1
|
Armesto M, Nemours S, Arestín M, Bernal I, Solano-Iturri JD, Manrique M, Basterretxea L, Larrinaga G, Angulo JC, Lecumberri D, Iturregui AM, López JI, Lawrie CH. Identification of miRNAs and Their Target Genes Associated with Sunitinib Resistance in Clear Cell Renal Cell Carcinoma Patients. Int J Mol Sci 2024; 25:6881. [PMID: 38999991 PMCID: PMC11241516 DOI: 10.3390/ijms25136881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC) patients in recent years. However, 20-30% of treated patients do not respond. To identify miRNAs and genes associated with a response, comparisons were made between biopsies from responder and non-responder ccRCC patients. Using integrated transcriptomic analyses, we identified 37 miRNAs and 60 respective target genes, which were significantly associated with the NF-kappa B, PI3K-Akt and MAPK pathways. We validated expression of the miRNAs (miR-223, miR-155, miR-200b, miR-130b) and target genes (FLT1, PRDM1 and SAV1) in 35 ccRCC patients. High levels of miR-223 and low levels of FLT1, SAV1 and PRDM1 were associated with worse overall survival (OS), and combined miR-223 + SAV1 levels distinguished responders from non-responders (AUC = 0.92). Using immunohistochemical staining of 170 ccRCC patients, VEGFR1 (FLT1) expression was associated with treatment response, histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) score, whereas SAV1 and BLIMP1 (PRDM1) were associated with metachronous metastatic disease. Using in situ hybridisation (ISH) to detect miR-155 we observed higher tumoural cell expression in non-responders, and non-tumoural cell expression with increased histological grade. In summary, our preliminary analysis using integrated miRNA-target gene analyses identified several novel biomarkers in ccRCC patients that surely warrant further investigation.
Collapse
Affiliation(s)
- María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - María Arestín
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
| | - Iraide Bernal
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Jon Danel Solano-Iturri
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Manuel Manrique
- Pathology Department, Donostia University Hospital, 20014 San Sebastián, Spain; (J.D.S.-I.); (M.M.)
| | - Laura Basterretxea
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- Medical Oncology Department, Donostia University Hospital, 20014 San Sebastián, Spain
| | - Gorka Larrinaga
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| | - David Lecumberri
- Department of Urology, Urduliz University Hospital, 48610 Urduliz, Spain;
| | | | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (G.L.); (J.I.L.)
- Pathology Department, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain; (M.A.); (S.N.); (M.A.); (I.B.); (L.B.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Tavares NT, Lobo J, Bagrodia A. MicroRNAs for detecting occult genitourinary cancer. Curr Opin Urol 2024; 34:20-26. [PMID: 37916954 DOI: 10.1097/mou.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Genitourinary (GU) malignancies are a real burden in global health worldwide. Each model has its own clinical challenges, and the early screening and/or detection of occult cancer in follow-up is transversal to all of them. MicroRNAs (miRNAs) have been proposed as minimally invasive liquid biopsy cancer biomarkers, due to their stability and low degradation. RECENT FINDINGS The different GU tumor models are in different stages concerning miRNAs as biomarkers for cancer detection. Testicular germ cell tumors (TGCTs) already have a specific defined target, miR-371a-3p, that has shown high sensitivity and specificity in different clinical settings, and is now in final stages of preanalytical testing before entering the clinic. The other GU malignancies are in a different stage, with many liquid biopsy studies (both in urine and plasma/serum) being currently performed, but there is not an agreeable miRNA or set of miRNAs that is ready to follow the footsteps of miR-371a-3p in TGCTs. SUMMARY Further studies with proper molecular characterization of miRNA profiles of GU malignancies and standardization of sampling, biobanking and formal analysis may aid in the advance and choosing of specific target sets to be used for occult cancer detection.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP)
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology, Portuguese Oncology Institute of Porto/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Aditya Bagrodia
- Department of Urology, University of California - San Diego Health, San Diego, California
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Koi Y, Yamamoto Y, Fukunaga S, Kajitani K, Ohara M, Daimaru Y, Tahara H, Tamada R. Assessment of the expression of microRNAs‑221‑3p, ‑146a‑5p, ‑16‑5p and BCL2 in oncocytic carcinoma of the breast: A case report. Oncol Lett 2023; 26:535. [PMID: 38020289 PMCID: PMC10655050 DOI: 10.3892/ol.2023.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/06/2023] [Indexed: 12/01/2023] Open
Abstract
