1
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
3
|
Jary A, Kim Y, Rozemeijer K, Eijk PP, van der Zee RP, Bleeker MCG, Wilting SM, Steenbergen RDM. Accurate detection of copy number aberrations in FFPE samples using the mFAST-SeqS approach. Exp Mol Pathol 2024; 137:104906. [PMID: 38820761 DOI: 10.1016/j.yexmp.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Shallow whole genome sequencing (Shallow-seq) is used to determine the copy number aberrations (CNA) in tissue samples and circulating tumor DNA. However, costs of NGS and challenges of small biopsies ask for an alternative to the untargeted NGS approaches. The mFAST-SeqS approach, relying on LINE-1 repeat amplification, showed a good correlation with Shallow-seq to detect CNA in blood samples. In the present study, we evaluated whether mFAST-SeqS is suitable to assess CNA in small formalin-fixed paraffin-embedded (FFPE) tissue specimens, using vulva and anal HPV-related lesions. METHODS Seventy-two FFPE samples, including 36 control samples (19 vulva;17 anal) for threshold setting and 36 samples (24 vulva; 12 anal) for clinical evaluation, were analyzed by mFAST-SeqS. CNA in vulva and anal lesions were determined by calculating genome-wide and chromosome arm-specific z-scores in comparison with the respective control samples. Sixteen samples were also analyzed with the conventional Shallow-seq approach. RESULTS Genome-wide z-scores increased with the severity of disease, with highest values being found in cancers. In vulva samples median and inter quartile ranges [IQR] were 1[0-2] in normal tissues (n = 4), 3[1-7] in premalignant lesions (n = 9) and 21[13-48] in cancers (n = 10). In anal samples, median [IQR] were 0[0-1] in normal tissues (n = 4), 14[6-38] in premalignant lesions (n = 4) and 18[9-31] in cancers (n = 4). At threshold 4, all controls were CNA negative, while 8/13 premalignant lesions and 12/14 cancers were CNA positive. CNA captured by mFAST-SeqS were mostly also found by Shallow-seq. CONCLUSION mFAST-SeqS is easy to perform, requires less DNA and less sequencing reads reducing costs, thereby providing a good alternative for Shallow-seq to determine CNA in small FFPE samples.
Collapse
Affiliation(s)
- Aude Jary
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Kirsten Rozemeijer
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Paul P Eijk
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Ramon P van der Zee
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, division of Infectious Diseases, Amsterdam UMC, location Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Rosen R, Quezada-Diaz FF, Gönen M, Karagkounis G, Widmar M, Wei IH, Smith JJ, Nash GM, Weiser MR, Paty PB, Cercek A, Romesser PB, Sanchez-Vega F, Adileh M, Roth O’Brien D, Hajj C, Williams VM, Shcherba M, Gu P, Crane C, Saltz LB, Garcia Aguilar J, Pappou E. Oncologic Outcomes of Salvage Abdominoperineal Resection for Anal Squamous Cell Carcinoma Initially Managed with Chemoradiation. J Clin Med 2024; 13:2156. [PMID: 38673429 PMCID: PMC11050212 DOI: 10.3390/jcm13082156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Abdominoperineal resection (APR) has been advocated for persistent or recurrent disease after failure of chemoradiation (CRT) for anal squamous cell cancer (SCC). Treatment with salvage APR can potentially achieve a cure. This study aimed to analyze oncological outcomes for salvage APR in a recent time period at a comprehensive cancer center. Methods: A retrospective review of all patients who underwent APR for biopsy-proven persistent or recurrent anal SCC between 1 January 2007 and 31 December 2020 was performed. Patients with stage IV disease at the time of initial diagnosis and patients with missing data were excluded. Univariate analysis was used with a chi-square test for categorical variables, and non-parametric tests were used for continuous variables. Kaplan-Meier survival analysis was performed to evaluate disease-specific (DSS), post-APR local recurrence-free (RFS), and disease-free survival (DFS). Results: A total of 96 patients were included in the analysis: 39 (41%) with persistent disease and 57 (59%) with recurrent SCC after chemoradiation had been completed. The median follow-up was 22 months (IQR 11-47). Forty-nine patients (51%) underwent extended APR and/or pelvic exenteration. Eight (8%) patients developed local recurrence, 30 (31%) developed local and distant recurrences, and 16 (17%) developed distant recurrences alone. The 3-year DSS, post-APR local recurrence-free survival, and disease-free survival were 53.8% (95% CI 43.5-66.5%), 54.5% (95% CI 44.4-66.8%), and 26.8% (95% CI 18.6-38.7%), respectively. In multivariate logistic regression analysis, positive microscopic margin (OR 10.0, 95% CI 2.16-46.12, p = 0.003), positive nodes in the surgical specimen (OR 9.19, 95% CI 1.99-42.52, p = 0.005), and lymphovascular invasion (OR 2.61 95% CI 1.05-6.51, p = 0.04) were associated with recurrence of disease. Gender, indication for APR (recurrent vs. persistent disease), HIV status, extent of surgery, or type of reconstruction did not influence survival outcomes. Twenty patients had targeted tumor-sequencing data available. Nine patients had PIK3CA mutations, seven of whom experienced a recurrence. Conclusions: Salvage APR for anal SCC after failed CRT was associated with poor disease-specific survival and low recurrence-free survival. Anal SCC patients undergoing salvage APR should be counseled that microscopic positive margins, positive lymph nodes, or the presence of lymphovascular invasion in the APR specimen are prognosticators for disease relapse. Our results accentuate the necessity for additional treatment strategies for the ongoing treatment challenge of persistent or recurrent anal SCC after failed CRT.
