1
|
Sun X, Zhang C, Fan B, Liu Q, Shi X, Wang S, Chen T, Cai X, Hu C, Sun H, Puno P, Cao P. Cotargeting of thioredoxin 1 and glutamate-cysteine ligase in both imatinib-sensitive and imatinib-resistant CML cells. Biochem Pharmacol 2025; 233:116763. [PMID: 39832669 DOI: 10.1016/j.bcp.2025.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Chronic myeloid leukemia (CML) is a type of malignancy characterized by harboring the oncogene Bcr-Abl, which encodes the constitutively activated tyrosine kinase BCR-ABL. Although tyrosine kinase inhibitors targeting BCR-ABL have revolutionized CML therapy, native and acquired drug resistance commonly remains a great challenge. Thioredoxin 1 (Trx1) and glutamate-cysteine ligase (GCL), which are two major antioxidants that maintain cellular redox homeostasis, are potential targets for cancer therapy and overcoming drug resistance. However, how their inhibition is implicated in CML is still unclear. Here, our results revealed that Trx1 was overexpressed in patients with CML compared with healthy donors. Trx1 expression was greater in imatinib-resistant CML cells than in imatinib-sensitive cells. Pharmacological inhibitors of Trx1 attenuated cell growth and reduced colony formation in both imatinib-sensitive and imatinib-resistant CML cells. Furthermore, decreased Trx1 expression enhanced the cytotoxicity of the GCL inhibitor buthionine sulfoximine (BSO). We surmise that the combined inhibition of Trx1 and GCL promotes the induction of hydrogen peroxide and depletes GPX4 expression in CML cells, resulting in ferroptosis in cancerous cells. Finally, the combined inhibition of Trx1 and GCL had a synergistic effect on CML cells in murine xenograft models. These findings offer crucial informationregarding the combined roles ofTrx1 and GCL in triggering ferroptosis in CML and suggestefficacioustherapeutic uses for these systems in this disease.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Thioredoxins/metabolism
- Thioredoxins/antagonists & inhibitors
- Thioredoxins/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/physiology
- Animals
- Mice
- Glutamate-Cysteine Ligase/metabolism
- Glutamate-Cysteine Ligase/genetics
- Glutamate-Cysteine Ligase/antagonists & inhibitors
- Female
- Antineoplastic Agents/pharmacology
- Male
- Mice, Nude
- Cell Line, Tumor
- K562 Cells
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Xiaoyan Sun
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Chunli Zhang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Bo Fan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Qingyu Liu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Xiaofeng Shi
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shuxia Wang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Ting Chen
- Hematology, The People's Hospital of Rugao, Jiangsu, PR China
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Chunping Hu
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, PR China
| | - Pematenzin Puno
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, PR China.
| | - Peng Cao
- Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, RP China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, PR China.
| |
Collapse
|
2
|
Chmelyuk N, Kordyukova M, Sorokina M, Sinyavskiy S, Meshcheryakova V, Belousov V, Abakumova T. Inhibition of Thioredoxin-Reductase by Auranofin as a Pro-Oxidant Anticancer Strategy for Glioblastoma: In Vitro and In Vivo Studies. Int J Mol Sci 2025; 26:2084. [PMID: 40076706 PMCID: PMC11900239 DOI: 10.3390/ijms26052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Reactive oxygen species (ROS) play a key role in cancer progression and antitumor therapy. Glioblastoma is a highly heterogeneous tumor with different cell populations exhibiting various redox statuses. Elevated ROS levels in cancer cells promote tumor growth and simultaneously make them more sensitive to anticancer drugs, but further elevation leads to cell death and apoptosis. Meanwhile, various subsets of tumor cells, such a glioblastoma stem cells (GSC) or the cells in tumor microenvironment (TME), demonstrate adaptive mechanisms to excessive ROS production by developing effective antioxidant systems such as glutathione- and thioredoxin-dependent. GSCs demonstrate higher chemoresistance and lower ROS levels than other glioma cells, while TME cells create a pro-oxidative environment and have immunosuppressive effects. Both subpopulations have become an attractive target for developing therapies. Increased expression of thioredoxin reductase (TrxR) is often associated with tumor progression and poor patient survival. Various TrxR inhibitors have been investigated as potential anticancer therapies, including nitrosoureas, flavonoids and metallic complexes. Gold derivatives are irreversible inhibitors of TrxR. Among them, auranofin (AF), a selective TrxR inhibitor, has proven its effectiveness as a drug for the treatment of rheumatoid arthritis and its efficacy as an anticancer agent has been demonstrated in preclinical studies in vitro and in vivo. However, further clinical application of AF could be challenging due to the low solubility and insufficient delivery to glioblastoma. Different delivery strategies for hydrophobic drugs could be used to increase the concentration of AF in the brain. Combining different therapeutic approaches that affect the redox status of various glioma cell populations could become a new strategy for treating brain tumor diseases.
Collapse
Affiliation(s)
- Nelly Chmelyuk
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Laboratory of Biomedical nanomaterials, National Research Technological University “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Maria Kordyukova
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Maria Sorokina
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Semyon Sinyavskiy
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Valeriya Meshcheryakova
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod Belousov
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Tatiana Abakumova
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
3
|
Zhang Y, Du D, Fang C, Yu X, Fang Y, Liu X, Ou D, Yin H, Liu H, Wang T, Lu L, Li X, Zhang K. Epigenetics disruptions enabled by porphyrin-derived metal-organic frameworks disarm resistances to sonocatalytic ROS anti-tumor actions. FUNDAMENTAL RESEARCH 2025; 5:296-306. [PMID: 40166102 PMCID: PMC11955030 DOI: 10.1016/j.fmre.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Post-transcriptional epigenetic modifications provide numerous implications for tumor progression, metastasis and recurrence, which also pose resistances to reactive oxygen species (ROS)-based anti-tumor. Herein, we proposed an epigenetic deubiquitination disruption strategy to disarm the ubiquitination-deubiquitination balance-induced resistances to ROS production and ROS-based anti-tumor action for potentiating sonodynamic treatment (SDT) efficiency. To end it, porphyrin-derived metal-organic framework (MOF) sonocatalytic nanoplatforms were developed to load deubiquitination inhibitors (i.e., Auranofin). Ultrasound-triggered Auranofin release from PCN224@Au has been validated to blockade the deubiquitinating process and drive proteasome-mediated target protein degradation. The epigenetic deubiquitination disruption not only synergized with MOF-mediated sonocatalytic ROS production, but also inactivate deubiquitinating enzymes, blockade the deubiquitination process and further remove these resistances, both of which mutually behaved as reciprocal impetuses to significantly magnify SDT outcomes against liver cancers. Such a deubiquitination-engineered disruption approach finds an unprecedented pathway to disarm deubiquitination-induced resistances to SDT and other ROS-based anti-tumor means, which also enlightens us to establish other post-transcriptional epigenetic modification disruption strategies to re-program the tumor microenvironment and elevate the anti-tumor efficiency of various treatment methods (e.g., immunotherapy).