Oncocytic carcinoma of the breast is rare and its molecular profiles remain poorly understood. MicroRNAs (miRNAs/miRs) have been identified as contributors to carcinogenesis at the post-transcriptional level; thus, an aberrant expression of miRNAs has attracted attention as a potential biomarker of numerous diseases, including cancer. The present study reports the case of a 76-year-old woman diagnosed with oncocytic carcinoma of the breast. Considering the distinctive feature of oncocytic carcinoma of the breast, which is the presence of granular eosinophilic cytoplasm containing numerous mitochondria, the present study hypothesized that the expression of mitochondria-related miRNAs could be altered in oncocytic carcinomas. Aberrant expression levels of the miRNAs previously reported as mitochondria-related miRNAs, such as miR-221-3p, -146a-5p and -16-5p, were revealed in tissue from specimens of oncocytic carcinoma of the breast, compared with that of a more typical type of invasive ductal carcinoma of the breast. The present study highlights the changes in miRNA expression in oncocytic carcinoma of the breast, suggesting its potential as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Yumiko Koi
- Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka 811-1395, Japan
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Saori Fukunaga
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Keiko Kajitani
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Masahiro Ohara
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Yutaka Daimaru
- Section of Pathological Research and Laboratory, Japan Agricultural Co-operatives Hiroshima General Hospital, Hiroshima 738-8503, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Ryuichiro Tamada
- Department of Surgery, Nishiki Hospital, Yamaguchi 741-0061, Japan
| |
Collapse
|
4
|
Boen JRA, Pintelon I, Gevaert AB, Segers VFM, van Craenenbroeck EM. Fluorescent In Situ Hybridization for miRNA Combined with Staining of Proteins. Curr Protoc 2023; 3:e880. [PMID: 37728252 DOI: 10.1002/cpz1.880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The last decades have illustrated the importance of microRNAs (miRNAs) in various biological and pathological processes. The combined visualization of miRNAs using fluorescent in situ hybridization (FISH) and proteins using immunofluorescence (IF) can reveal their spatiotemporal distribution in relation to the cell and tissue morphology and can provide interesting insights into miRNA-protein interactions. However, standardized protocols for co-localization of miRNAs and proteins are currently lacking, and substantial technical obstacles still need to be addressed. In particular, the incompatibility of protein IF protocols with steps required for miRNA FISH, such as proteolytic pretreatments and ethylcarbodiimide post-fixation, as well as hurdles related to low signal intensity of low-copy miRNAs, remains challenging. Our technique may considerably enhance miRNA-based research, as current detection techniques lack the ability to elucidate cellular and subcellular localization. Here, we describe an optimized 2-day protocol for combined detection of low-abundant miRNAs and proteins in cryosections of cardiac tissue, without the need for protease-dependent pretreatment or post-fixation treatment. We successfully demonstrate endothelial-specific localization of low-abundant miR-181c-5p in cardiac tissue. © 2023 Wiley Periodicals LLC. Basic Protocol: Fluorescent in situ hybridization for miRNA combined with staining of proteins.
Collapse
Affiliation(s)
- Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cellular Biology and Histology, Antwerp Centre for Advanced Microscopy, University of Antwerp, Antwerp, Belgium
| | - Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| | - Emeline M van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, Department of Cardiology, Antwerp University Hospital (UZA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
YOUSEF ARSANI, KIM SUNGSUN, KRIZOVA ADRIANA. CAIX Immunostaining in Non-neoplastic Renal Diseases. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:661-667. [PMID: 36340463 PMCID: PMC9628162 DOI: 10.21873/cdp.10157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIM Carbonic anhydrase 9 (CAIX) is a transmembrane metalloenzyme that regulates cellular adhesion, proliferation, and intra/extracellular pH. It is expressed primarily through a hypoxia-inducible factor 1 (HIF-1)-dependent mechanism. Its over-expression is closely related to somatic mutations in the Von Hippel-Lindau (VHL) gene. Studies have shown that it is over-expressed in renal cell carcinoma. In this study, we aimed to assess the value of CAIX immunostaining as an ancillary diagnostic tool in renal malignancies and medical renal diseases. PATIENTS AND METHODS Slides of kidney tumors and medical kidney diseases were selected to evaluate CAIX expression. Intensity and staining patterns of CAIX were independently assessed by two pathologists. RESULTS Our results showed strong and diffuse box-like membranous staining pattern in the majority of the clear cell renal cell carcinoma (ccRCC) cases (47/59 cases; 94%). A strong, diffuse cup-shaped staining pattern was observed in clear cell papillary RCC. Variable positivity was observed in other RCC (renal cell carcinoma) subtypes. In non-neoplastic renal conditions, the majority of the cases were negative for CAIX, and only a few cases demonstrated patchy non-specific staining. Of note, a single case of transplanted kidney biopsy taken because of delayed graft function showed a focal area of dilated tubules lined by cells with clear cytoplasm and enlarged nuclei with prominent nucleoli. This area showed diffuse membranous staining for CAIX. Two cases of end-stage renal disease showed a focal circumferential membranous staining pattern for CAIX in dilated tubules. CONCLUSION The CAIX immunoreactivity observed in these three cases could be indicative of an early-stage renal cell neoplasm and warrants further investigation.