Collapse
Affiliation(s)
- Roni Rosen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Felipe F. Quezada-Diaz
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Georgios Karagkounis
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Maria Widmar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Iris H. Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - J. Joshua Smith
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Garrett M. Nash
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Martin R. Weiser
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Philip B. Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (P.G.)
| | - Paul B. Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.B.R.)
| | - Francisco Sanchez-Vega
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohammad Adileh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Diana Roth O’Brien
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.B.R.)
| | - Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.B.R.)
| | - Vonetta M. Williams
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.B.R.)
| | - Marina Shcherba
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (P.G.)
| | - Ping Gu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (P.G.)
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (P.B.R.)
| | - Leonard B. Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (P.G.)
| | - Julio Garcia Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| | - Emmanouil Pappou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA (F.F.Q.-D.); (J.J.S.)
| |
Collapse
|
5
|
Iseas S, Mariano G, Gros L, Baba-Hamed N, De Parades V, Adam J, Raymond E, Abba MC. Unraveling Emerging Anal Cancer Clinical Biomarkers from Current Immuno-Oncogenomics Advances. Mol Diagn Ther 2024; 28:201-214. [PMID: 38267771 PMCID: PMC10925578 DOI: 10.1007/s40291-023-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy associated with high-risk human papillomavirus (HPV) and is currently one of the fastest-growing causes of cancer incidence and mortality in developed countries. Although next-generation sequencing technologies (NGS) have revolutionized cancer and immuno-genomic research in various tumor types, a limited amount of clinical research has been developed to investigate the expression and the functional characterization of genomic data in ASCC. Herein, we comprehensively assess recent advancements in "omics" research, including a systematic analysis of genome-based studies, aiming to identify the most relevant ASCC cancer driver gene expressions and their associated signaling pathways. We also highlight the most significant biomarkers associated with anal cancer progression, gene expression of potential diagnostic biomarkers, expression of therapeutic drug targets, and emerging treatment opportunities. This review stresses the urgent need for developing target-specific therapies in ASCC. By illuminating the molecular characteristics and drug-target expression in ASCC, this study aims to provide insights for the development of precision medicine in anal cancer.
Collapse
Affiliation(s)
- Soledad Iseas
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France.
| | - Golubicki Mariano
- Oncology Unit, Gastroenterology Hospital "Dr. Carlos Bonorino Udaondo", Av. Caseros 2061, C1264, Ciudad Autónoma de Buenos Aires, Argentina
| | - Louis Gros
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Nabil Baba-Hamed
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Vincent De Parades
- Proctology Unit, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Julien Adam
- Pathology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Eric Raymond
- Medical Oncology Department, Paris-St Joseph Hospital, 185 rue Raymond Losserand, 75014, Paris, France
| | - Martin Carlos Abba
- Basic and Applied Immunological Research Center (CINIBA), School of Medical Sciences, NationalUniversity of La Plata, Calle 60 y 120, C1900, La Plata, Argentina.
| |
Collapse
|
6
|
Hamza A, Masliah-Planchon J, Neuzillet C, Lefèvre JH, Svrcek M, Vacher S, Bourneix C, Delaye M, Goéré D, Dartigues P, Samalin E, Hilmi M, Lazartigues J, Girard E, Emile JF, Rigault E, Dangles-Marie V, Rioux-Leclercq N, de la Fouchardière C, Tougeron D, Casadei-Gardini A, Mariani P, Peschaud F, Cacheux W, Lièvre A, Bièche I. Pathogenic alterations in PIK3CA and KMT2C are frequent and independent prognostic factors in anal squamous cell carcinoma treated with salvage abdominoperineal resection. Int J Cancer 2024; 154:504-515. [PMID: 37908048 DOI: 10.1002/ijc.34781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.
Collapse
Affiliation(s)
- Abderaouf Hamza
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Cindy Neuzillet
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Jérémie H Lefèvre
- Department of Digestive Surgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France
| | - Magali Svrcek
- Department of Pathology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Christine Bourneix
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Delaye
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Diane Goéré
- Department of Digestive Surgery, Gustave Roussy Institute, Villejuif, France
| | - Peggy Dartigues
- Department of Pathology, Gustave Roussy Institute, Villejuif, France
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Marc Hilmi
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Julien Lazartigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Elodie Girard
- INSERM U900 Research Unit, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Emile
- Department of Pathology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, UVSQ, BECCOH, Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | - Eugénie Rigault
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | | | | | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Pascale Mariani
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Peschaud
- Department of Digestive and Oncologic Surgery, Ambroise Paré Hospital, Versailles Saint-Quentin University, Paris Saclay University, Boulogne-Billancourt, France
| | - Wulfran Cacheux
- Department of Medical Oncology, Hôpital Privé Pays de Savoie, Annemasse, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
- Rennes 1 University, Inserm U1242, COSS (Chemistry Oncogenesis Stress Signaling), Rennes, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, INSERM U1016, Paris, France
| |
Collapse
|
7
|
Gunder LC, Moyer TH, Johnson HR, Auyeung AS, Leverson GE, Zhang W, Matkowskyj KA, Carchman EH. Anal Cancer Prevention Through the Topical Use of Single or Dual PI3K/mTOR Inhibitors. J Surg Res 2023; 282:137-146. [PMID: 36274448 DOI: 10.1016/j.jss.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Anal dysplasia and anal cancer are major health problems. This study seeks to determine if inhibition of mTOR and/or PI3K pathways is effective at anal cancer prevention in mice with/without established precancerous lesions of the anus (anal dysplasia). METHODS K14E6/E7 mice were entered into the study at 5 wk, 15 wk, or 25 wk of age. Mice were treated with a topical carcinogen, 7,12-Dimethylbenz[a]anthracene (DMBA), which ensures carcinoma development within 20 wk. Treatment groups included: no treatment, DMBA only, topical Pictilisib (PI3K inhibitor) with/without DMBA, topical Sapanisertib (mTOR inhibitor) with/without DMBA, and topical Samotolisib (dual PI3K/mTOR inhibitor) with/without DMBA. Mice underwent weekly observations for anal tumor development (tumor-free survival). After 20 wk of treatment, anal tissue was harvested and evaluated histologically for squamous cell carcinoma (SqCC). RESULTS All topical treatments in conjunction with DMBA increased tumor-free survival in mice that started treatment at 15 wk of age when compared to DMBA-only treatment, except for Pictilisib + DMBA in males. Topical Sapanisertib increased tumor-free survival in mice regardless of starting treatment age. When examining tissue for microscopic evidence of SqCC, only topical Samotolisib in males decreased SqCC in the 15 wk starting mice. CONCLUSIONS Sapanisertib, the mTOR inhibitor, had the greatest effect, in terms of increasing tumor-free survival, regardless of starting time point or sex. Unlike the other treatments, Samotolisib, the dual PI3K/mTOR inhibitor, decreased microscopic evidence of SqCC when starting treatment at 15 wk of age but only in male mice.
