1
|
Wang T, Ding J, Chen Z, Zhang Z, Rong Y, Li G, He C, Chen X. Injectable, Adhesive Albumin Nanoparticle-Incorporated Hydrogel for Sustained Localized Drug Delivery and Efficient Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9868-9879. [PMID: 38349713 DOI: 10.1021/acsami.3c18306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Injectable hydrogels are receiving increasing attention as local depots for sustained anticancer drug delivery. However, most current hydrogel-based carriers lack tissue-adhesive ability, a property that is important for the immobilization of drug-loaded systems at tumor sites to increase local drug concentration. In this study, we developed a paclitaxel (PTX)-loaded injectable hydrogel with firm tissue adhesion for localized tumor therapy. PTX-loaded bovine serum albumin (BSA) nanoparticles (PTX@BN) were prepared, and the drug-loaded hydrogel was then fabricated by cross-linking PTX@BN with o-phthalaldehyde (OPA)-terminated 4-armed poly(ethylene glycol) (4aPEG-OPA) via a condensation reaction between OPA and the amines in BSA. The hydrogel showed firm adhesion to various organs and tumor tissues ex vivo due to the condensation reaction of unreacted OPA groups and amines in the tissues. The PTX-loaded nanocomposite hydrogels sustained PTX release over 30 days following the Korsmeyer-Peppas model and exhibited notable inhibition activities against mouse C26 colon and 4T1 breast cancer cells in vitro. Following peritumoral injection into mice with C26 or 4T1 tumors, the PTX@BN-loaded hydrogel significantly enhanced the antitumor efficacy and prolonged animal survival time compared to free PTX solutions with low systemic toxicity. Therefore, the adhesive, PTX-loaded nanocomposite hydrogels have the potential for efficient localized tumor therapy.
Collapse
Affiliation(s)
- Tianran Wang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhixiong Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. MATERIALS 2022; 15:ma15155215. [PMID: 35955150 PMCID: PMC9369661 DOI: 10.3390/ma15155215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Laparoscopic surgery is undergoing rapid development. Replacing the traditional method of joining cut tissues with sutures or staples could greatly simplify and speed up laparoscopic procedures. This alternative could undoubtedly be adhesives. For decades, scientists have been working on a material to bond tissues together to create the best possible conditions for tissue regeneration. The results of research on tissue adhesives achieved over the past years show comparable treatment effects to traditional methods. Tissue adhesives are a good alternative to surgical sutures in wound closure. This article is a review of the most important groups of tissue adhesives including their properties and possible applications. Recent reports on the development of biological adhesives are also discussed.
Collapse
|
3
|
Kakabadze MZ, Paresishvili T, Mardaleishvili K, Vadachkoria Z, Kipshidze N, Jangavadze M, Karalashvili L, Ghambashidze K, Chakhunashvili D, Kakabadze Z. Local drug delivery system for the treatment of tongue squamous cell carcinoma in rats. Oncol Lett 2021; 23:13. [PMID: 34820012 PMCID: PMC8607325 DOI: 10.3892/ol.2021.13131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
The present study describes a local drug delivery system with two functions, which can suppress tumor growth and accelerate wound healing. Thе system consists of a two-layer multicomponent fibrin-based gel (MCPFTG). The internal layer of MCPFTG, which is in direct contact with the wound surface, contains cisplatin placed on a CultiSpher-S collagen microcarrier. The external layer of MCPFTG consists of a CultiSpher-S microcarrier with lyophilized bone marrow stem cells (BMSCs). The efficacy of MCPFTG was evaluated in a rat model of squamous cell carcinoma of the tongue created with 4-nitroquinoline 1-oxide. The results of the study showed that, within 20–25 days, a non-healing wound of the tongue was formed in animals that underwent only 85% resection of squamous cell carcinoma, while rapid progression of the residual tumor was concomitantly observed. Immunohistochemical methods revealed high expression of cyclin D1 and low expression of E-cadherin in these animals. Additionally, high expression of p63 and Ki-67 was noted. In 80% of animals with squamous cell carcinoma of the tongue that