Collapse
Affiliation(s)
- ARSANI YOUSEF
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Department of Laboratory Medicine, Unity Health, Toronto, ON, Canada
| | - SUNG SUN KIM
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - ADRIANA KRIZOVA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Department of Laboratory Medicine, Unity Health, Toronto, ON, Canada
| |
Collapse
|
6
|
Nourmohammadi F, Forghanifard MM, Abbaszadegan MR, Zarrinpour V. EZH2 regulates oncomiR-200c and EMT markers in esophageal squamous cell carcinomas. Sci Rep 2022; 12:18290. [PMID: 36316365 PMCID: PMC9622866 DOI: 10.1038/s41598-022-23253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
EZH2, as a histone methyltransferase, has been associated with cancer development and metastasis possibly through the regulation of microRNAs and cellular pathways such as EMT. In this study, the effect of EZH2 expression on miR-200c and important genes of the EMT pathway was investigated in esophageal squamous cell carcinoma (ESCC). Comparative qRT-PCR was used to examine EZH2 expression in ESCC lines (YM-1 and KYSE-30) following the separately transfected silencing and ectopic expressional EZH2 vectors in ESCC. Subsequently, expression of miR-200c and EMT markers was also assessed using qRT-PCR, western blotting and immunocytochemistry. Underexpression of Mir200c was detected in YM-1 and KYSE-30 cells after EZH2 silencing, while its overexpression was observed after EZH2 induced expression. Following EZH2 silencing, downregulation of mesenchymal markers and upregulation of epithelial markers were detected in the ESCCs. Our results demonstrate that EZH2 regulates the expression of miR-200c and critical EMT genes, implying that overexpression of Zeb2, Fibronectin, N-cadherin, and Vimentin lead to a mesenchymal phenotype and morphology while underexpression of epithelial genes, enhance cell migration after enforced expression of EZH2 in ESCCs. EZH2 gene can be a beneficial treatment marker for patients with esophageal cancer through decrease invasiveness of the disease and efficient response to neoadjuvant therapy.
Collapse
Affiliation(s)
| | | | | | - Vajiheh Zarrinpour
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
7
|
Mahani M, Khakbaz F, Ju H. Hairpin oligosensor using SiQDs: Förster resonance energy transfer study and application for miRNA-21 detection. Anal Bioanal Chem 2022; 414:2505-2512. [PMID: 35099583 DOI: 10.1007/s00216-022-03891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs are known to be tumor suppressors and promoters and can be used as cancer markers. In this work, a novel oligosensor was designed using Si quantum dots (SiQDs) for the detection of miRNAs. Five-nanometer SiQDs were synthesized, with a band gap of 2.8 eV, fluorescence lifetime of 4.56 μs (τ1/2 = 3.26 μs), quantum yield of 25%, fluorescence rate constant of 6.25 × 104, and non-radiative rate constant of 1.60 × 105 s-1. They showed excellent water dispersibility, good stability (with 95% confidence for 6-month storage) without photobleaching, and high biocompatibility, with an IC50 value of 292.2 μg/L. The SiQDs and Black Hole Quencher-1 (BHQ1) were conjugated to the 5' and 3' terminals of an oligomer, respectively. The resulting hairpin molecular beacon showed resonance energy transfer efficiency of 63%. A distance of 0.91 R (Förster distance) between SiQD and BHQ1 was obtained. In the presence of a stoichiometric amount of the complementary oligonucleotide (ΔGhybridization = -35.09 kcal mol-1), 98% of the fluorescence was recovered due to loop opening of the hairpin structure. The probe showed good selectivity toward miRNA-21, with a limit of detection of 14.9 fM. The oligosensor recoveries of miRNA-21 spiked in human serum and urine were 94-98% and 93-108%, respectively.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
