716802 DOI: 10.1016/j.taap.2020.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Prostate Cancer (PCa) is the second most common cancer among men in United States after skin cancer. Conventional chemotherapeutic drugs available for PCa treatment are limited due to toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatment for advanced PCa. In this current study, we focused on evaluating the anti-cancer efficacy of Eprinomectin (EP), a novel avermectin analog against PC3 metastatic PCa cells. EP displayed robust inhibition of cell viability of PC3 cells in addition to suppressing the colony formation and wound healing capabilities. Our study showed that EP targets PC3 cells via inducing ROS and apoptosis activation. EP treatment enforces cell cycle arrest at G0/G1 phase via targeting cyclin-dependent kinase 4 (CDK4) and subsequent induction of apoptosis in PC3 cells. At the molecular level, EP effectively inhibited the expression of various cancer stem cell markers such as ALDH1, Sox-2, Nanog, Oct3/4 and CD44. Interestingly, EP also inhibited the activity of alkaline phosphatase, a maker of pluripotent stem cells. Of note, EP treatment resulted in the translocation of β-catenin from the nucleus to the cytoplasm indicating that EP antagonizes Wnt/β-catenin signaling pathway. Western blotting analysis revealed that EP downregulated the expression of key cell cycle markers such as cyclin D1, cyclin D3, CDK4, and c-Myc. In addition, EP inhibited the anti-apoptotic markers such as Mcl-1, XIAP, c-IAP1 and survivin in PC3 cells. On the other hand, EP treatment resulted in the activation of pH2A.X, Bad, caspase-9, caspase-3 and cleavage of PARP1. Taken together, our data suggests that EP is a potential agent to treat advanced PCa cells via modulating apoptosis signaling.
Collapse
Affiliation(s)
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Mona Vudutha
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Smita Vinjamuri
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America.
| |
Collapse
|
17
|
Cheng S, Prieto-Dominguez N, Yang S, Connelly ZM, StPierre S, Rushing B, Watkins A, Shi L, Lakey M, Baiamonte LB, Fazili T, Lurie A, Corey E, Shi R, Yeh Y, Yu X. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis 2020; 23:661-669. [PMID: 32313141 PMCID: PMC7572469 DOI: 10.1038/s41391-020-0229-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND After long-term androgen deprivation therapy, 25-30% prostate cancer (PCa) acquires an aggressive neuroendocrine (NE) phenotype. Dysregulation of YAP1, a key transcription coactivator of the Hippo pathway, has been related to cancer progression. However, its role in neuroendocrine prostate cancer (NEPC) has not been assessed. METHODS Immunohistochemistry and bioinformatics analysis were conducted to evaluate YAP1 expression levels during PCa initiation and progression. RESULTS YAP1 expression was present in the basal epithelial cells in benign prostatic tissues, lost in low-grade PCa, but elevated in high-grade prostate adenocarcinomas. Interestingly, the expression of YAP1 was reduced/lost in both human and mouse NEPC. CONCLUSIONS The expression of YAP1 is elevated in high-grade prostate adenocarcinomas but lost in NEPC.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | | | - Shu Yang
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Zachary M Connelly
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Samantha StPierre
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Bryce Rushing
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Andy Watkins
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Lawrence Shi
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA
| | | | | | - Tajammul Fazili
- Urology Service, Overton Brooks Medical Center, Shreveport, LA, USA.,Department of Urology, LSU Health-Shreveport, Shreveport, LA, USA
| | - Aubrey Lurie
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Runhua Shi
- Department of Medicine, LSU Health-Shreveport, Shreveport, LA, USA
| | - Yunshin Yeh
- Department of Urology, LSU Health-Shreveport, Shreveport, LA, USA.,Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA, USA
| | - Xiuping Yu
- Department of Biochemistry & Molecular Biology, LSU Health-Shreveport, Shreveport, LA, USA. .,Department of Urology, LSU Health-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
18
|
Zhu Q, Li Y, Dong X, Yang Y, Wang H, Guo S. Linc-OIP5 loss regulates migration and invasion in MDA-MB-231 breast cancer cells by inhibiting YAP1/JAG1 signaling. Oncol Lett 2019; 19:103-112. [PMID: 31897120 PMCID: PMC6924107 DOI: 10.3892/ol.2019.11071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most prevalent cancer among women, and diagnosis and treatment represent a substantial challenge due to the lack of adequate molecular targets. It has been shown that long noncoding RNAs (lncRNAs) serve pivotal roles in regulating gene expression in tumors. The roles of long intervening noncoding RNA (Linc)-OIP5 has been demonstrated in different types of cancer; however, its function in breast cancer has not been determined. In the present study, expression of Linc-OIP5, YAP1 (Hippo signaling component) and JAG1 (Notch signaling component) in breast cancer cells with different degrees of malignancy were determined. To assess whether Linc-OIP5 regulated the malignant biological behaviors of MDA-MB-231 cells, its expression was knocked down using a specific small interfering RNA (siRNA), and cell proliferation was determined using a CCK-8 assay, apoptosis was evaluated using an Annexin V-FITC apoptosis detection kit, migration was assessed using a wound healing and transwell migration assays, and cell invasion examined using a transwell invasion assays. The effect of Linc-OIP5 knockdown on YAP1 and JAG1 expression was quantified using reverse transcription-quantitative PCR and immunoblotting. Cell proliferation, migration and invasion were reduced, while apoptosis was increased in MDA-MB-231 cells transfected with Linc-OIP5-specific siRNA. Mechanistic investigations showed that Linc-OIP5 knockdown downregulated YAP1 and JAG1 expression. The results of the present study suggest that Linc-OIP5 affects the malignant biological behaviors of MDA-MB-231 cells, at least partly through its effects on YAP1/JAG1 signaling. Whilst there are a number of mechanisms underlying the pathogenesis of breast cancer, the results of the present study highlight Linc-OIP5 as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pathology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yongsheng Li