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Dou Du
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Chao Fang
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Tongji University, Shanghai 200433, China
| | - Yujia Fang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Tongji University, Shanghai 200433, China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Tongji University, Shanghai 200433, China
| | - Di Ou
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Haohao Yin
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Hui Liu
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Taixia Wang
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Lu Lu
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Xiaolong Li
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
4
|
Gilpatrick ST, Obisesan OA, Parkin S, Awuah SG. Carbon-phosphorus stapled Au(I) anticancer agents via bisphosphine induced reductive elimination. Dalton Trans 2024; 53:18974-18982. [PMID: 39161271 PMCID: PMC11333934 DOI: 10.1039/d4dt01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Towards the goal of generating new stabilized gold complexes as potent anticancer agents, we report here a novel class of Au(I) agents from Au(III)-mediated Caryl-P bond formation captured within the same complex by reacting a C^N cyclometalated Au(III) complex with bisphosphines. Cyclometalated Au(III) complexes of the type [Au(C^N)Cl2], where C^N represent different aryl pyridine framework reacted with bis(2-diphenylphosphino)phenyl ether in refluxing methanol to access an unsymmetrical gold complex featuring C-P coupling and Au(I)-phosphine. The complexes were characterized by 1H-NMR, 13C-NMR, and 31P-NMR and mass spectrometry. The structures of the complexes were characterized by X-ray crystallography and purity ascertained by HPLC and elemental analysis. The complexes demonstrate promising anticancer activity in a broad panel of cancer cell lines of different tumor origin. Mechanistically, the complexes induce apoptosis, generate mitochondrial ROS, depolarize mitochondrial membrane potential and modulate mitochondrial respiration in cancer cells. Overall, we developed a new structural class of Au(I) complexes with promising anticancer potential with potential utility in other applications.
Collapse
Affiliation(s)
- Sean T Gilpatrick
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Centre, University of Kentucky, Lexington, KY, 40536, USA
- Center for Bioelectronics and Nanomedicine, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
5
|
Lill CB, Fitter S, Zannettino ACW, Vandyke K, Noll JE. Molecular and cellular mechanisms of chemoresistance in paediatric pre-B cell acute lymphoblastic leukaemia. Cancer Metastasis Rev 2024; 43:1385-1399. [PMID: 39102101 PMCID: PMC11554931 DOI: 10.1007/s10555-024-10203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Paediatric patients with relapsed B cell acute lymphoblastic leukaemia (B-ALL) have poor prognosis, as relapse-causing clones are often refractory to common chemotherapeutics. While the molecular mechanisms leading to chemoresistance are varied, significant evidence suggests interactions between B-ALL blasts and cells within the bone marrow microenvironment modulate chemotherapy sensitivity. Importantly, bone marrow mesenchymal stem cells (BM-MSCs) and BM adipocytes are known to support B-ALL cells through multiple distinct molecular mechanisms. This review discusses the contribution of integrin-mediated B-ALL/BM-MSC signalling and asparagine supplementation in B-ALL chemoresistance. In addition, the role of adipocytes in sequestering anthracyclines and generating a BM niche favourable for B-ALL survival is explored. Furthermore, this review discusses the role of BM-MSCs and adipocytes in promoting a quiescent and chemoresistant B-ALL phenotype. Novel treatments which target these mechanisms are discussed herein, and are needed to improve dismal outcomes in patients with relapsed/refractory disease.
Collapse
Affiliation(s)
- Caleb B Lill
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
- Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
6
|
Sakuma M, Haferlach T, Walter W. UBA1 dysfunction in VEXAS and cancer. Oncotarget 2024; 15:644-658. [PMID: 39347709 PMCID: PMC11441413 DOI: 10.18632/oncotarget.28646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024] Open
Abstract
UBA1, an X-linked gene, encodes one of the only two ubiquitin E1 enzymes, playing a pivotal role in initiating one of the most essential post-translational modifications. In late 2020, partial loss-of-function mutations in UBA1 within hematopoietic stem and progenitor cells were found to be responsible for VEXAS Syndrome, a previously unidentified hematoinflammatory disorder predominantly affecting older males. The condition is characterized by severe inflammation, cytopenias, and an association to hematologic malignancies. In this research perspective, we comprehensively review the molecular significance of UBA1 loss of function as well as advancements in VEXAS research over the past four years for each of the VEXAS manifestations - inflammation, cytopenias, clonality, and possible oncogenicity. Special attention is given to contrasting the M41 and non-M41 mutations, aiming to elucidate their differential effects and to identify targetable mechanisms responsible for each of the symptoms. Finally, we explore the therapeutic landscape for VEXAS Syndrome, discussing the efficacy and potential of clone-targeting drugs based on the pathobiology of VEXAS. This includes azacitidine, currently approved for myelodysplastic neoplasms (MDS), novel UBA1 inhibitors being developed for a broad spectrum of cancers, Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) inhibitors, and auranofin, a long-established drug for rheumatoid arthritis. This perspective bridges basic research to clinical symptoms and therapeutics.
Collapse
Affiliation(s)
- Maki Sakuma
- MLL Munich Leukemia Laboratory, Munich, Germany
- Medical Graduate Center, Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
7
|
Zhang M, Yang DY, He ZY, Wu Y, Tian XY, Huang QY, Ma WB, Deng M, Wang QZ, Yan SJ, Zheng HL. Auranofin inhibits the occurrence of colorectal cancer by promoting mTOR-dependent autophagy and inhibiting epithelial-mesenchymal transformation. Anticancer Drugs 2024; 35:129-139. [PMID: 37615540 DOI: 10.1097/cad.0000000000001540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the world's most common and deadly cancers. According to GLOBOCAN2020's global incidence rate and mortality estimates, CRC is the third main cause of cancer and the second leading cause of cancer-related deaths worldwide. The US Food and Drug Administration has approved auranofin for the treatment of rheumatoid arthritis. It is a gold-containing chemical that inhibits thioredoxin reductase. Auranofin has a number of biological activities, including anticancer activity, although it has not been researched extensively in CRC, and the mechanism of action on CRC cells is still unknown. The goal of this research was to see how Auranofin affected CRC cells in vivo and in vitro . The two chemical libraries were tested for drugs that make CRC cells more responsive. The CCK-8 technique was used to determine the cell survival rate. The invasion, migration, and proliferation of cells were assessed using a transwell test and a colony cloning experiment. An electron microscope was used to observe autophagosome formation. Western blotting was also used to determine the degree of expression of related proteins in cells. Auranofin's tumor-suppressing properties were further tested in a xenograft tumor model of human SW620 CRC cells. Auranofin dramatically reduced the occurrence of CRC by decreasing the proliferation, migration, and invasion of CRC cells, according to our findings. Through a mTOR-dependent mechanism, auranofin inhibits the epithelial-mesenchymal transition (EMT) and induces autophagy in CRC cells. Finally, in-vivo tests revealed that auranofin suppressed tumor growth in xenograft mice while causing no harm. In summary, auranofin suppresses CRC cell growth, invasion, and migration. Auranofin inhibits the occurrence and progression of CRC by decreasing EMT and inducing autophagy in CRC cells via a mTOR-dependent mechanism. These findings suggest that auranofin could be a potential chemotherapeutic medication for the treatment of human CRC.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Dong-Yuan Yang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Zhi-Yi He
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Yu Wu
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Xiu-Yun Tian
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qing-Yang Huang
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Wang-Bo Ma
- School of Pharmacy, Bengbu Medical College/Anhui Biochemical Drug Engineering Technology Research Center, Bengbu, China
| | - Min Deng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Qi-Zhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Shan-Jun Yan
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| | - Hai-Lun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
8
|
Ding W, Wang JX, Wu JZ, Liu AC, Jiang LL, Zhang HC, Meng Y, Liu BY, Peng GJ, Lou EZ, Mao Q, Zhou H, Tang DL, Chen X, Liu JB, Shi XP. Targeting proteasomal deubiquitinases USP14 and UCHL5 with b-AP15 reduces 5-fluorouracil resistance in colorectal cancer cells. Acta Pharmacol Sin 2023; 44:2537-2548. [PMID: 37528233 PMCID: PMC10692219 DOI: 10.1038/s41401-023-01136-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU. By analyzing GEO datasets, we found that the mRNA expression levels of USP14 and UCHL5 in CRC tissues were significantly increased, and negatively correlated with the survival of CRC patients. Knockdown of both USP14 and UCHL5 led to increased 5-FU sensitivity in 5-FU-resistant CRC cell lines (RKO-R and HCT-15R), whereas overexpression of USP14 and UCHL5 in 5-FU-sensitive CRC cells decreased 5-FU sensitivity. B-AP15, a specific inhibitor of USP14 and UCHL5, (1-5 μM) dose-dependently inhibited the viability of RKO, RKO-R, HCT-15, and HCT-15R cells. Furthermore, treatment with b-AP15 reduced the malignant phenotype of CRC cells including cell proliferation and migration, and induced cell death in both 5-FU-sensitive and 5-FU-resistant CRC cells by impairing proteasome function and increasing reactive oxygen species (ROS) production. In addition, b-AP15 inhibited the activation of NF-κB pathway, suppressing cell proliferation. In 5-FU-sensitive and 5-FU-resistant CRC xenografts nude mice, administration of b-AP15 (8 mg·kg-1·d-1, intraperitoneal injection) effectively suppressed the growth of both types of tumors. These results demonstrate that USP14 and UCHL5 play an important role in the development of CRC and resistance to 5-FU. Targeting USP14 and UCHL5 with b-AP15 may represent a promising therapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Wa Ding
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jin-Xiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jun-Zheng Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Ao-Chu Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Li-Ling Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Hai-Chuan Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Yi Meng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Bing-Yuan Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Guan-Jie Peng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - En-Zhe Lou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Qiong Mao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Huan Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China
| | - Dao-Lin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Chen
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China.