LiKidMiRs: A ddPCR-Based Panel of 4 Circulating miRNAs for Detection of Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14040858. [PMID: 35205607 PMCID: PMC8869982 DOI: 10.3390/cancers14040858] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023] Open
Abstract
Simple Summary Early detection of renal cell carcinoma (RCC) significantly increases the likelihood of curative treatment, avoiding the need of adjuvant therapies, associated side effects and comorbidities. Thus, we aimed to discover circulating microRNAs that might aid in early, minimally invasive, RCC detection/diagnosis. Abstract Background: Decreased renal cell cancer-related mortality is an important societal goal, embodied by efforts to develop effective biomarkers enabling early detection and increasing the likelihood of curative treatment. Herein, we sought to develop a new biomarker for early and minimally invasive detection of renal cell carcinoma (RCC) based on a microRNA panel assessed by ddPCR. Methods: Plasma samples from patients with RCC (n = 124) or oncocytomas (n = 15), and 64 healthy donors, were selected. Hsa-miR-21-5p, hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p levels were evaluated using a ddPCR protocol. Results: RCC patients disclosed significantly higher circulating levels of hsa-miR-155-5p compared to healthy donors, whereas the opposite was observed for hsa-miR-21-5p levels. Furthermore, hsa-miR-21-5p and hsa-miR-155-5p panels detected RCC with high sensitivity (82.66%) and accuracy (71.89%). The hsa-miR-126-3p/hsa-miR-200b-3p panel identified the most common RCC subtype (clear cell, ccRCC) with 74.78% sensitivity. Conclusion: Variable combinations of plasma miR levels assessed by ddPCR enable accurate detection of RCC in general, and of ccRCC. These findings, if confirmed in larger studies, provide evidence for a novel ancillary tool which might aid in early detection of RCC.
Collapse
|
9
|
Li X, Ai H, Li B, Zhang C, Meng F, Ai Y. MIMRDA: A Method Incorporating the miRNA and mRNA Expression Profiles for Predicting miRNA-Disease Associations to Identify Key miRNAs (microRNAs). Front Genet 2022; 13:825318. [PMID: 35154284 PMCID: PMC8829120 DOI: 10.3389/fgene.2022.825318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 01/22/2023] Open
Abstract
Identifying cancer-related miRNAs (or microRNAs) that precisely target mRNAs is important for diagnosis and treatment of cancer. Creating novel methods to identify candidate miRNAs becomes an imminent Frontier of researches in the field. One major obstacle lies in the integration of the state-of-the-art databases. Here, we introduce a novel method, MIMRDA, which incorporates the miRNA and mRNA expression profiles for predicting miRNA-disease associations to identify key miRNAs. As a proof-of-principle study, we use the MIMRDA method to analyze TCGA datasets of 20 types (BLCA, BRCA, CESE, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, READ, SKCM, STAD, THCA and UCEC) of cancer, which identified hundreds of top-ranked miRNAs. Some (as Category 1) of them are endorsed by public databases including TCGA, miRTarBase, miR2Disease, HMDD, MISIM, ncDR and mTD; others (as Category 2) are supported by literature evidences. miR-21 (representing Category 1) and miR-1258 (representing Category 2) display the excellent characteristics of biomarkers in multi-dimensional assessments focusing on the function similarity analysis, overall survival analysis, and anti-cancer drugs’ sensitivity or resistance analysis. We compare the performance of the MIMRDA method over the Limma and SPIA packages, and estimate the accuracy of the MIMRDA method in classifying top-ranked miRNAs via the Random Forest simulation test. Our results indicate the superiority and effectiveness of the MIMRDA method, and recommend some top-ranked key miRNAs be potential biomarkers that warrant experimental validations.