were treated with MCPFTG after 85% tumor resection, a noticeable suppression of tumor growth was evident throughout 150 days, and tumor recurrence was not detected. Immunohistochemistry revealed low or moderate expression of cyclin D1, and high expression of E-cadherin throughout the whole observation period. The MCPFTG-based local drug delivery system was shown to be effective in suppressing tumor growth and preventing recurrence. MCPFTG decreased the toxicity of cisplatin and enhanced its antitumor activity. In addition, lyophilized paracrine BMSC factors present in MCPFTG accelerated wound healing after tumor removal. Thus, the present study suggests novel opportunities for the development of a multifunctional drug delivery system for the treatment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Mariam Z Kakabadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | | | - Zurab Vadachkoria
- Department of Child and Adolescent Maxillo-facial Surgery and Surgical Stomatology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nicholas Kipshidze
- Department of Interventional Cardiology, Cardiovascular Research Foundation, New York, NY 10019, USA
| | - Mikheil Jangavadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ketevan Ghambashidze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
4
|
Stefaniuk D, Misztal T, Pięt M, Zając A, Kopycińska M, Matuszewska A, Ruminowicz-Stefaniuk M, Matuszewski Ł, Marcińczyk N, Belcarz A, Żuchowski J, Skrabalak I, Grąz M, Ciołek B, Paduch R, Jaszek M. Thromboelastometric Analysis of Anticancer Cerrena unicolor Subfractions Reveal Their Potential as Fibrin Glue Drug Carrier Enhancers. Biomolecules 2021; 11:biom11091263. [PMID: 34572476 PMCID: PMC8470457 DOI: 10.3390/biom11091263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, the influence of two subfractions (with previously proven anti-cancer properties) isolated from wood rot fungus Cerrena unicolor on the formation of a fibrin clot was investigated in the context of potential use as fibrin glue and sealant enhancers and potential wound healing agents. With the use of ROTEM thromboelastometry, we demonstrated that, in the presence of fibrinogen and thrombin, the S6 fraction accelerated the formation of a fibrin clot, had a positive effect on its elasticity modulus, and enhanced the degree of fibrin cross-linking. The S5 fraction alone showed no influence on the fibrin coagulation process; however, in the presence of fibrin, it exhibited a decrease in anti-proliferative properties against the HT-29 line, while it increased the proliferation of cells in general at a concentration of 100 µg/mL. Both fractions retained their proapoptotic properties to a lesser degree. In combination with the S6 fraction in the ratio of 1:1 and 1:3, the fractions contributed to increased inhibition of the activity of matrix metalloproteinases (MMPs). This may suggest anti-metastatic activity of the combined fractions. In conclusion, the potential of the fractions isolated from the C. unicolor secretome to be used as a means of improving the wound healing process was presented. The potential for delivering agents with cytostatic properties introduced far from the site of action or exerting a pro-proliferative effect at the wound site with the aid of a fibrin sealant was demonstrated.
Collapse
Affiliation(s)
- Dawid Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
- Correspondence: (D.S.); (T.M.)
| | - Tomasz Misztal
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: (D.S.); (T.M.)
| | - Mateusz Pięt
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Adrian Zając
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Magdalena Kopycińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Anna Matuszewska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Marta Ruminowicz-Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Łukasz Matuszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Faculty of Medicine, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Natalia Marcińczyk
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation—State Research Institute, 24-100 Puławy, Poland;
| | - Ilona Skrabalak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Beata Ciołek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (M.P.); (M.K.); (R.P.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.M.); (M.R.-S.); (I.S.); (M.G.); (B.C.); (M.J.)