| | - Jin-Bao Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China.
| | - Xian-Ping Shi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China.
| |
Collapse
|
9
|
Tang X, Chen J, Cai J, Wang Q. N-substituting perturbation on the interaction affinity and recognition specificity between rheumatic immune-related Abl SH3 domain and its peptoid ligands. J Mol Graph Model 2023; 125:108601. [PMID: 37607432 DOI: 10.1016/j.jmgm.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Abl is a nonreceptor tyrosine kinase involved in a variety of disease pathways such as rheumatic immune. Full-length Abl protein consists of a catalytic tyrosine kinase (TK) domain as well as two regulatory Src homology domains 2 and 3 (SH2 and SH3, respectively); the latter recognizes and binds to those natural proline-rich peptide segments containing a PxxP motif on the protein surface of its interacting partners. However, natural peptides cannot bind effectively to the modular domain in high affinity and strong selectivity due to their small size and broad specificity. Here, a synthetic proline-rich peptide p41 was used as template; its structural diversity was extended by combinationally replacing the Pro0 and Pro+3 residues with a number of N-substituted amino acids. Consequently, peptide affinity change upon the replacement was derived to create a systematic N-substituting perturbation profile, from which we identified several N-substitution combinations at the Pro0 and Pro+3 residues of p41 PxxP motif that may moderately or significantly improve the peptide binding potency to Abl; they represent potent peptoid binders of Abl SH3 domain, with affinity improved considerably relative to p41. More significantly, the designed potent peptoids were also found to exhibit a good SH3-selectivity for their cognate Abl over other noncognate nonreceptor tyrosine kinases, with S = 9.7-fold.
Collapse
Affiliation(s)
- Xiaomin Tang
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jingjin Chen
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Jiahui Cai
- Department of Acupuncture Rehabilitation, Danyang Traditional Chinese Medicine Hospital, Zhenjiang 212399, China
| | - Qiuqin Wang
- Nursing College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Optimization of the Solvent and In Vivo Administration Route of Auranofin in a Syngeneic Non-Small Cell Lung Cancer and Glioblastoma Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122761. [PMID: 36559255 PMCID: PMC9783082 DOI: 10.3390/pharmaceutics14122761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.
Collapse
|
11
|
Synthesis, structural characterization and in vitro anticancer screening of several gold(I) thiolate, dithiocarbonate and dithiocarbamate complexes. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F. Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Med Res Rev 2022; 42:1111-1146. [PMID: 34850406 PMCID: PMC9299597 DOI: 10.1002/med.21872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics GroupPlasticité du Cerveau UMR 8249 CNRSParisESPCI Paris‐PSLFrance
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
13
|
Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci Rep 2022; 12:704. [PMID: 35027628 PMCID: PMC8758722 DOI: 10.1038/s41598-021-04654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we examined the antileukemic effects of pterostilbene, a natural methylated polyphenol analog of resveratrol that is predominantly found in berries and nuts, using various human and murine leukemic cells, as well as bone marrow samples obtained from patients with leukemia. Pterostilbene administration significantly induced apoptosis of leukemic cells, but not of non-malignant hematopoietic stem/progenitor cells. Interestingly, pterostilbene was highly effective in inducing apoptosis of leukemic cells harboring the BCR/ABL fusion gene, including ABL tyrosine kinase inhibitor (TKI)-resistant cells with the T315I mutation. In BCR/ABL+ leukemic cells, pterostilbene decreased the BCR/ABL fusion protein levels and suppressed AKT and NF-κB activation. We further demonstrated that pterostilbene along with U0126, an inhibitor of the MEK/ERK signaling pathway, synergistically induced apoptosis of BCR/ABL+ cells. Our results further suggest that pterostilbene-promoted downregulation of BCR/ABL involves caspase activation triggered by proteasome inhibition-induced endoplasmic reticulum stress. Moreover, oral administration of pterostilbene significantly suppressed tumor growth in mice transplanted with BCR/ABL+ leukemic cells. Taken together, these results suggest that pterostilbene may hold potential for the treatment of BCR/ABL+ leukemia, in particular for those showing ABL-dependent TKI resistance.
Collapse
|
14
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Jakubczak W, Haczyk-Więcek M, Pawlak K. Attomole-per Cell Atomic Mass Spectrometry Measurement of Platinum and Gold Drugs in Cultured Lung Cancer Cells. Molecules 2021; 26:7627. [PMID: 34946708 PMCID: PMC8703441 DOI: 10.3390/molecules26247627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we developed a strategy to determine atto- and femtomolar amounts of metal ions in lysates and mineralizates of cells (human non-small-cell lung carcinoma (NSCLC, A549) and normal lung (MRC-5)) exposed to cytotoxic metallo-drugs: cisplatin and auranofin at concentrations close to the half-maximal inhibitory drug concentrations (IC50). The developed strategy combines data obtained using biological and chemical approaches. Cell density was determined using two independent cell staining assays using trypan blue, calcein AM/propidium iodide. Metal concentrations in lysed and mineralized cells were established employing a mass spectrometer with inductively coupled plasma (ICP-MS) and equipped with a cross-flow nebulizer working in aspiration mode. It allowed for detecting of less than 1 fg of metal per cell. To decrease the required amount of sample material (from 1.5 mL to ~100 µL) without loss of sensitivity, the sample was introduced as a narrow band into a constant stream of liquid (flow-injection analysis). It was noticed that the selectivity of cisplatin accumulation by cells depends on the incubation time. This complex is accumulated by cells at a lower efficiency than auranofin and is found primarily in the lysate representing the cytosol. In contrast, auranofin interacts with water-insoluble compounds. Despite their different mechanism of action, both metallo-drugs increased the accumulation of transition metal ions responsible for oxidative stress.