Collapse
Affiliation(s)
- Xianbin Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hannan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Electrical and Computer Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Quality Supervision and Inspection of Automatic Equipment, National Center for Testing and Evaluation of Robots (Guangzhou), CRAT, SINOMACH-IT, Guangzhou, China
- *Correspondence: Yuncan Ai, ; Hannan Ai,
| | - Bizhou Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chaohui Zhang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fanmei Meng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuncan Ai
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yuncan Ai, ; Hannan Ai,
| |
Collapse
|
10
|
Unveiling the World of Circulating and Exosomal microRNAs in Renal Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13215252. [PMID: 34771419 PMCID: PMC8582552 DOI: 10.3390/cancers13215252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Liquid biopsies have emerged as a new tool for early diagnosis. In renal cell carcinoma, this need is also evident and may represent an improvement in disease management. Hence, in this review we discuss the most updated advances in the assessment of miRNAs in liquid biopsies. Moreover, we explore the potential of circulating or exosome miRNAs in renal cell carcinoma to overcome the tissue biopsies limitations. Abstract Renal cell carcinoma is the third most common urological cancer. Despite recent advances, late diagnosis and poor prognosis of advanced-stage disease remain a major problem, entailing the need for novel early diagnosis tools. Liquid biopsies represent a promising minimally invasive clinical tool, providing real-time feedback of tumor behavior and biological potential, addressing its clonal evolution and representing its heterogeneity. In particular, the study of circulating microRNAs and exosomal microRNAs in liquid biopsies experienced an exponential increase in recent years, considering the potential clinical utility and available technology that facilitates implementation. Herein, we provide a systematic review on the applicability of these biomarkers in the context of renal cell carcinoma. Issues such as additional benefit from extracting microRNAs transported in extracellular vesicles, use for subtyping and representation of different histological types, correlation with tumor burden, and prediction of patient outcome are also addressed. Despite the need for more conclusive research, available data indicate that exosomal microRNAs represent a robust minimally invasive biomarker for renal cell carcinoma. Thus, innovative research on microRNAs and novel detection techniques are likely to provide clinically relevant biomarkers, overcome current clinical challenges, and improve patient management.
Collapse
|
11
|
Pietrus M, Seweryn M, Kapusta P, Wołkow P, Pityński K, Wątor G. Low Expression of miR-375 and miR-190b Differentiates Grade 3 Patients with Endometrial Cancer. Biomolecules 2021; 11:biom11020274. [PMID: 33668431 PMCID: PMC7918779 DOI: 10.3390/biom11020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Endometrial cancer (EC) is treated according to the stage and prognostic risk factors. Most EC patients are in the early stages and they are treated surgically. However some of them, including those with high grade (grade 3) are in the intermediate and high intermediate prognostic risk groups and may require adjuvant therapy. The goal of the study was to find differences between grades based on an miRNA gene expression profile. Tumor samples from 24 patients with grade 1 (n = 10), 2 (n = 7), and 3 (n = 7) EC were subjected to miRNA profiling using next generation sequencing. The results obtained were validated using the miRNA profile of 407 EC tumors from the external Cancer Genome Atlas (TCGA) cohort. We obtained sets of differentially expressed (DE) miRNAs with the largest amount between G2 to G1 (50 transcripts) and G3 to G1 (40 transcripts) patients. Validation of our results with external data (TCGA) gave us a reasonable gene overlap of which we selected two miRNAs (miR-375 and miR190b) that distinguish the high grade best from the low grade EC. Unsupervised clustering showed a high degree of heterogeneity within grade 2 samples. MiR-375 as well as 190b might be useful to create grading verification test for high grade EC. One of the possible mechanisms that is responsible for the high grade is modulation by virus of host morphology or physiology.
Collapse
Affiliation(s)
- Miłosz Pietrus
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Department of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Correspondence: (K.P.); (G.W.)
| | - Gracjan Wątor
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland; (M.S.); (P.K.); (P.W.)
- Correspondence: (K.P.); (G.W.)
| |
Collapse
|
12
|
Outeiro-Pinho G, Barros-Silva D, Correia MP, Henrique R, Jerónimo C. Renal Cell Tumors: Uncovering the Biomarker Potential of ncRNAs. Cancers (Basel) 2020; 12:cancers12082214. [PMID: 32784737 PMCID: PMC7465320 DOI: 10.3390/cancers12082214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell tumors (RCT) remain as one of the most common and lethal urological tumors worldwide. Discrimination between (1) benign and malignant disease, (2) indolent and aggressive tumors, and (3) patient responsiveness to a specific therapy is of major clinical importance, allowing for a more efficient patient management. Nonetheless, currently available tools provide limited information and novel strategies are needed. Over the years, a putative role of non-coding RNAs (ncRNAs) as disease biomarkers has gained relevance and is now one of the most prolific fields in biological sciences. Herein, we extensively sought the most significant reports on ncRNAs as potential RCTs' diagnostic, prognostic, predictive, and monitoring biomarkers. We could conclude that ncRNAs, either alone or in combination with currently used clinical and pathological parameters, might represent key elements to improve patient management, potentiating the implementation of precision medicine. Nevertheless, most ncRNA biomarkers require large-scale validation studies, prior to clinical implementation.