| |
Collapse
|
5
|
A 10-gene-methylation-based signature for prognosis prediction of colorectal cancer. Cancer Genet 2021; 252-253:80-86. [PMID: 33444882 DOI: 10.1016/j.cancergen.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor of digestive tract which has high incidence and mortality rates. Accurate prognosis prediction of CRC patients is pivotal to reduce the mortality and disease burden. METHODS In this study, we comprehensively analyzed the gene expression and methylation data of CRC samples from The Cancer Genome Atlas (TCGA). Differential expression genes (DEGs) and methylation CpGs (DMCs) in tumor tissues compared with adjacent normal tissues of CRC were first identified. Functional enrichment analysis of DEGs and DMCs was performed by Database for Annotation, Visualization and Integrated Discovery (DAVID). Spearman correlation analysis was used to screen DMCs that negatively correlated with gene expressions which were subsequently applied to sure independence screening (SIS) along with stepwise regression for screening optimal CpGs for CRC prognosis prediction model construction by Cox regression analysis. RESULTS We identified a total of 1774 DEGs (663 upregulated and 1111 downregulated) and 11,975 DMCs (7385 hypermethylated and 4590 hypomethylated) in CRC tumor samples compared with adjacent normal samples. The hypermethylated loci were mainly located on CpG island, while the hypomethylated loci were mainly located on N-shore. Spearman correlation analysis screened 321 DMCs that negatively correlated with expressions of their annotated genes. Cox regression model consist of 10 CpGs was finally established which could effectively stratified CRC patients that exhibited significantly different overall survival probability independent of age, gender, and pathological staging. CONCLUSION We established a prognosis prediction model based on 10 methylation sites, which could evaluate the prognosis of CRC patients.
Collapse
|
6
|
Antitumor Activity of Ruthenium(II) Terpyridine Complexes towards Colon Cancer Cells In Vitro and In Vivo. Molecules 2020; 25:molecules25204699. [PMID: 33066568 PMCID: PMC7587369 DOI: 10.3390/molecules25204699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Ruthenium complexes have attracted considerable interest as potential antitumor agents. Therefore, antitumor activity and systemic toxicity of ruthenium(II) terpyridine complexes were evaluated in heterotopic mouse colon carcinoma. In the present study, cytotoxic effects of recently synthesized ruthenium(II) terpyridine complexes [Ru(Cl-tpy)(en)Cl][Cl] (en = ethylenediamine, tpy = terpyridine, Ru-1) and [Ru(Cl-tpy)(dach)Cl][Cl] (dach = 1,2-diaminocyclohexane, Ru-2) towards human and murine colon carcinoma cells were tested in vitro and in vivo and compared with oxaliplatin, the most commonly used chemotherapeutic agent against colorectal carcinoma. Ruthenium(II) complexes showed moderate cytotoxicity with IC50 values ranging between 19.1 to 167.3 μM against two human, HCT116 and SW480, and one mouse colon carcinoma cell line, CT26. Both ruthenium(II) terpyridine complexes exerted a moderate apoptotic effect in colon carcinoma cells, but induced significant necrotic death. Additionally, both complexes induced cell cycle disturbances, but these effects were specific for the cell line. Further, Ru-1 significantly reduced the growth of primary heterotopic tumor in mice, similarly to oxaliplatin. Renal damage in Ru-1 treated mice was lower in comparison with oxaliplatin treated mice, as evaluated by serum levels of urea and creatinine and histological evaluation, but Ru-1 induced higher liver damage than oxaliplatin, evaluated by the serum levels of alanine aminotransferase. Additionally, the interaction of these ruthenium(II) terpyridine complexes with the tripeptide glutathione (GSH) was investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. All reactions led to the formation of monofunctional thiolate adducts [Ru(Cl-tpy)(en)GS-S] (3) and [Ru(Cl-tpy)(dach)GS-S] (4). Our data highlight the significant cytotoxic activity of [Ru(Cl-tpy)(en)Cl][Cl] against human and mouse colon carcinoma cells, as well as in vivo antitumor activity in CT26 tumor-bearing mice similar to standard chemotherapeutic oxaliplatin, accompanied with lower nephrotoxicity in comparison with oxaliplatin.