Collapse
Affiliation(s)
| | | | - Katarzyna Pawlak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (W.J.); (M.H.-W.)
| |
Collapse
|
16
|
Xu DC, Yang L, Zhang PQ, Yan D, Xue Q, Huang QT, Li XF, Hao YL, Tang DL, Ping Dou Q, Chen X, Liu JB. Pharmacological characterization of a novel metal-based proteasome inhibitor Na-AuPT for cancer treatment. Acta Pharmacol Sin 2021; 43:2128-2138. [PMID: 34893683 PMCID: PMC9343436 DOI: 10.1038/s41401-021-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
The ubiquitin-proteasome system (UPS) is essential for maintaining cell homeostasis by orchestrating the protein degradation, but is impaired in various diseases, including cancers. Several proteasome inhibitors, such as bortezomib, are currently used in cancer treatment, but associated toxicity limits their widespread application. Recently metal complex-based drugs have attracted great attention in tumor therapy; however, their application is hindered by low water-solubility and poor absorbency. Herein, we synthesized a new type of gold (I) complex named Na-AuPT, and further characterized its anticancer activity. Na-AuPT is highly water-soluble (6 mg/mL), and it was able to potently inhibit growth of a panel of 11 cancer cell lines (A549, SMMC7721, H460, HepG2, BEL7402, LNCap, PC3, MGC-803, SGC-7901, U266, and K562). In A549 and SMMC7721 cells, Na-AuPT (in a range of 2.5-20 μM) inhibited the UPS function in a dose-dependent fashion by targeting and inhibiting both 20 S proteasomal proteolytic peptidases and 19 S proteasomal deubiquitinases. Furthermore, Na-AuPT induced caspase-dependent apoptosis in A549 and SMMC7721 cells, which was prevented by the metal chelator EDTA. Administration of Na-AuPT (40 mg · kg-1 · d-1, ip) in nude mice bearing A549 or SMMC7721 xenografts significantly inhibited the tumor growth in vivo, accompanied by increased levels of total ubiquitinated proteins, cleaved caspase 3 and Bax protein in tumor tissue. Moreover, Na-AuPT induced cell death of primary mononuclear cells from 5 patients with acute myeloid leukemia ex vivo with an average IC50 value of 2.46 μM. We conclude that Na-AuPT is a novel metal-based proteasome inhibitor that may hold great potential for cancer therapy.
Collapse
|
17
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Yan D, Li X, Yang Q, Huang Q, Yao L, Zhang P, Sun W, Lin S, Dou QP, Liu J, Chen X. Regulation of Bax-dependent apoptosis by mitochondrial deubiquitinase USP30. Cell Death Discov 2021; 7:211. [PMID: 34381024 PMCID: PMC8357812 DOI: 10.1038/s41420-021-00599-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
Deubiquitinates (DUBs) have been suggested as novel promising targets for cancer therapies. Accumulating experimental evidence suggests that some metal compounds have the potential to induce cancer cell death via inhibition of DUBs. We previously reported that auranofin, a gold(I)-containing agent used for the treatment of rheumatoid arthritis in clinics, can induce cell death by inhibiting proteasomal DUBs in a series of cancer cell lines. Unfortunately, currently available gold compounds are not potent in inhibiting DUBs. Here, we report that: (i) aumdubin, a synthetic derivative of auranofin, exhibited stronger DUB-inhibiting and apoptosis-inducing activities than auranofin in lung cancer cells; (ii) aumdubin shows high affinity for mitochondrial DUB USP30; (iii) aumdubin induces apoptosis by increasing the ubiquitination and mitochondrial location of Bax protein; and (iv) USP30 inhibition may contribute to Bax-dependent apoptosis induced by aumdubin in lung cancer cells. These results suggest that gold(I)-containing agent aumdubin induces Bax-dependent apoptosis partly through inhibiting the mitochondrial DUB USP30, which could open new avenues for lung cancer therapy.
Collapse
Affiliation(s)
- Ding Yan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaofen Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qianqian Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qingtian Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Leyi Yao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Peiquan Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenshuang Sun
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhui Lin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute and Departments of Oncology, Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xin Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
19
|
Exploiting the reactive oxygen species imbalance in high-risk paediatric acute lymphoblastic leukaemia through auranofin. Br J Cancer 2021; 125:55-64. [PMID: 33837299 PMCID: PMC8257682 DOI: 10.1038/s41416-021-01332-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/31/2021] [Accepted: 02/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The prognosis for high-risk childhood acute leukaemias remains dismal and established treatment protocols often cause long-term side effects in survivors. This study aims to identify more effective and safer therapeutics for these patients. METHODS A high-throughput phenotypic screen of a library of 3707 approved drugs and pharmacologically active compounds was performed to identify compounds with selective cytotoxicity against leukaemia cells followed by further preclinical evaluation in patient-derived xenograft models. RESULTS Auranofin, an FDA-approved agent for the treatment of rheumatoid arthritis, was identified as exerting selective anti-cancer activity against leukaemia cells, including patient-derived xenograft cells from children with high-risk ALL, versus solid tumour and non-cancerous cells. It induced apoptosis in leukaemia cells by increasing reactive oxygen species (ROS) and potentiated the activity of the chemotherapeutic cytarabine against highly aggressive models of infant MLL-rearranged ALL by enhancing DNA damage accumulation. The enhanced sensitivity of leukaemia cells towards auranofin was associated with lower basal levels of the antioxidant glutathione and higher baseline ROS levels compared to solid tumour cells. CONCLUSIONS Our study highlights auranofin as a well-tolerated drug candidate for high-risk paediatric leukaemias that warrants further preclinical investigation for application in high-risk paediatric and adult acute leukaemias.
Collapse
|
20
|
Abstract
Gold compounds have been employed throughout history to treat various types of disease, from ancient times to the present day. In the year 1985, auranofin, a gold-containing compound, was approved by U.S. Food and Drug Administration (FDA) as a therapeutic agent to target rheumatoid arthritis that would facilitate easy oral drug administration as opposed to conventional intramuscular injection used in treatments. Furthermore, auranofin demonstrates promising results for the treatment of various diseases beyond rheumatoid arthritis, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome, and bacterial and parasitic infections. Various potential novel applications for auranofin have been proposed for treating human diseases. Auranofin has previously been demonstrated to inhibit thioredoxin reductase (TrxR) involved within the thioredoxin (Trx) system that comprises one of the critical cellular redox systems within the body. TrxR comprises the sole known enzyme that catalyzes Trx reduction. With cancers in particular, TrxR inhibition facilitates an increase in cellular oxidative stress and suppresses tumor growth. In this review, we describe the potential of auranofin to serve as an anticancer agent and further drug repurposing to utilize this as a strategy for further appropriate drug developments.
Collapse
Affiliation(s)
- Isao Momose
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Takefumi Onodera
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation
| |
Collapse
|
21
|
Investigating the Thioredoxin and Glutathione Systems' Response in Lymphoma Cells after Treatment with [Au(d2pype)2]CL. Antioxidants (Basel) 2021; 10:antiox10010104. [PMID: 33451071 PMCID: PMC7828567 DOI: 10.3390/antiox10010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/19/2023] Open
Abstract
Lymphoma is a blood cancer comprising various subtypes. Although effective therapies are available, some patients fail to respond to treatment and can suffer from side effects. Antioxidant systems, especially the thioredoxin (Trx) and glutathione (GSH) systems, are known to enhance cancer cell survival, with thioredoxin reductase (TrxR) recently reported as a potential anticancer target. Since the GSH system can compensate for some Trx system functions, we investigated its response in three lymphoma cell lines after inhibiting TrxR activity with [Au(d2pype)2]Cl, a known TrxR inhibitor. [Au(d2pype)2]Cl increased intracellular reactive oxygen species (ROS) levels and induced caspase-3 activity leading to cell apoptosis through inhibiting both TrxR and glutathione peroxidase (Gpx) activity. Expression of the tumour suppresser gene TXNIP increased, while GPX1 and GPX4 expression, which are related to poor prognosis of lymphoma patients, decreased. Unlike SUDHL2 and SUDHL4 cells, which exhibited a decreased GSH/GSSG ratio after treatment, in KMH2 cells the ratio remained unchanged, while glutathione reductase and glutaredoxin expression increased. Since KMH2 cells were less sensitive to treatment with [Au(d2pype)2]Cl, the GSH system may play a role in protecting cells from apoptosis after TrxR inhibition. Overall, our study demonstrates that inhibition of TrxR represents a valid therapeutic approach for lymphoma.