Collapse
Affiliation(s)
- Gonçalo Outeiro-Pinho
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Daniela Barros-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.O.-P.); (D.B.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-225084000; Fax: +351-225084199
| |
Collapse
|
13
|
Prognostic urinary miRNAs for the assessment of small renal masses. Clin Biochem 2020; 75:15-22. [DOI: 10.1016/j.clinbiochem.2019.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 01/14/2023]
|
14
|
Identification of Prognostic Biomarkers in the Urinary Peptidome of the Small Renal Mass. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2366-2376. [DOI: 10.1016/j.ajpath.2019.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 01/10/2023]
|
15
|
Cimadamore A, Scarpelli M, Santoni M, Massari F, Tartari F, Cerqueti R, Lopez-Beltran A, Cheng L, Montironi R. Genitourinary Tumors: Update on Molecular Biomarkers for Diagnosis, Prognosis and Prediction of Response to Therapy. Curr Drug Metab 2019; 20:305-312. [PMID: 30799789 DOI: 10.2174/1389200220666190225124352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Research of biomarkers in genitourinary tumors goes along with the development of complex emerging techniques ranging from next generation sequencing platforms, applied to archival pathology specimens, cytological samples, liquid biopsies, and to patient-derived tumor models. METHODS This contribution is an update on molecular biomarkers for diagnosis, prognosis and prediction of response to therapy in genitourinary tumors. The following major topics are dealt with: Immunological biomarkers, including the microbiome, and their potential role and caveats in renal cell carcinoma, bladder and prostate cancers and testicular germ cell tumors; Tissue biomarkers for imaging and therapy, with emphasis on Prostate-specific membrane antigen in prostate cancer; Liquid biomarkers in prostate cancer, including circulating tumor cell isolation and characterization in renal cell carcinoma, bladder cancer with emphasis on biomarkers detectable in the urine and testicular germ cell tumors; and Biomarkers and economic sustainability. CONCLUSION The identification of effective biomarkers has become a major focus in cancer research, mainly due to the necessity of selecting potentially responsive patients in order to improve their outcomes, as well as to reduce the toxicity and costs related to ineffective treatments.
Collapse
Affiliation(s)
- Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | | | - Francesca Tartari
- Department of Economics and Law, University of Macerata, Macerata, Italy
| | - Roy Cerqueti
- Department of Economics and Law, University of Macerata, Macerata, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
16
|
Saleeb R, Kim SS, Ding Q, Scorilas A, Lin S, Khella HW, Boulos C, Ibrahim G, Yousef GM. The miR-200 family as prognostic markers in clear cell renal cell carcinoma. Urol Oncol 2019; 37:955-963. [PMID: 31635993 DOI: 10.1016/j.urolonc.2019.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/22/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by mRNA cleavage or translational repression. The miR-200 family is involved in the regulation of various tumor biologic processes including apoptosis, proliferation, invasion, and metastasis. They function mainly as tumor suppressors. In this study, we aim to validate the prognostic significance of miR-200 family using large cohort of primary clear cell renal cell carcinoma (ccRCC) and matched normal tissue and to explore the role of miR-200 family in RCC pathogenesis and progression. MATERIALS AND METHODS We analyzed the expression of 3 members of the miR-200 family; miR-141, miR-200b, and miR-200c, between primary ccRCC, matched normal renal tissues, and nonmatched metastatic RCC. We compared clinicopathologic parameter including disease-free survival to miR-200 family expression. Additionally, we validated our results using The Cancer Genome Atlas dataset. We explored functional role of these miRNAs by bioinformatics analyses. RESULTS AND CONCLUSIONS Expression of miR-200 family significantly decreased in cancer compared to non-neoplastic tissues. miR-141 and miR-200b were significantly down-regulated in metastatic than primary tumors. There was statistically significant negative association between all 3 miRNAs and tumor size and stage. As binary variables, univariate analyses revealed that miR-141, miR-200b, and miR-200c-positive ccRCC patients have a statistically significant lower chance of disease-recurrence or relapse and multivariate analyses showed miR-200b and miR-200c-positive patients have longer disease-free survival. We could predict disease-free survival better when 2 or more miRNAs were used as a combination. Overall survival analysis using The Cancer Genome Atlas data revealed that miR-200b-positive patients have significantly better survival. These results suggest that miR-141, miR-200b, and miR-200c are independent prognostic markers for ccRCC. Targets of these miRNAs are associated with pathways related to cancer invasion and metastasis, including TRAIL pathway, VEGF and VEGFR signaling network, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sung Sun Kim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada; Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Qiang Ding