Collapse
Affiliation(s)
- Laura C Gunder
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin
| | - Tyra H Moyer
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin
| | - Hillary R Johnson
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin
| | - Andrew S Auyeung
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin
| | - Glen E Leverson
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin
| | - Wei Zhang
- University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), Madison, Wisconsin; University of Wisconsin-Madison, Carbone Cancer Center, Madison, Wisconsin
| | - Kristina A Matkowskyj
- University of Wisconsin-Madison, Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin; University of Wisconsin-Madison, Carbone Cancer Center, Madison, Wisconsin
| | - Evie H Carchman
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, 5148 Wisconsin Institute for Medical Research (WIMR), Madison, Wisconsin; William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin; University of Wisconsin-Madison, Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
8
|
Astaras C, De Vito C, Chaskar P, Bornand A, Khanfir K, Sciarra A, Letovanec I, Corro C, Dietrich PY, Tsantoulis P, Koessler T. The first comprehensive genomic characterization of rectal squamous cell carcinoma. J Gastroenterol 2023; 58:125-134. [PMID: 36357817 PMCID: PMC9876866 DOI: 10.1007/s00535-022-01937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Rectal cancers represent 35% of colorectal cancers; 90% are adenocarcinomas, while squamous cell carcinoma accounts for 0.3% of them. Given its rarity, little is known concerning its pathogenesis, molecular profile and therapeutic management. The current treatment trend is to treat rectal squamous cell carcinoma by analogy to anal squamous cell carcinoma with definitive chemo-radiotherapy, setting aside surgery in case of local recurrence. METHODS We performed an in-depth genomic analysis (next-generation sequencing, copy number variation, and human papilloma virus characterization) on 10 rectal squamous cell carcinoma samples and compared them in silico to those of anal squamous cell carcinoma and rectal adenocarcinoma. RESULTS Rectal squamous cell carcinoma shows 100% HPV positivity. It has a mutational (PIK3CA, PTEN, TP53, ATM, BCL6, SOX2) and copy number variation profile (3p, 10p, 10q, 16q deletion and 1q, 3q, 5p, 8q, 20p gain) similar to anal squamous cell carcinoma. PI3K/Akt/mTOR is the most commonly affected signaling pathway similarly to anal squamous cell carcinoma. Most commonly gained or lost genes seen in rectal adenocarcinoma (FLT3, CDX2, GNAS, BCL2, SMAD4, MALT1) are not found in rectal squamous cell carcinoma. CONCLUSION This study presents the first comprehensive genomic characterization of rectal squamous cell carcinoma. We confirm the existence of this rare histology and its molecular similarity with anal squamous cell carcinoma. This molecular proximity confirms the adequacy of therapeutic management based on histology and not localization, suggesting that rectal squamous cell carcinoma should be treated like anal squamous cell carcinoma and not as a rectal adenocarcinoma.
Collapse
Affiliation(s)
- Christoforos Astaras
- grid.150338.c0000 0001 0721 9812Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
| | - Claudio De Vito
- grid.150338.c0000 0001 0721 9812Pathology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Prasad Chaskar
- grid.150338.c0000 0001 0721 9812Pathology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Aurelie Bornand
- grid.150338.c0000 0001 0721 9812Pathology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Kaouthar Khanfir
- grid.418149.10000 0000 8631 6364Radiation Oncology Department, Valais Hospital, Sion, Switzerland
| | - Amedeo Sciarra
- grid.418149.10000 0000 8631 6364Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
| | - Igor Letovanec
- grid.418149.10000 0000 8631 6364Histopathology, Central Institute, Valais Hospital, Sion, Switzerland
| | - Claudia Corro
- grid.150338.c0000 0001 0721 9812Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland ,grid.511014.0Swiss Cancer Center Léman, Lausanne, Geneva Switzerland ,grid.8591.50000 0001 2322 4988Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Pierre-Yves Dietrich
- grid.150338.c0000 0001 0721 9812Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland ,grid.511014.0Swiss Cancer Center Léman, Lausanne, Geneva Switzerland ,grid.8591.50000 0001 2322 4988Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Petros Tsantoulis
- grid.150338.c0000 0001 0721 9812Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Medical Oncology Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland. .,Swiss Cancer Center Léman, Lausanne, Geneva, Switzerland.