Collapse
|
22
|
Dominelli B, Jakob CH, Oberkofler J, Fischer PJ, Esslinger EM, Reich RM, Marques F, Pinheiro T, Correia JD, Kühn FE. Mechanisms underlying the cytotoxic activity of syn/anti-isomers of dinuclear Au(I) NHC complexes. Eur J Med Chem 2020; 203:112576. [DOI: 10.1016/j.ejmech.2020.112576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/09/2023]
|
23
|
Gutierrez-Diaz BT, Gu W, Ntziachristos P. Deubiquitinases: Pro-oncogenic Activity and Therapeutic Targeting in Blood Malignancies. Trends Immunol 2020; 41:327-340. [PMID: 32139316 PMCID: PMC7258259 DOI: 10.1016/j.it.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Deubiquitinases are enzymes that remove ubiquitin moieties from the vast majority of cellular proteins, controlling their stability, interactions, and localization. The expression and activity of deubiquitinases are critical for physiology and can go awry in various diseases, including cancer. Based on recent findings in human blood cancers, we discuss the functions of selected deubiquitinases in acute leukemia and efforts to target these enzymes with the aim of blocking leukemia growth and improving disease outcomes. We focus on the emergence of the newest generation of preclinical inhibitors by discussing their modes of inhibition and their effects on leukemia biology.
Collapse
Affiliation(s)
- Blanca T Gutierrez-Diaz
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Clapper E, Wang S, Raninga PV, Di Trapani G, Tonissen KF. Cross-talk between Bcr-abl and the Thioredoxin System in Chronic Myeloid Leukaemia: Implications for CML Treatment. Antioxidants (Basel) 2020; 9:E207. [PMID: 32138149 PMCID: PMC7139888 DOI: 10.3390/antiox9030207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic myeloid leukaemia (CML) is currently treated with inhibitors of the CML specific oncoprotein, bcr-abl. While this strategy is initially successful, drug resistance can become a problem. Therefore, new targets need to be identified to ensure the disease can be appropriately managed. The thioredoxin (Trx) system, comprised of Trx, thioredoxin reductase (TrxR), and NADPH, is an antioxidant system previously identified as a target for therapies aimed at overcoming drug resistance in other cancers. We assessed the effectiveness of TrxR inhibitors on drug resistant CML cells and examined links between TrxR and the bcr-abl cell-signalling pathway. Two TrxR inhibitors, auranofin and [Au(d2pype)2]Cl, increased intracellular ROS levels and elicited apoptosis in both sensitive and imatinib resistant CML cells. Inhibition of TrxR activity by these pharmacological inhibitors, or by specific siRNA, also resulted in decreased bcr-abl mRNA and protein levels, and lower bcr-abl downstream signalling activity, potentially enhancing the effectiveness of TrxR inhibitors as CML therapies. In addition, imatinib resistant CML cell lines showed upregulated expression of the Trx system. Furthermore, analysis of datasets showed that CML patients who did not respond to imatinib had higher Trx mRNA levels than patients who responded to treatment. Our study demonstrates a link between the Trx system and the bcr-abl protein and highlights the therapeutic potential of targeting the Trx system to improve CML patients' outcomes.
Collapse
Affiliation(s)
- Erin Clapper
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Sicong Wang
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Prahlad V. Raninga
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia;
| | - Giovanna Di Trapani
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
| | - Kathryn F. Tonissen
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (E.C.); (S.W.)
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
25
|
An X, Ji B, Sun D. TRIM34 localizes to the mitochondria and mediates apoptosis through the mitochondrial pathway in HEK293T cells. Heliyon 2020; 6:e03115. [PMID: 31956709 PMCID: PMC6956761 DOI: 10.1016/j.heliyon.2019.e03115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 01/21/2023] Open
Abstract
Tripartite motif 34 (TRIM34) is a member of TRIM family that can be highly induced by type I Interferon. Currently little is known about the subcellular localization and biological function of TRIM34. In the present study, confocal microscope assay showed that TRIM34 proteins were mainly distributed in the cytoplasm and part of TRIM34 proteins were localized to the mitochondria in human embryonic kidney 293T (HEK293T) cells. Western blot results demonstrated FLAG-TRIM34 could also be identified in the mitochondrial fractions of HEK293T cells transfected with the 5'FLAG-pcDNA3.1-TRIM34 vector. The CCK-8 assay further demonstrated that TRIM34 significantly decreased the viability of HEK293T cells. Nevertheless, TRIM34 had no apparent effect on the cell cycle distribution. Interestingly, flow cytometry showed that TRIM34 could obviously induce apoptosis in HEK293T cells. Moreover, we discovered that TRIM34 promoted apoptosis by inducing the loss of mitochondrial membrane potential (MMP) in HEK293T cells, leading to the release of cytochrome c from mitochondia. In short, these results demonstrate that TRIM34 proteins can localize to the mitochondria and induce apoptosis via the depolarization of MMP in HEK293T cells.
Collapse
Affiliation(s)
- Xinye An
- Laboratory of Clinical Medicine, Binzhou, 256603, China
| | - Bing Ji
- Laboratory of Clinical Medicine, Binzhou, 256603, China
| | - Dakang Sun
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, China
| |
Collapse
|
26
|
Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment. Semin Cancer Biol 2019; 68:105-122. [PMID: 31883910 DOI: 10.1016/j.semcancer.2019.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/30/2019] [Accepted: 12/15/2019] [Indexed: 12/25/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the degradation of cellular proteins. Targeting protein degradation has been validated as an effective strategy for cancer therapy since 2003. Several components of the UPS have been validated as potential anticancer targets, including 20S proteasomes, 19S proteasome-associated deubiquitinases (DUBs) and ubiquitin ligases (E3s). 20S proteasome inhibitors (such as bortezomib/BTZ and carfilzomib/CFZ) have been approved by the U.S. Food and Drug Administration (FDA) for the treatment of multiple myeloma (MM) and some other liquid tumors. Although survival of MM patients has been improved by the introduction of BTZ-based therapies, these clinical 20S proteasome inhibitors have several limitations, including emergence of resistance in MM patients, neuro-toxicities, and little efficacy in solid tumors. One of strategies to improve the current status of cancer treatment is to repurpose old drugs with UPS-inhibitory properties as new anticancer agents. Old drug reposition represents an attractive drug discovery approach compared to the traditional de novo drug discovery process which is time-consuming and costly. In this review, we summarize status of repurposed inhibitors of various UPS components, including 20S proteasomes, 19S-associated DUBs, and ubiquitin ligase E3s. The original and new mechanisms of action, molecular targets, and potential anticancer activities of these repurposed UPS inhibitors are reviewed, and their new uses including combinational therapies for cancer treatment are discussed.
Collapse
|
27
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
28
|
USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia. Cell Discov 2019; 5:24. [PMID: 31044085 PMCID: PMC6488640 DOI: 10.1038/s41421-019-0092-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Constitutive activation of tyrosine kinase Bcr-Abl is the leading cause of the development and progression of chronic myeloid leukemia (CML). Currently, the application of tyrosine kinase inhibitors (TKIs) targeting the Bcr-Abl is the primary therapy for CML patients. However, acquired resistance to TKIs that develops overtime in the long-term administration renders TKIs ineffective to patients with advanced CML. Therefore, increasing studies focus on the amplified expression or activation of Bcr-Abl which is proposed to contribute to the advanced phase. Here, we show that S-phase kinase-associated protein 2 (SKP2) acts as a co-regulator of Bcr-Abl by mediating its K63-linked ubiquitination and activation. Further investigations show that USP10 as a novel deubiquitinase of SKP2 amplifies the activation of Bcr-Abl via mediating deubiquitination and stabilization of SKP2 in CML cells. Moreover, inhibition of USP10 significantly suppresses the proliferation of both imatinib-sensitive and imatinib-resistant CML cells, which likely depends on SKP2 status. This findings are confirmed in primary CML cells because these cells are over-expressed with USP10 and SKP2 and are sensitive to a USP10 inhibitor. Taken together, the present study not only provides a novel insight into the amplified activation of Bcr-Abl in CML, but also demonstrates that targeting the USP10/SKP2/Bcr-Abl axis is a potential strategy to overcome imatinib resistance in CML patients.