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Athens, Greece
| | - Sicheng Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Heba Wz Khella
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Carl Boulos
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Gena Ibrahim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
17
|
Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA, Pichler M. Current Concepts of Non-Coding RNAs in the Pathogenesis of Non-Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2019; 11:E1580. [PMID: 31627266 PMCID: PMC6826455 DOI: 10.3390/cancers11101580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a relatively rare malignancy of the urinary tract system. RCC is a heterogenous disease in terms of underlying histology and its associated underlying pathobiology, prognosis and treatment schedule. The most prevalent histological RCC subtype is clear-cell renal cell carcinoma (ccRCC), accounting for about 70-80% of all RCCs. Though the pathobiology and treatment schedule for ccRCC are well-established, non-ccRCC subtypes account for 20%-30% of RCC altogether, and their underlying molecular biology and treatment options are poorly defined. The class of non-coding RNAs-molecules that are generally not translated into proteins-are new cancer drivers and suppressors in all types of cancer. Of these, small non-coding microRNAs (miRNAs) contribute to carcinogenesis by regulating posttranscriptional gene silencing. Additionally, a growing body of evidence supports the role of long non-coding RNAs (lncRNAs) in cancer development and progression. Most studies on non-coding RNAs in RCC focus on clear-cell histology, and there is a relatively limited number of studies on non-ccRCC subtypes. The aim of this review is to give an overview of the current knowledge regarding the role of non-coding RNAs (including short and long non-coding RNAs) in non-ccRCC and to highlight possible implications as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Dominik A Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Christiane Klec
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
| | - Jaroslav Juracek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic.
| | - Rares Drula
- Research Centre for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Shiomi E, Sugai T, Ishida K, Osakabe M, Tsuyukubo T, Kato Y, Takata R, Obara W. Analysis of Expression Patterns of MicroRNAs That Are Closely Associated With Renal Carcinogenesis. Front Oncol 2019; 9:431. [PMID: 31214494 PMCID: PMC6555129 DOI: 10.3389/fonc.2019.00431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background: MicroRNAs (miRNA) are frequently dysregulated in clear cell renal cell carcinoma (ccRCC). Objective: This study aimed to elucidate the role of miRNA expression patterns in renal carcinogenesis and to identify the specific miRNAs that exhibit expression patterns closely associated with patient outcomes. Methods: We examined the expression patterns of selected miRNAs, including miRNA-155-5p, miRNA-122-5p, miRNA-21-5p, miRNA-185-5p, miRNA-106a-5p, miRNA-106b-3p, miRNA-34b-3p, miRNA-210-3p, miRNA-141-3p, miRNA-200c-3p, miRNA-135a-5p, miRNA-30a-5p, miRNA-218-5p, miRNA-429, miRNA-200a-3p and miRNA-200b-3p, in 96 samples of ccRCCs using the TaqMan real-time PCR method. In addition, cluster analysis was performed to stratify expression patterns of multiple miRNAs. Results: In the present study, three distinct subgroups could be clearly stratified in ccRCCs. Subgroup 1 was characterized by upregulation of miRNA-155-5p, miRNA-122-5p, miRNA-21-5p, miRNA-185-5p, miRNA-106a-5p, miRNA-106b-3p, miRNA-34b-3p and miRNA-210-3p. Subgroup 2 was closely associated with downregulation of miRNA-141-3p, miRNA200c-3p, miRNA-30a-5p, miRNA-218-5p, miRNA-429, miRNA-200a-3p and miRNA-200b-3p. Moreover, significant lower expression of miRNA-135a-5p was a distinctive feature of subgroup 3, which was correlated with metachronous metastasis. Among the individual markers in subgroup 3, miRNA-135a-5p was retained in multivariate analysis. The cutoff value of miRNA-135a-5p expression to identify the association of an altered level of miRNA-135a-5p with metachronous metastasis in ccRCCs was determined and showed excellent specificity. Conclusion: We suggest that the expression pattern of the chosen miRNAs is useful to identify renal carcinogenesis and to help identify the association of such expression patterns with metachronous metastasis in ccRCCs. In addition, miRNA-135a-5p was an excellent marker for prediction of metachronous metastasis.