| |
Collapse
|
9
|
Debernardi A, Meurisse A, Prétet JL, Guenat D, Monnien F, Spehner L, Vienot A, Roncarati P, André T, Abramowitz L, Molimard C, Mougin C, Herfs M, Kim S, Borg C. Prognostic role of HPV integration status and molecular profile in advanced anal carcinoma: An ancillary study to the epitopes-HPV02 trial. Front Oncol 2022; 12:941676. [DOI: 10.3389/fonc.2022.941676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Squamous Cell Carcinoma of the Anal canal (SCCA) is a rare disease associated with a Human Papillomavirus (HPV) infection in most cases, predominantly the HPV16 genotype. About 15% of SCCA are diagnosed in metastatic stage and some will relapse after initial chemoradiotherapy (CRT). Treatment of patients by Docetaxel, Cisplatin and 5-fluorouracil (DCF) has been recently shown to improve their complete remission and progression-free survival. The aim of this retrospective study was to explore the impact of HPV infection, HPV DNA integration, TERT promoter mutational status and somatic mutations of oncogenes on both progression-free (PFS) and overall survivals (OS) of patients treated by DCF. Samples obtained from 49 patients included in the Epitopes-HPV02 clinical trial, diagnosed with metastatic or non-resectable local recurrent SCCA treated by DCF, were used for analyses. Median PFS and OS were not associated with HPV status. Patients with episomal HPV had an improved PFS compared with SCCA patients with integrated HPV genome (p=0.07). TERT promoter mutations were rarely observed and did not specifically distribute in a subset of SCCA and did not impact DCF efficacy. Among the 42 genes investigated, few gene alterations were observed, and were in majority amplifications (68.4%), but none were significantly correlated to PFS. As no biomarker is significantly associated with patients’ survival, it prompts us to include every patient failing CRT or with metastatic disease in DCF strategy.
Collapse
|
10
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Fenton TR. Accumulation of host cell genetic errors following high-risk HPV infection. Curr Opin Virol 2021; 51:1-8. [PMID: 34543805 DOI: 10.1016/j.coviro.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Tim R Fenton
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK; School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
12
|
Guerra GR, Kong JC, Millen RM, Read M, Liu DS, Roth S, Sampurno S, Sia J, Bernardi MP, Chittleborough TJ, Behrenbruch CC, Teh J, Xu H, Haynes NM, Yu J, Lupat R, Hawkes D, Di Costanzo N, Tothill RW, Mitchell C, Ngan SY, Heriot AG, Ramsay RG, Phillips WA. Molecular and genomic characterisation of a panel of human anal cancer cell lines. Cell Death Dis 2021; 12:959. [PMID: 34663790 PMCID: PMC8523722 DOI: 10.1038/s41419-021-04141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Anal cancer is a rare disease that has doubled in incidence over the last four decades. Current treatment and survival of patients with this disease has not changed substantially over this period of time, due, in part, to a paucity of preclinical models to assess new therapeutic options. To address this hiatus, we set-out to establish, validate and characterise a panel of human anal squamous cell carcinoma (ASCC) cell lines by employing an explant technique using fresh human ASCC tumour tissue. The panel of five human ASCC cell lines were validated to confirm their origin, squamous features and tumourigenicity, followed by molecular and genomic (whole-exome sequencing) characterisation. This panel recapitulates the genetic and molecular characteristics previously described in ASCC including phosphoinositide-3-kinase (PI3K) mutations in three of the human papillomavirus (HPV) positive lines and TP53 mutations in the HPV negative line. The cell lines demonstrate the ability to form tumouroids and retain their tumourigenic potential upon xenotransplantation, with varied inducible expression of major histocompatibility complex class I (MHC class I) and Programmed cell death ligand 1 (PD-L1). We observed differential responses to standard chemotherapy, radiotherapy and a PI3K specific molecular targeted agent in vitro, which correlated with the clinical response of the patient tumours from which they were derived. We anticipate this novel panel of human ASCC cell lines will form a valuable resource for future studies into the biology and therapeutics of this rare disease.