Collapse
|
29
|
Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019; 29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
30
|
Jang HJ, Chung IY, Lim C, Chung S, Kim BO, Kim ES, Kim SH, Cho YH. Redirecting an Anticancer to an Antibacterial Hit Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:350. [PMID: 30858845 PMCID: PMC6398426 DOI: 10.3389/fmicb.2019.00350] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/11/2019] [Indexed: 01/18/2023] Open
Abstract
YM155 is a clinically evaluated anticancer with a fused naphthoquinone-imidazolium scaffold. In this study, we demonstrated that based on weak or cryptic antibacterial activity of YM155 against methicillin-resistant Staphylococcus aureus (MRSA) (MIC of 50 μg/ml), some congeneric compounds with short alkyl chains (e.g., c5 with a hexyl chain) at the N3 position of the scaffold, displayed more potent antibacterial activity against MRSA (MIC of 3.13 μg/ml), which is in a clinically achievable range. Their antibacterial activity was evident against Gram-negative bacteria, only in the presence of the outer membrane-permeabilizing agent, polymyxin B. The antibacterial efficacy of c5 was confirmed using the Drosophila systemic infection model. We also characterized five spontaneous c5-resistant MRSA mutants that carry mutations in the ubiE gene, for quinone metabolism and respiratory electron transfer, and subsequently exhibited reduced respiration activity. The antibacterial activity of c5 was compromised either by an antioxidant, N-acetylcysteine, or in an anaerobic condition. These suggest that the antibacterial mechanism of c5 involves the generation of reactive oxygen species (ROS), presumably during respiratory electron transport. This study provides an insight into "drug redirecting," through a chemical modification, based on an ROS-generating pharmacophore.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - In-Young Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Changjin Lim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Sungkyun Chung
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Bi-O Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
31
|
Li X, Huang Q, Long H, Zhang P, Su H, Liu J. A new gold(I) complex-Au(PPh 3)PT is a deubiquitinase inhibitor and inhibits tumor growth. EBioMedicine 2018; 39:159-172. [PMID: 30527624 PMCID: PMC6354570 DOI: 10.1016/j.ebiom.2018.11.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Background Ubiquitin-proteasome system (UPS) is integral to cell survival by maintaining protein homeostasis, and its dysfunction has been linked to cancer and several other human diseases. Through counteracting ubiquitination, deubiquitinases (DUBs) can either positively or negatively regulate UPS function, thereby representing attractive targets of cancer therapies. Previous studies have shown that metal complexes can inhibit tumor growth through targeting the UPS; however, novel metal complexes with higher specificity for cancer therapy are still lacking. Methods We synthesized a new gold(I) complex, Au(PPh3)PT. The inhibitory activity of Au(PPh3)PT on the UPS and the growth of multiple cancer cell types were tested in vitro, ex vivo, and in vivo. Furthermore, we compared the efficacy of Au(PPh3)PT with other metal compounds in inhibition of UPS function and tumor growth. Findings Here we report that (i) a new gold(I) complex-pyrithione, i.e., Au(PPh3)PT, induced apoptosis in two lung cancer cell lines A549 and NCI-H1299; (ii) Au(PPh3)PT severely impaired UPS proteolytic function; (iii) Au(PPh3)PT selectively inhibited 19S proteasome-associated DUBs (UCHL5 and USP14) and other non-proteasomal DUBs with minimal effects on the function of 20S proteasome; (iv) Au(PPh3)PT induced apoptosis in cancer cells from acute myeloid leukemia patients; (v) Au(PPh3)PT effectively suppressed the growth of lung adenocarcinoma xenografts in nude mice; and (vi) Au (PPh3)PT elicited less cytotoxicity in normal cells than several other metal compounds. Interpretation Together, this study discovers a new gold(I) complex to be an effective inhibitor of the DUBs and a potential anti-cancer drug. Fund The National High Technology Research and Development Program of China, the project of Guangdong Province Natural Science Foundation, the projects from Foundation for Higher Education of Guangdong, the project from Guangzhou Medical University for Doctor Scientists, the Medical Scientific Research Foundation of Guangdong Province, and the Guangzhou Key Medical Discipline Construction Project Fund.
Collapse
Affiliation(s)
- Xiaofen Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China; Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China
| | - Qingtian Huang
- Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China
| | - Huidan Long
- Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China
| | - Peiquan Zhang
- Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China
| | - Huabo Su
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China; Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China; Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China; Protein Modification and Degradation Lab, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
32
|
Du GS, Qiu Y, Wang WS, Peng K, Zhang ZC, Li XS, Xiao WD, Yang H. Knockdown on aPKC-ι inhibits epithelial-mesenchymal transition, migration and invasion of colorectal cancer cells through Rac1-JNK pathway. Exp Mol Pathol 2018; 107:57-67. [PMID: 30465755 DOI: 10.1016/j.yexmp.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Atypical protein kinase C-ι (aPKC-ι) is an oncogenic factor, and required for the epithelial-mesenchymal transition (EMT) of different types of cancer. Our study aimed to investigate the role of aPKC-ι in the EMT, migration and invasion of colorectal cancer (CRC) cells. METHODS Expression of aPKC-ι was evaluated in CRC cell lines treated with TGF-β1 using qPCR and western blot. After aPKC-ι was knocked down using shRNA, migration and invasion abilities of CRC cell lines were evaluated by wound healing assay and transwell assay, respectively. Activation status of downstream signaling factors of aPKC-ι, including Rac1, JNK, STAT3 and β-catenin, was measured using western blot. Furthermore, auranofin, an aPKC-ι inhibitor, was used to treat CRC cell lines to investigate its possible inhibition on the EMT of CRC cell lines, as well as on the expression of aPKC-ι and its downstream signaling factors. RESULTS TGF-β1 induced the expression of aPKC-ι in CRC cells, and knockdown on aPKC-ι inhibited the TGF-β1-induced EMT, migration and invasion of CRC cells. Interestingly, Rac1 GTPase level was decreased when aPKC-ι was knocked down, and overexpression of Rac1G12V rescued the cell EMT, migration and invasion in CRC cells as inhibited by sh-aPKC-ι. Moreover, knockdown on aPKC-ι suppressed the phosphorylation of JNK and STAT3, and nuclear translocation of β-catenin. The aPKC- ι inhibitor, Auranofin, showed similar inhibitory effects as aPKC-ι knockdown. CONCLUSION Knockdown on aPKC-ι inhibited the EMT, migration and invasion of CRC cells through suppressing of Rac1-JNK pathway. Those findings indicate that aPKC-ι may serve as a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Guang-Sheng Du
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Wen-Sheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Ke Peng
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Zhi-Cao Zhang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Xiang-Sheng Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China
| | - Wei-Dong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, PR China.
| |
Collapse
|
33
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|
34
|
Patel K, Ahmed ZSO, Huang X, Yang Q, Ekinci E, Neslund-Dudas CM, Mitra B, Elnady FAEM, Ahn YH, Yang H, Liu J, Dou QP. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition. Future Med Chem 2018; 10:2087-2108. [PMID: 30066579 PMCID: PMC6123888 DOI: 10.4155/fmc-2018-0091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin proteasome system has been validated as a target of cancer therapies evident by the US FDA approval of anticancer 20S proteasome inhibitors. Deubiquitinating enzymes (DUBs), an essential component of the ubiquitin proteasome system, regulate cellular processes through the removal of ubiquitin from ubiquitinated-tagged proteins. The deubiquitination process has been linked with cancer and other pathologies. As such, the study of proteasomal DUBs and their inhibitors has garnered interest as a novel strategy to improve current cancer therapies, especially for cancers resistant to 20S proteasome inhibitors. This article reviews proteasomal DUB inhibitors in the context of: discovery through rational design approach, discovery from searching natural products and discovery from repurposing old drugs, and offers a future perspective.