Collapse
Affiliation(s)
- Ei Shiomi
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuyuki Ishida
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Takashi Tsuyukubo
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Morioka, Japan.,Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Ryo Takata
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Wataru Obara
- Department of Urology, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
19
|
Zhao L, Quan J, Li Z, Pan X, Wang J, Xu J, Xu W, Guan X, Li H, Yang S, Gui Y, Chen Y, Lai Y. MicroRNA‑222‑3p promotes tumor cell migration and invasion and inhibits apoptosis, and is correlated with an unfavorable prognosis of patients with renal cell carcinoma. Int J Mol Med 2019; 43:525-534. [PMID: 30320376 DOI: 10.3892/ijmm.2018.3931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 10/09/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of microRNA (miR)‑222‑3p in renal cell carcinoma (RCC). The expression level of miR‑222‑3p was detected in RCC tissues and cell lines (ACHN, 786‑O, Caki‑1 and 769‑P) and was identified to be significantly upregulated compared with the level in adjacent normal renal tissues and HK‑2 cells. Further in vitro experiments demonstrated that the over-expression of miR‑222‑3p promoted the migration and invasion, and attenuated the apoptosis of 786‑O cells, whereas the knockdown of miR‑222‑3p suppressed the migration and invasion and induced the apoptosis of 786‑O cells. Similar results were observed in the ACHN cell line in terms of migration, invasion and apoptosis. Furthermore, the expression level of miR‑222‑3p was measured in 42 RCC formaldehyde‑fixed paraffin‑embedded samples, and the association between the expression of miR‑222‑3p and the pathological characteristics and overall survival rate of patients with RCC was analyzed. The results demonstrated that patients with a higher expression of miR‑222‑3p had a significantly lower overall survival rate, compared with those with a lower expression of miR‑222‑3p [hazard ratio (HR)=5.120; P=0.036]. Multivariate analysis identified that patients with a higher expression of miR‑222‑3p retained the statistically significant decrease in overall survival rate compared with patients with a lower expression of miR‑222‑3p (HR=5.636; P=0.030). Furthermore, Kaplan‑Meier survival curves indicated that patients with higher miR‑222‑3p had significantly lower overall survival rates compared with patients with lower miR‑222‑3p (P=0.020). Taken together, these results suggested that miR‑222‑3p serves as an onco‑miR in RCC and may be a potential prognostic biomarker and therapeutic target in patients with RCC.
Collapse
Affiliation(s)
- Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jing Quan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zuwei Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Jinling Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Weijie Xu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Guan
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Hang Li
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
20
|
Khella HWZ, Yousef GM. Translational research: Empowering the role of pathologists and cytopathologists. Cancer Cytopathol 2018; 126:831-838. [PMID: 30281935 DOI: 10.1002/cncy.22046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
Abstract
Research activity is in the core essence of pathology. Advancing our understanding of disease pathogenesis translates into better patient care. Because of their unique position, laboratorians are the best to accurately identify, annotate, and classify research specimens. They also are essential for the accurate interpretation of genomic testing. Currently, cytopathologists are moving to the center of patient care through active communication with clinicians and patients. There are certain research areas in which cytopathologists can be pioneers, such as image analysis, morphology research, and genotype-phenotype association studies integrating morphologic and molecular features. Health service utilization research is another domain in which cytopathologists can excel. Successful research is a journey that necessitates multiple steps. It also involves building expertise in how to overcome obstacles and handle challenges.
Collapse
Affiliation(s)
- Heba W Z Khella
- Department of Laboratory Medicine, Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Anatomy, Canadian Memorial Chiropractic College, North York, Ontario, Canada
| | - George M Yousef
- Department of Laboratory Medicine, Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|