Collapse
|
7
|
De Mattia E, Dreussi E, Montico M, Gagno S, Zanusso C, Quartuccio L, De Vita S, Guardascione M, Buonadonna A, D'Andrea M, Pella N, Favaretto A, Mini E, Nobili S, Romanato L, Cecchin E, Toffoli G. A Clinical-Genetic Score to Identify Surgically Resected Colorectal Cancer Patients Benefiting From an Adjuvant Fluoropyrimidine-Based Therapy. Front Pharmacol 2018; 9:1101. [PMID: 30337874 PMCID: PMC6180157 DOI: 10.3389/fphar.2018.01101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
There are clinical challenges related to adjuvant treatment in colorectal cancer (CRC) and novel molecular markers are needed for better risk stratification of patients. Our aim was to integrate our previously reported clinical-genetic prognostic score with new immunogenetic markers of 5-year disease-free survival (DFS) to evaluate the recurrence risk stratification before fluoropyrimidine (FL)-based adjuvant therapy. The study population included a total of 270 stage II-III CRC patients treated with adjuvant FL with (FL + OXA, n = 119) or without oxaliplatin (FL, n = 151). Patients were genotyped for a panel of 192 tagging polymorphisms in 34 immune-related genes. The IFNG-rs1861494 polymorphism was associated with worse DFS in the FL + OXA (HR = 2.14, 95%CI 1.13–4.08; P = 0.020, q-value = 0.249) and FL (HR = 1.97, 95%CI 1.00–3.86; P = 0.049) cohorts, according to a dominant model. The integration of IFNG-rs1861494 in our previous clinical genetic multiparametric score of DFS improved the patients’ risk stratification (Log-rank P = 0.0026 in the pooled population). These findings could improve the discrimination of patients who would benefit from adjuvant treatment. In addition, the results may help better elucidate the interplay between the immune system and chemotherapeutics and help determine the efficacy of anti-tumor strategies.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Eva Dreussi
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Marcella Montico
- Scientific Directorate, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Chiara Zanusso
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Luca Quartuccio
- Department of Medical Area (DAME), Rheumatology Clinic, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Salvatore De Vita
- Department of Medical Area (DAME), Rheumatology Clinic, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Michela Guardascione
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Angela Buonadonna
- Medical Oncology Unit B, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Mario D'Andrea
- Medical Oncology Unit, "San Filippo Neri Hospital", Rome, Italy
| | | | | | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Loredana Romanato
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| |
Collapse
|
8
|
Cecchin E, De Mattia E, Ecca F, Toffoli G. Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resist Updat 2018; 39:18-40. [PMID: 30075835 DOI: 10.1016/j.drup.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Adverse events affect the pharmacological treatment of approximately 90% of colorectal cancer (CRC) patients at any stage of the disease. Chemotherapy including fluoropyrimidines, irinotecan, and oxaliplatin is the cornerstone of the pharmacological treatment of CRC. The introduction of novel targeted agents, as anti-EGFR (i.e. cetuximab, panitumumab) and antiangiogenic (i.e. bevacizumab, ziv-aflibercept, regorafenib, and ramucirumab) molecules, into the oncologist's toolbox has led to significant improvements in the life expectancy of advanced CRC patients, but with a substantial increase in toxicity burden. In this respect, pharmacogenomics has largely been applied to the personalization of CRC chemotherapy, focusing mainly on the study of inhered polymorphisms in genes encoding phase I and II enzymes, ATP-binding cassette (ABC)/solute carrier (SLC) membrane transporters, proteins involved in DNA repair, folate pathway and immune response. These research efforts have led to the identification of some validated genetic markers of chemotherapy toxicity, for fluoropyrimidines and irinotecan. No validated genetic determinants of oxaliplatin-specific toxicity, as peripheral neuropathy, has thus far been established. The contribution of host genetic markers in predicting the toxicity associated with novel targeted agents' administration is still controversial due to the heterogeneity of published data. Pharmacogenomics guidelines have been published by some international scientific consortia such as the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) strongly suggesting a pre-treatment dose adjustment of irinotecan based on UGT1A1*28 genotype and of fluoropyrimidines based on some DPYD genetic variants, to increase treatment safety. However, these recommendations are still poorly applied at the patient's bedside. Several ongoing projects in the U.S. and Europe are currently evaluating how pharmacogenomics can be implemented successfully in daily clinical practice. The majority of drug-related adverse events are still unexplained, and a great deal of ongoing research is aimed at improving knowledge of the role of pharmacogenomics in increasing treatment safety. In this review, the issue of pre-treatment identification of CRC patients at risk of toxicity via the analysis of patients' genetic profiles is addressed. Available pharmacogenomics guidelines with ongoing efforts to implement them in clinical practice and new exploratory markers for clinical validation are described.
Collapse
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy.
| |
Collapse
|