Collapse
Affiliation(s)
- Kush Patel
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Zainab SO Ahmed
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Giza 12613, Egypt
| | - Xuemei Huang
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- School of Life Science & Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Qianqian Yang
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Christine M Neslund-Dudas
- Department of Public Health Sciences & Henry Ford Cancer Institute, Henry Ford Health System, One Ford Place, Suite 5C, Detroit, MI 48202, USA
| | - Bharati Mitra
- Department of Biochemistry, Microbiology & Immunology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA
| | - Fawzy AEM Elnady
- Department of Anatomy & Embryology, Faculty of Veterinary Medicine, Cairo University, Giza, Giza 12613, Egypt
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Huanjie Yang
- School of Life Science & Technology, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jinbao Liu
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| | - Qing Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
- Protein Modification & Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510000, PR China
| |
Collapse
|
35
|
Chen X, Yang Q, Xiao L, Tang D, Dou QP, Liu J. Metal-based proteasomal deubiquitinase inhibitors as potential anticancer agents. Cancer Metastasis Rev 2018; 36:655-668. [PMID: 29039082 PMCID: PMC5721122 DOI: 10.1007/s10555-017-9701-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deubiquitinases (DUBs) play an important role in protein quality control in eukaryotic cells due to their ability to specifically remove ubiquitin from substrate proteins. Therefore, recent findings have focused on the relevance of DUBs to cancer development, and pharmacological intervention on these enzymes has become a promising strategy for cancer therapy. In particular, several DUBs are physically and/or functionally associated with the proteasome and are attractive targets for the development of novel anticancer drugs. The successful clinical application of cisplatin in cancer treatment has prompted researchers to develop various metal-based anticancer agents with new properties. Recently, we have reported that several metal-based drugs, such as the antirheumatic gold agent auranofin (AF), the antifouling paint biocides copper pyrithione (CuPT) and zinc pyrithione (ZnPT), and also our two synthesized complexes platinum pyrithione (PtPT) and nickel pyrithione (NiPT), can target the proteasomal DUBs UCHL5 and USP14. In this review, we summarize the recently reported small molecule inhibitors of proteasomal DUBs, with a focus on discussion of the unique nature of metal-based proteasomal DUB inhibitors and their anticancer activity.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lu Xiao
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daolin Tang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Q Ping Dou
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.,The Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, USA.,Department of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Wang H, Bouzakoura S, de Mey S, Jiang H, Law K, Dufait I, Corbet C, Verovski V, Gevaert T, Feron O, Van den Berge D, Storme G, De Ridder M. Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species. Oncotarget 2018; 8:35728-35742. [PMID: 28415723 PMCID: PMC5482612 DOI: 10.18632/oncotarget.16113] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
Auranofin (AF) is an anti-arthritic drug considered for combined chemotherapy due to its ability to impair the redox homeostasis in tumor cells. In this study, we asked whether AF may in addition radiosensitize tumor cells by targeting thioredoxin reductase (TrxR), a critical enzyme in the antioxidant defense system operating through the reductive protein thioredoxin. Our principal findings in murine 4T1 and EMT6 tumor cells are that AF at 3-10 μM is a potent radiosensitizer in vitro, and that at least two mechanisms are involved in TrxR-mediated radiosensitization. The first one is linked to an oxidative stress, as scavenging of reactive oxygen species (ROS) by N-acetyl cysteine counteracted radiosensitization. We also observed a decrease in mitochondrial oxygen consumption with spared oxygen acting as a radiosensitizer under hypoxic conditions. Overall, radiosensitization was accompanied by ROS overproduction, mitochondrial dysfunction, DNA damage and apoptosis, a common mechanism underlying both cytotoxic and antitumor effects of AF. In tumor-bearing mice, a simultaneous disruption of the thioredoxin and glutathione systems by the combination of AF and buthionine sulfoximine was shown to significantly improve tumor radioresponse. In conclusion, our findings illuminate TrxR in cancer cells as an exploitable radiobiological target and warrant further validation of AF in combination with radiotherapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soumaya Bouzakoura
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kalun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Dirk Van den Berge
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Storme
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
In silico and in vitro drug screening identifies new therapeutic approaches for Ewing sarcoma. Oncotarget 2018; 8:4079-4095. [PMID: 27863422 PMCID: PMC5354814 DOI: 10.18632/oncotarget.13385] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/14/2016] [Indexed: 12/29/2022] Open
Abstract
The long-term overall survival of Ewing sarcoma (EWS) patients remains poor; less than 30% of patients with metastatic or recurrent disease survive despite aggressive combinations of chemotherapy, radiation and surgery. To identify new therapeutic options, we employed a multi-pronged approach using in silico predictions of drug activity via an integrated bioinformatics approach in parallel with an in vitro screen of FDA-approved drugs. Twenty-seven drugs and forty-six drugs were identified, respectively, to have anti-proliferative effects for EWS, including several classes of drugs in both screening approaches. Among these drugs, 30 were extensively validated as mono-therapeutic agents and 9 in 14 various combinations in vitro. Two drugs, auranofin, a thioredoxin reductase inhibitor, and ganetespib, an HSP90 inhibitor, were predicted to have anti-cancer activities in silico and were confirmed active across a panel of genetically diverse EWS cells. When given in combination, the survival rate in vivo was superior compared to auranofin or ganetespib alone. Importantly, extensive formulations, dose tolerance, and pharmacokinetics studies demonstrated that auranofin requires alternative delivery routes to achieve therapeutically effective levels of the gold compound. These combined screening approaches provide a rapid means to identify new treatment options for patients with a rare and often-fatal disease.
Collapse
|
38
|
Hou GX, Liu PP, Zhang S, Yang M, Liao J, Yang J, Hu Y, Jiang WQ, Wen S, Huang P. Elimination of stem-like cancer cell side-population by auranofin through modulation of ROS and glycolysis. Cell Death Dis 2018; 9:89. [PMID: 29367724 PMCID: PMC5833411 DOI: 10.1038/s41419-017-0159-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Cancer side-population (SP) represents a sub-population of stem-like cancer cells that have an important role in drug resistance due to their high expression of the ATP-binding cassette transporter ABCG2 involved in drug export. Auranofin (AF), a clinical drug of gold complex that is used in treatment of rheumatoid arthritis, has been reported inducing tumor antiproliferation. However, whether AF can impact SP cells remains unclear. Our study showed that AF caused a depletion of SP cells and a downregulation of stem cell markers, and impaired their ability to form tumor colonies in vitro and incidence to develop tumors in vivo of lung cancer cells. Reactive oxygen species (ROS) had an important role in mediating AF-induced depletion of SP cells, which could be reversed by antioxidant NAC. Further study revealed that AF could also cause ATP depletion by inhibition of glycolysis. The depletion of cellular ATP might impair the function of ABCG2 pump, leading to increased drug accumulation within the cells and thus enhancing anticancer activity of chemotherapeutic agents such as adriamycin. Synergistic effect of AF and adriamycin was demonstrated both in vitro and in vivo. Simultaneous increase of ROS and inhibition of glycolysis is a novel strategy to eliminate stem-like cancer cells. Combination of AF with adriamycin seems to be promising to enhance therapeutic effectiveness.