Collapse
Affiliation(s)
- Glen R Guerra
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Joseph C Kong
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rosemary M Millen
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew Read
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David S Liu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- UGI Surgery Unit, Austin Hospital, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Joseph Sia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Maria-Pia Bernardi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Timothy J Chittleborough
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Corina C Behrenbruch
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiasian Teh
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Huiling Xu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jiaan Yu
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard Lupat
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - David Hawkes
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
- VCS Foundation, Carlton, VIC, 3053, Australia
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - Natasha Di Costanzo
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Richard W Tothill
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Samuel Y Ngan
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Alexander G Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wayne A Phillips
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Surgery, St Vincent's Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Molecular and immunophenotypic characterization of anal squamous cell carcinoma reveals distinct clinicopathologic groups associated with HPV and TP53 mutation status. Mod Pathol 2021; 34:1017-1030. [PMID: 33483624 DOI: 10.1038/s41379-020-00729-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
Squamous cell carcinoma (SqCC) is the most common malignancy of the anal canal, where it is strongly associated with HPV infection. Characteristic genomic alterations have been identified in anal SqCC, but their clinical significance and correlation with HPV status, pathologic features, and immunohistochemical markers are not well established. We examined the molecular and clinicopathologic features of 96 HPV-positive and 20 HPV-negative anal SqCC. HPV types included 89 with HPV16, 2 combined HPV16/HPV18, and 5 HPV33. HPV-positive cases demonstrated frequent mutations or amplifications in PIK3CA (30%; p = 0.027) or FBXW7 mutations (10%). HPV-negativity was associated with frequent TP53 (53%; p = 0.00001) and CDKN2A (21%; p = 0.0045) mutations. P16 immunohistochemistry was positive in all HPV-positive cases and 3/20 HPV-negative cases (p < 0.0001; sensitivity: 100%; specificity: 85%) and was associated with basaloid morphology (p = 0.0031). Aberrant p53 immunohistochemical staining was 100% sensitive and specific for TP53 mutation (p < 0.0001). By the Kaplan-Meier method, HPV-negativity, aberrant p53 staining, and TP53 mutation were associated with inferior overall survival (OS) (p < 0.0001, p = 0.0103, p = 0.0103, respectively) and inferior recurrence-free survival (p = 0.133, p = 0.0064, and p = 0.0064, respectively). TP53/p53 status stratified survival probability by HPV status (p = 0.013), with HPV-negative/aberrant p53 staining associated with the worst OS, HPV-positive/wild-type p53 with best OS, and HPV-positive/aberrant p53 or HPV-negative/wild-type p53 with intermediate OS. On multivariate analysis HPV status (p = 0.0063), patient age (p = 0.0054), T stage (p = 0.039), and lymph node involvement (p = 0.044) were independently associated with OS. PD-L1 expression (CPS ≥ 1) was seen in 30% of HPV-positive and 40% of HPV-negative cases, and PD-L1 positivity was associated with a trend toward inferior OS within the HPV-negative group (p = 0.064). Our findings suggest that anal SqCC can be subclassified into clinically, pathologically, and molecularly distinct groups based on HPV and TP53 mutation status, and p16 and p53 immunohistochemistry represent a clinically useful method of predicting these prognostic groups.
Collapse
|
14
|
Carr RM, Jin Z, Hubbard J. Research on Anal Squamous Cell Carcinoma: Systemic Therapy Strategies for Anal Cancer. Cancers (Basel) 2021; 13:cancers13092180. [PMID: 34062753 PMCID: PMC8125190 DOI: 10.3390/cancers13092180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Anal cancer is rare with an estimated 9000 new cases predicted to occur in the United States in 2021. However, rates of new anal cancer cases and deaths from the disease are increasing by about 2% and 3% per year respectively. In light of these trends it is critical to better understand the nature of this disease and progress in its management. The present review focuses on the history and development of the role of systemic therapy in the treatment of anal cancer. Major trials establishing the role of chemotherapy in the management of locoregional and metastatic anal cancer are summarized. In addition, the rapidly evolving role of immunotherapy is discussed. Finally, major insights into the molecular pathobiology of anal cancer and opportunities for advancement in precision medicine in treatment of the disease. Abstract Anal squamous cell carcinoma (ASCC) is a rare malignancy, with most cases associated with human papilloma virus and an increased incidence in immunocompromised patients. Progress in management of ASCC has been limited not only due to its rarity, but also the associated lack of research funding and social stigma. Historically, standard of care for invasive ASCC has been highly morbid surgical resection, requiring a permanent colostomy. Surgery was associated with disease recurrence in approximately half of the patients. However, the use of chemotherapy (5-fluorouracil and mitomycin C) concomitantly with radiation in the 1970s resulted in disease regression, curing a subset of patients and sparing them from morbid surgery. Validation of the use of systemic therapy in prospective trials was not achieved until approximately 20 years later. In this review, advancements and shortcomings in the use of systemic therapy in the management of ASCC will be discussed. Not only will standard-of-care systemic therapies for locoregional and metastatic disease be reviewed, but the evolving role of novel treatment strategies such as immune checkpoint inhibitors, HPV-based vaccines, and molecularly targeted therapies will also be covered. While advances in ASCC treatment have remained largely incremental, with increased biological insight, an increasing number of promising systemic treatment modalities are being explored.
Collapse
|
15
|
Aldersley J, Lorenz DR, Mouw KW, D'Andrea AD, Gabuzda D. Genomic Landscape of Primary and Recurrent Anal Squamous Cell Carcinomas in Relation to HPV Integration, Copy-Number Variation, and DNA Damage Response Genes. Mol Cancer Res 2021; 19:1308-1321. [PMID: 33883185 DOI: 10.1158/1541-7786.mcr-20-0884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/02/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
The incidence of anal squamous cell carcinoma (ASCC) has been increasing, particularly in populations with HIV. Human papillomavirus (HPV) is the causal factor in 85% to 90% of ASCCs, but few studies evaluated HPV genotypes and integrations in relation to genomic alterations in ASCC. Using whole-exome sequence data for primary (n = 56) and recurrent (n = 31) ASCC from 72 patients, we detected HPV DNA in 87.5% of ASCC, of which HPV-16, HPV-18, and HPV-6 were detected in 56%, 22%, and 33% of HIV-positive (n = 9) compared with 83%, 3.2%, and 1.6% of HIV-negative cases (n = 63), respectively. Recurrent copy-number variations (CNV) involving genes with documented roles in cancer included amplification of PI3KCA and deletion of APC in primary and recurrent tumors; amplifications of CCND1, MYC, and NOTCH1 and deletions of BRCA2 and RB1 in primary tumors; and deletions of ATR, FANCD2, and FHIT in recurrent tumors. DNA damage response genes were enriched among recurrently deleted genes in recurrent ASCCs (P = 0.001). HPV integrations were detected in 29 of 76 (38%) ASCCs and were more frequent in stage III-IV versus stage I-II tumors. HPV integrations were detected near MYC and CCND1 amplifications and recurrent targets included NFI and MUC genes. These results suggest HPV genotypes in ASCC differ by HIV status, HPV integration is associated with ASCC progression, and DNA damage response genes are commonly disrupted in recurrent ASCCs. IMPLICATIONS: These data provide the largest whole-exome sequencing study of the ASCC genomic landscape to date and identify HPV genotypes, integrations, and recurrent CNVs in primary or recurrent ASCCs.