- Department of Medical Imaging, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiangmei Dong
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yue Yang
- Department of Pathology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hongyan Wang
- Department of Pathology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Sufen Guo
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
19
|
Metz EP, Wilder PJ, Dong J, Datta K, Rizzino A. Elevating SOX2 in prostate tumor cells upregulates expression of neuroendocrine genes, but does not reduce the inhibitory effects of enzalutamide. J Cell Physiol 2019; 235:3731-3740. [PMID: 31587305 DOI: 10.1002/jcp.29267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer deaths in men. In this cancer, the stem cell transcription factor SOX2 increases during tumor progression, especially as the cancer progresses to the highly aggressive neuroendocrine-like phenotype. Other studies have shown that knockdown of RB1 and TP53 increases the expression of neuroendocrine markers, decreases the sensitivity to enzalutamide, and increases the expression of SOX2. Importantly, knockdown of SOX2 in the context of RB1 and TP53 depletion restored sensitivity to enzalutamide and reduced the expression of neuroendocrine markers. In this study, we examined whether elevating SOX2 is not only necessary, but also sufficient on its own to promote the expression of neuroendocrine markers and confer enzalutamide resistance. For this purpose, we engineered LNCaP cells for inducible overexpression of SOX2 (i-SOX2-LNCaP). As shown previously for other tumor cell types, inducible elevation of SOX2 in i-SOX2-LNCaP inhibited cell proliferation. SOX2 elevation also increased the expression of several neuroendocrine markers, including several neuropeptides and synaptophysin. However, SOX2 elevation did not decrease the sensitivity of i-SOX2-LNCaP cells to enzalutamide, which indicates that elevating SOX2 on its own is not sufficient to confer enzalutamide resistance. Furthermore, knocking down SOX2 in C4-2B cells, a derivative of LNCaP cells which is far less sensitive to enzalutamide and which expresses much higher levels of SOX2 than LNCaP cells, did not alter the growth response to this antiandrogen. Thus, our studies indicate that NE marker expression can increase independently of the sensitivity to enzalutamide.
Collapse
Affiliation(s)
- Ethan P Metz
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Phillip J Wilder
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jixin Dong
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Biochemistry and Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
20
|
Salem O, Hansen CG. The Hippo Pathway in Prostate Cancer. Cells 2019; 8:E370. [PMID: 31018586 PMCID: PMC6523349 DOI: 10.3390/cells8040370] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent efforts, prostate cancer (PCa) remains one of the most common cancers in men. Currently, there is no effective treatment for castration-resistant prostate cancer (CRPC). There is, therefore, an urgent need to identify new therapeutic targets. The Hippo pathway and its downstream effectors-the transcriptional co-activators, Yes-associated protein (YAP) and its paralog, transcriptional co-activator with PDZ-binding motif (TAZ)-are foremost regulators of stem cells and cancer biology. Defective Hippo pathway signaling and YAP/TAZ hyperactivation are common across various cancers. Here, we draw on insights learned from other types of cancers and review the latest advances linking the Hippo pathway and YAP/TAZ to PCa onset and progression. We examine the regulatory interaction between Hippo-YAP/TAZ and the androgen receptor (AR), as main regulators of PCa development, and how uncontrolled expression of YAP/TAZ drives castration resistance by inducing cellular stemness. Finally, we survey the potential therapeutic targeting of the Hippo pathway and YAP/TAZ to overcome PCa.
Collapse
Affiliation(s)
- Omar Salem
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
21
|
Yeung YT, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A, Argüelles S. Dysregulation of the Hippo pathway signaling in aging and cancer. Pharmacol Res 2019; 143:151-165. [PMID: 30910741 DOI: 10.1016/j.phrs.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Human beings are facing emerging degenerative and cancer diseases, in large part, as a consequence of increased life expectancy. In the near future, researchers will have to put even more effort into fighting these new challenges, one of which will be prevention of cancer while continuing to improve the aging process through this increased life expectancy. In the last few decades, relevance of the Hippo pathway on cancer has become an important study since it is a major regulator of organ size control and proliferation. However, its deregulation can induce tumors throughout the body by regulating cell proliferation, disrupting cell polarity, releasing YAP and TAZ from the Scribble complexes and facilitating survival gene expression via activation of TEAD transcription factors. This pathway is also involved in some of the most important mechanisms that control the aging processes, such as the AMP-activated protein kinase and sirtuin pathways, along with autophagy and oxidative stress response/antioxidant defense. This could be the link between two tightly connected processes that could open a broader range of targeted molecular therapies to fight aging and cancer. Therefore, available knowledge of the processes involved in the Hippo pathway during aging and cancer must necessarily be well understood.