Collapse
Affiliation(s)
- Jordan Aldersley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Williams EA, Montesion M, Sharaf R, Corines J, Patel PJ, Gillespie BJ, Pavlick DC, Sokol ES, Alexander BM, Williams KJ, Elvin JA, Ross JS, Ramkissoon SH, Hemmerich AC, Tse JY, Mochel MC. CYLD-mutant cylindroma-like basaloid carcinoma of the anus: a genetically and morphologically distinct class of HPV-related anal carcinoma. Mod Pathol 2020; 33:2614-2625. [PMID: 32461623 PMCID: PMC7685972 DOI: 10.1038/s41379-020-0584-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/12/2022]
Abstract
Rare reports of anal carcinoma (AC) describe histologic resemblance to cutaneous cylindroma, but mutations in the tumor suppressor CYLD, the gene responsible for familial and sporadic cylindromas, have not been systematically investigated in AC. Here, we investigate CYLD-mutant AC, focusing on molecular correlates of distinct histopathology. Comprehensive genomic profiling (hybrid-capture-based DNA sequencing) was performed on 574 ACs, of which 75 unique cases (13%) harbored a CYLD mutation. Clinical data, pathology reports, and histopathology were reviewed for each CYLD-mutant case. The spectrum of CYLD mutations included truncating (n = 50; 67%), homozygous deletion (n = 10; 13%), missense (n = 16; 21%), and splice-site (n = 3; 4%) events. Compared with CYLD-wildtype AC (n = 499), CYLD-mutant ACs were significantly enriched for females (88% vs. 67%, p = 0.0001), slightly younger (median age 59 vs. 61 years, p = 0.047), and included near-universal detection of high-risk HPV sequences (97% vs. 88%, p = 0.014), predominantly HPV16 (96%). The CYLD-mutant cohort also showed significantly lower tumor mutational burden (TMB; median 2.6 vs. 5.2 mut/Mb, p < 0.00001) and less frequent alterations in PIK3CA (13% vs. 31%, p = 0.0015). On histopathologic examination, 73% of CYLD-mutant AC (55/75 cases) showed a striking cylindroma-like histomorphology, composed of aggregates of basaloid cells surrounded by thickened basement membranes and containing characteristic hyaline globules, while only 8% of CYLD-wildtype tumors (n = 34/409) contained cylindroma-like hyaline globules (p < 0.0001). CYLD-mutant carcinomas with cylindroma-like histomorphology (n = 55) showed significantly lower TMB compared with CYLD-mutant cases showing basaloid histology without the distinctive hyaline globules (n = 14) (median 1.7 vs. 4.4 mut/Mb, p = 0.0058). Only five CYLD-mutant cases (7%) showed nonbasaloid conventional squamous cell carcinoma histology (median TMB = 5.2 mut/Mb), and a single CYLD-mutant case showed transitional cell carcinoma-like histology. Within our cohort of ACs, CYLD mutations characterize a surprisingly large subset (13%), with distinct clinical and genomic features and, predominantly, a striking cylindroma-like histopathology, representing a genotype-phenotype correlation which may assist in classification of AC.
Collapse
Affiliation(s)
- Erik A Williams
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA.
| | - Meagan Montesion
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Radwa Sharaf
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - James Corines
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Parth J Patel
- Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Dean C Pavlick
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Ethan S Sokol
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Brian M Alexander
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Kevin Jon Williams
- Department of Physiology and Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Julia A Elvin
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
| | - Jeffrey S Ross
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | - Julie Y Tse
- Foundation Medicine, Inc., 150 Second Street, Cambridge, MA, 02141, USA
- Department of Pathology & Laboratory Medicine, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Mark C Mochel
- Departments of Pathology and Dermatology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| |
Collapse
|
17
|
Brunet M, Vargas C, Larrieu D, Torrisani J, Dufresne M. E3 Ubiquitin Ligase TRIP12: Regulation, Structure, and Physiopathological Functions. Int J Mol Sci 2020; 21:ijms21228515. [PMID: 33198194 PMCID: PMC7697007 DOI: 10.3390/ijms21228515] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Thyroid hormone Receptor Interacting Protein 12 (TRIP12) protein belongs to the 28-member Homologous to the E6-AP C-Terminus (HECT) E3 ubiquitin ligase family. First described as an interactor of the thyroid hormone receptor, TRIP12’s biological importance was revealed by the embryonic lethality of a murine model bearing an inactivating mutation in the TRIP12 gene. Further studies showed the participation of TRIP12 in the regulation of major biological processes such as cell cycle progression, DNA damage repair, chromatin remodeling, and cell differentiation by an ubiquitination-mediated degradation of key protein substrates. Moreover, alterations of TRIP12 expression have been reported in cancers that can serve as predictive markers of therapeutic response. The TRIP12 gene is also referenced as a causative gene associated to intellectual disorders such as Clark–Baraitser syndrome and is clearly implicated in Autism Spectrum Disorder. The aim of the review is to provide an exhaustive and integrated overview of the different aspects of TRIP12 ranging from its regulation, molecular functions and physio-pathological implications.
Collapse
Affiliation(s)
- Manon Brunet
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Claire Vargas
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Dorian Larrieu
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
| | - Jérôme Torrisani
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| | - Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1037, Centre de Recherches en Cancérologie de Toulouse, CEDEX 1, 31 037 Toulouse, France; (M.B.); (C.V.); (D.L.)