Collapse
Affiliation(s)
- Yiu To Yeung
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mercedes Cano
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Mario F Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Antonio Ayala
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sandro Argüelles
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
22
|
Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X, Mao X. Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem 2019; 294:4572-4582. [PMID: 30718275 PMCID: PMC6433065 DOI: 10.1074/jbc.ra118.006057] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/29/2019] [Indexed: 01/21/2023] Open
Abstract
Chemoresistance is a leading obstacle in effective management of advanced prostate cancer (PCa). A better understanding of the molecular mechanisms involved in PCa chemoresistance could improve treatment of patients with PCa. In the present study, using immune histochemical, chemistry, and precipitation assays with cells from individuals with benign or malignant prostate cancer or established PCa cell lines, we found that the oncogenic transcription factor pre-B cell leukemia homeobox-1 (PBX1) promotes PCa cell proliferation and confers to resistance against common anti-cancer drugs such as doxorubicin and cisplatin. We observed that genetic PBX1 knockdown abrogates this resistance, and further experiments revealed that PBX1 stability was modulated by the ubiquitin-proteasomal pathway. To directly probe the impact of this pathway on PBX1 activity, we screened for PBX1-specific deubiquitinases (Dubs) and found that ubiquitin-specific peptidase 9 X-linked (USP9x) interacted with and stabilized the PBX1 protein by attenuating its Lys-48-linked polyubiquitination. Moreover, the USP9x inhibitor WP1130 markedly induced PBX1 degradation and promoted PCa cell apoptosis. The results in this study indicate that PBX1 confers to PCa chemoresistance and identify USP9x as a Dub of PBX1. We concluded that targeting the USP9x/PBX1 axis could be a potential therapeutic strategy for managing advanced prostate cancer.
Collapse
Affiliation(s)
- Yan Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Sichuan Kelun Pharmaceutical Co., Ltd., Chengdu, Sichuan 610071, China
| | - Xiaofeng Xu
- the Department of Urology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 21002, China
| | - Peng Lin
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yuanming He
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yawen Zhang
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Biyin Cao
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zubin Zhang
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Gautam Sethi
- the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore
| | - Jinbao Liu
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China
| | - Xiumin Zhou
- the Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China, and
| | - Xinliang Mao
- From the Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 511436, China,
- the Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
McAuley E, Moline D, VanOpstall C, Lamperis S, Brown R, Vander Griend DJ. Sox2 Expression Marks Castration-Resistant Progenitor Cells in the Adult Murine Prostate. Stem Cells 2019; 37:690-700. [PMID: 30720908 DOI: 10.1002/stem.2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Identification of defined epithelial cell populations with progenitor properties is critical for understanding prostatic development and disease. Here, we demonstrate that Sox2 expression is enriched in the epithelial cells of the proximal prostate adjacent to the urethra. We use lineage tracing of Sox2-positive cells during prostatic development, homeostasis, and regeneration to show that the Sox2 lineage is capable of self-renewal and contributes to prostatic regeneration. Persisting luminal cells express Sox2 after castration, highlighting a potential role for Sox2 in cell survival and castration-resistance. In addition to revealing a novel progenitor population in the prostate, these data implicate Sox2 as a regulatory factor of adult prostate epithelial stem cells. Stem Cells 2019;37:690-700.
Collapse
Affiliation(s)
- Erin McAuley
- The Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Daniel Moline
- The Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Calvin VanOpstall
- The Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Sophia Lamperis
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ryan Brown
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald J Vander Griend
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
24
|
Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018; 101:80-93. [PMID: 29864543 DOI: 10.1016/j.biocel.2018.06.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023]
Abstract
Dynamic modulation and posttranslational modification of proteins are tightly controlled biological processes that occur in response to physiological cues. One such dynamic modulation is ubiquitination, which marks proteins for degradation via the proteasome, altering their localization, affecting their activity, and promoting or interfering with protein interactions. Hence, ubiquitination is crucial for a plethora of physiological processes, including cell survival, differentiation and innate and adaptive immunity. Similar to kinases, components of the ubiquitination system are often deregulated, leading to a variety of diseases, such as cancer and neurodegenerative disorders. In a context-dependent manner, ubiquitination can regulate both tumor-suppressing and tumor-promoting pathways in cancer. This review outlines how components of the ubiquitination systems (e.g. E3 ligases and deubiquitinases) act as oncogenes or tumor suppressors according to the nature of their substrates. Furthermore, I interrogate how the current knowledge of the differential roles of ubiquitination in cancer lead to technical advances to inhibit or reactivate the components of the ubiquitination system accordingly.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Institute of Cancer Sciences, University of Glasgow, United Kingdom; The CRUK Beatson Institute, Glasgow, Switchback Road, G61 1BD, United Kingdom; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|