- Université Toulouse III-Paul Sabatier, CEDEX 9, 31 062 Toulouse, France
- Correspondence: (J.T.); (M.D.); Tel.: +33-582-741-644 (J.T.); +33-582-741-643 (M.D.)
| |
Collapse
|
18
|
Trilla-Fuertes L, Ghanem I, Maurel J, G-Pastrián L, Mendiola M, Peña C, López-Vacas R, Prado-Vázquez G, López-Camacho E, Zapater-Moros A, Heredia V, Cuatrecasas M, García-Alfonso P, Capdevila J, Conill C, García-Carbonero R, Heath KE, Ramos-Ruiz R, Llorens C, Campos-Barros Á, Gámez-Pozo A, Feliu J, Vara JÁF. Comprehensive Characterization of the Mutational Landscape in Localized Anal Squamous Cell Carcinoma. Transl Oncol 2020; 13:100778. [PMID: 32422573 PMCID: PMC7229291 DOI: 10.1016/j.tranon.2020.100778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
Anal squamous cell carcinoma (ASCC) is a rare neoplasm. Chemoradiotherapy is the standard of care, with no therapeutic advances achieved over the past three decades. Thus, a deeper molecular characterization of this disease is still necessary. We analyzed 46 paraffin-embedded tumor samples from patients diagnosed with primary ASCC by exome sequencing. A bioinformatics approach focused in the identification of high-impact genetic variants, which may act as drivers of oncogenesis, was performed. The relation between genetics variants and prognosis was also studied. The list of high-impact genetic variants was unique for each patient. However, the pathways in which these genes are involved are well-known hallmarks of cancer, such as angiogenesis or immune pathways. Additionally, we determined that genetic variants in BRCA2, ZNF750, FAM208B, ZNF599, and ZC3H13 genes are related with poor disease-free survival in ASCC. This may help to stratify the patient's prognosis and open new avenues for potential therapeutic intervention. In conclusion, sequencing of ASCC clinical samples appears an encouraging tool for the molecular portrait of this disease.
Collapse
Affiliation(s)
| | - Ismael Ghanem
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Laura G-Pastrián
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Peña
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Elena López-Camacho
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Andrea Zapater-Moros
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Victoria Heredia
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Translational Oncology Lab, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Pilar García-Alfonso
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, C/ Dr Esquerdo 46, 28007, Madrid, Spain
| | - Jaume Capdevila
- Medical Oncology Service, Vall Hebron University Hospital. Vall Hebron Institute of Oncology (VHIO), Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Carles Conill
- Radiotherapy Oncology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Rocío García-Carbonero
- Medical Oncology Department, Hospital Universitario 12 de Ocubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), UCM, CNIO, CIBERONC, Av. Córdoba s/n, 28041, Madrid, Spain
| | - Karen E Heath
- Institute of Medical and Molecular Genetics, IdiPAZ, Hospital Universitario La Paz /& CIBERER, Unit 753, ISCIII, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomics Unit Cantoblanco, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Carlos Llorens
- Biotechvana SL, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Ángel Campos-Barros
- Institute of Medical and Molecular Genetics, IdiPAZ, Hospital Universitario La Paz /& CIBERER, Unit 753, ISCIII, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Juan Ángel Fresno Vara
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
19
|
Trilla-Fuertes L, Ghanem I, Gámez-Pozo A, Maurel J, G-Pastrián L, Mendiola M, Peña C, López-Vacas R, Prado-Vázquez G, López-Camacho E, Zapater-Moros A, Heredia V, Cuatrecasas M, García-Alfonso P, Capdevila J, Conill C, García-Carbonero R, Ramos-Ruiz R, Fortes C, Llorens C, Nanni P, Fresno Vara JÁ, Feliu J. Genetic Profile and Functional Proteomics of Anal Squamous Cell Carcinoma: Proposal for a Molecular Classification. Mol Cell Proteomics 2020; 19:690-700. [PMID: 32107283 PMCID: PMC7124473 DOI: 10.1074/mcp.ra120.001954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Anal squamous cell carcinoma is a rare tumor. Chemo-radiotherapy yields a 50% 3-year relapse-free survival rate in advanced anal cancer, so improved predictive markers and therapeutic options are needed. High-throughput proteomics and whole-exome sequencing were performed in 46 paraffin samples from anal squamous cell carcinoma patients. Hierarchical clustering was used to establish groups de novo Then, probabilistic graphical models were used to study the differences between groups of patients at the biological process level. A molecular classification into two groups of patients was established, one group with increased expression of proteins related to adhesion, T lymphocytes and glycolysis; and the other group with increased expression of proteins related to translation and ribosomes. The functional analysis by the probabilistic graphical model showed that these two groups presented differences in metabolism, mitochondria, translation, splicing and adhesion processes. Additionally, these groups showed different frequencies of genetic variants in some genes, such as ATM, SLFN11 and DST Finally, genetic and proteomic characteristics of these groups suggested the use of some possible targeted therapies, such as PARP inhibitors or immunotherapy.
Collapse
Affiliation(s)
| | - Ismael Ghanem
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Angelo Gámez-Pozo
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clinic of Barcelona, Translational Genomics and Targeted Therapeutics in Solid Tumors Group, IDIBAPS, University of Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Laura G-Pastrián
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Peña
- Pathology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Rocío López-Vacas
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Elena López-Camacho
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Andrea Zapater-Moros
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Victoria Heredia
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Translational Oncology Lab, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Miriam Cuatrecasas
- Pathology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Pilar García-Alfonso
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, /Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Jaume Capdevila
- Medical Oncology Service, Vall Hebron University Hospital. Vall Hebron Institute of Oncology (VHIO), Paseigg de la Vall d'Hebron 119, 08035, Barcelona, Spain
| | - Carles Conill
- Radiotherapy Oncology Department, Hospital Clínic Universitari de Barcelona, Carrer de Villarroel 170, 08036, Barcelona, Spain
| | - Rocío García-Carbonero
- Medical Oncology Service, Hospital Universitario 12 de Ocubre, Av. de Córdoba s/n, 28041, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomics Unit Cantoblanco, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Claudia Fortes
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carlos Llorens
- Biotechvana SL, Parque Científico de Madrid, C/ Faraday 7, 28049, Madrid, Spain
| | - Paolo Nanni
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Juan Ángel Fresno Vara
- Molecular Oncology & Pathology Lab, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz -IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology Department, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046, Madrid, Spain; Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Av. Monforte de Lemos 5, 28029, Madrid, Spain; Cátedra UAM-Amgen, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Cacheux W, Lièvre A, Richon S, Vacher S, El Alam E, Briaux A, El Botty R, Mariani P, Buecher B, Schnitzler A, Barbazan J, Roman-Roman S, Bièche I, Dangles-Marie V. Interaction between IGF2-PI3K axis and cancer-associated-fibroblasts promotes anal squamous carcinogenesis. Int J Cancer 2019; 145:1852-1859. [DOI: 10.1002/ijc.32178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Wulfran Cacheux
- Department of Medical Oncology; Hôpital Privé Pays de Savoie; Annemasse France
- Department of Medical Oncology; Institut Curie, PSL Research University; Saint-Cloud France
- Faculty of Health Sciences; Versailles Saint-Quentin-en-Yvelines University; Versailles France
| | - Astrid Lièvre
- Department of Medical Oncology; Institut Curie, PSL Research University; Saint-Cloud France
| | - Sophie Richon
- Department of Translational Research; Institut Curie, PSL Research University; Paris France
- UMR 144; Institut Curie, PSL Research University, CNRS; Paris France
| | - Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit; Institut Curie, PSL Research University; Paris France
| | - Elsy El Alam
- Department of Tumour Biology; Institut Curie, PSL Research University; Saint-Cloud France
| | - Adrien Briaux
- Department of Genetics, Pharmacogenomics Unit; Institut Curie, PSL Research University; Paris France
| | - Rania El Botty
- Department of Translational Research; Institut Curie, PSL Research University; Paris France
| | - Pascale Mariani
- Department of Surgical Oncology; Institut Curie, PSL Research University; Paris France
| | - Bruno Buecher
- Department of Medical Oncology; Institut Curie, PSL Research University; Saint-Cloud France
| | - Anne Schnitzler
- Department of Genetics, Pharmacogenomics Unit; Institut Curie, PSL Research University; Paris France
| | - Jorge Barbazan
- UMR 144; Institut Curie, PSL Research University, CNRS; Paris France
| | - Sergio Roman-Roman
- Department of Translational Research; Institut Curie, PSL Research University; Paris France
| | - Ivan Bièche
- Department of Genetics, Pharmacogenomics Unit; Institut Curie, PSL Research University; Paris France
| | - Virginie Dangles-Marie
- Department of Translational Research; Institut Curie, PSL Research University; Paris France
- Faculty of Pharmacy; Université Paris Descartes; Paris France
| |
Collapse
|
21
|
Shin MK, Payne S, Bilger A, Matkowskyj KA, Carchman E, Meyer DS, Bentires-Alj M, Deming DA, Lambert PF. Activating Mutations in Pik3ca Contribute to Anal Carcinogenesis in the Presence or Absence of HPV-16 Oncogenes. Clin Cancer Res 2018; 25:1889-1900. [PMID: 30530704 DOI: 10.1158/1078-0432.ccr-18-2843] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/23/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Over 95% of human anal cancers are etiologically associated with high-risk HPVs, with HPV type 16 (HPV16) the genotype most commonly found. Activating mutations in the catalytic subunit of Phosphatidylinositol (3,4,5)-trisphosphate kinase (PI3K), encoded by the Pik3ca gene, are detected in approximately 20% of human anal cancers.Experimental Design: We asked if common activating mutations in Pik3ca contribute to anal carcinogenesis using an established mouse model for anal carcinogenesis in which mice are topically treated with the chemical carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA). Mice expressing in their anal epithelium one of two activating mutations in Pik3ca genes, Pik3caH1047R or Pik3caE545K , were monitored for anal carcinogenesis in the presence or absence of transgenes expressing the HPV16 E6 and E7 oncogenes. RESULTS Both mutant forms of Pik3ca increased susceptibility to anal carcinogenesis in the absence of HPV16 oncogenes, and cooperated with HPV16 oncogenes to induce the highest level and earliest onset of anal cancers. The combination of HPV16 oncogenes and Pik3ca mutations led to anal cancers even in the absence of treatment with DMBA. We further observed that the investigational mTOR1/2 dual inhibitor, TAK-228, significantly reduced the size of anal cancer-derived tumor spheroids in vitro and reduced the growth rates of anal cancer-derived tumor grafts in vivo. CONCLUSIONS These data demonstrate that activating mutations in Pik3ca drive anal carcinogenesis together with HPV16 oncogenes, and that the PI3K/mTOR pathway is a relevant target for therapeutic intervention.
Collapse
Affiliation(s)
- Myeong-Kyun Shin
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Susan Payne
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kristina A Matkowskyj
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Evie Carchman
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dominique S Meyer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Dustin A Deming
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|