Collapse
Affiliation(s)
- Guo-Xin Hou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Pan-Pan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shengyi Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Mengqi Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Jianwei Liao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Jing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Wen-Qi Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Wai huan East Road, Guangzhou, 510006, Guangdong, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China. .,Department of Translational Molecular Pathology, Unit 951, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
A. Sulaiman AA, Omer KH, Kawde AN, M. Wazeer MI, Altaf M, Musa MM, Ahmad S, Isab AA. Spectroscopic and Electrochemical Studies of the Interaction of Some Gold(III) Complexes with Biologically Relevant Thiones. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Adam A. A. Sulaiman
- Lab Technical Support Office (LTSO); King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Khalid H. Omer
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - M. I. M. Wazeer
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Muhammad Altaf
- Center of Research Excellence in Nanotechnology; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Musa M. Musa
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Saeed Ahmad
- Department of Chemistry; College of Sciences and Humanities; Prince Sattam bin Abdulaziz University; Al-Kharj 11942 Saudi Arabia
| | - Anvarhusein A. Isab
- Department of Chemistry; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
40
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
41
|
Radenkovic F, Holland O, Vanderlelie JJ, Perkins AV. Selective inhibition of endogenous antioxidants with Auranofin causes mitochondrial oxidative stress which can be countered by selenium supplementation. Biochem Pharmacol 2017; 146:42-52. [DOI: 10.1016/j.bcp.2017.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 01/09/2023]
|
42
|
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36:717-736. [PMID: 29047025 PMCID: PMC5722705 DOI: 10.1007/s10555-017-9705-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past 15 years, the proteasome has been validated as an anti-cancer drug target and 20S proteasome inhibitors (such as bortezomib and carfilzomib) have been approved by the FDA for the treatment of multiple myeloma and some other liquid tumors. However, there are shortcomings of clinical proteasome inhibitors, including severe toxicity, drug resistance, and no effect in solid tumors. At the same time, extensive research has been conducted in the areas of natural compounds and old drug repositioning towards the goal of discovering effective, economical, low toxicity proteasome-inhibitory anti-cancer drugs. A variety of dietary polyphenols, medicinal molecules, metallic complexes, and metal-binding compounds have been found to be able to selectively inhibit tumor cellular proteasomes and induce apoptotic cell death in vitro and in vivo, supporting the clinical success of specific 20S proteasome inhibitors bortezomib and carfilzomib. Therefore, the discovery of natural proteasome inhibitors and researching old drugs with proteasome-inhibitory properties may provide an alternative strategy for improving the current status of cancer treatment and even prevention.
Collapse
Affiliation(s)
- Claire L Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Tracey Guerin
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201-2013, USA.
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, and Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
43
|
Cadmium pyrithione suppresses tumor growth in vitro and in vivo through inhibition of proteasomal deubiquitinase. Biometals 2017; 31:29-43. [PMID: 29098502 DOI: 10.1007/s10534-017-0062-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The ubiquitin-proteasome system (UPS) is indispensable to the protein quality control in eukaryotic cells. Due to the remarkable clinical success of using proteasome inhibitors for clinical treatment of multiple myeloma, it is anticipated that targeting the UPS upstream of the proteasome step be an effective strategy for cancer therapy. Deubiquitinases (DUB) are proteases that remove ubiquitin from target proteins and therefore regulate multiple cellular processes including some signaling pathways altered in cancer cells. Thus, targeting DUB is a promising strategy for cancer drug discovery. Previously, we have reported that metal complexes, such as copper and gold complexes, can disrupt the UPS via suppressing the activity of 19S proteasome-associated DUBs and/or of the 20S proteasomes, thereby inducing cancer cell death. In this study, we found that cadmium pyrithione (CdPT) treatment led to remarkable accumulation of ubiquitinated proteins in cultured cancer cells and primary leukemia cells. CdPT potently inhibited the activity of proteasomal DUBs (USP14 and UCHL5), but slightly inhibited 20S proteasome activity. The anti-cancer activity of CdPT was associated with triggering apoptosis via caspase activation. Moreover, treatment with CdPT inhibited proteasome function and repressed tumor growth in animal xenograft models. Our results show that cadmium-containing complex CdPT may function as a novel proteasomal DUB inhibitor and suggest appealing prospects for cancer treatment.
Collapse
|
44
|
Seliman AA, Altaf M, Onawole AT, Ahmad S, Ahmed MY, Al-Saadi AA, Altuwaijri S, Bhatia G, Singh J, Isab AA. Synthesis, X-ray structures and anticancer activity of gold(I)-carbene complexes with selenones as co-ligands and their molecular docking studies with thioredoxin reductase. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Chen X, Zhang X, Chen J, Yang Q, Yang L, Xu D, Zhang P, Wang X, Liu J. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol 2017; 815:147-155. [PMID: 28887042 DOI: 10.1016/j.ejphar.2017.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a central role in the regulation of proteins that control cell growth and apoptosis and has therefore become an important target for anticancer therapy. Several constitutive subunits of the 19S proteasome display deubiquitinase (DUB) activity, suggesting that ubiquitin modification of proteins is dynamically regulated. Our study and others have shown that metal complexes, such as copper complexes, can induce cancer cell apoptosis through inhibiting 19S proteasome-associated DUBs and/or 20S proteasome activity. In this study, we found that (1) Hinokitiol copper complex (HK-Cu) induces striking accumulation of ubiquitinated proteins in A549 and K562 cells (2) HK-Cu potently inhibits the activity of the 19S proteasomal DUBs much more effectively than it does to the chymotrypsin-like activity of the 20S proteasome (3) HK-Cu effectively induces caspase-independent and paraptosis-like cell death in A549 and K562 cells, and (4) HK-Cu-induced cell death depends on ATF4-assosiated ER stress but is apparently not related to ROS generation. Altogether, these data indicate that HK-Cu can inhibit the activity of the 19S proteasomal DUBs and induce paraptosis-like cell death, representing a new drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Xin Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghong Chen
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dacai Xu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peiquan Zhang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China; Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Abstract
Cancer is a major health issue worldwide, and the global burden of cancer is expected to increase in the coming years. Whereas the limited success with current therapies has driven huge investments into drug development, the average number of FDA approvals per year has declined since the 1990s. This unmet need for more effective anti-cancer drugs has sparked a growing interest for drug repurposing, i.e. using drugs already approved for other indications to treat cancer. As such, data both from pre-clinical experiments, clinical trials and observational studies have demonstrated anti-tumor efficacy for compounds within a wide range of drug classes other than cancer. Whereas some of them induce cancer cell death or suppress various aspects of cancer cell behavior in established tumors, others may prevent cancer development. Here, we provide an overview of promising candidates for drug repurposing in cancer, as well as studies describing the biological mechanisms underlying their anti-neoplastic effects.
Collapse
Affiliation(s)
- Linda Sleire
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Hilde Elise Førde
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Inger Anne Netland
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Lina Leiss
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway
| | - Bente Sandvei Skeie
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway
| | - Per Øyvind Enger
- Oncomatrix Research Group, Department of Biomedicine, University of Bergen, Jonas Lies vei 91 5009 Bergen, Norway; Department of Neurosurgery, Haukeland University Hospital, Jonas Lies vei, 71, 5021 Bergen, Norway.
| |
Collapse
|
47
|
Platinum pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via DUB inhibition-dependent caspase activation and Bcr-Abl downregulation. Cell Death Dis 2017; 8:e2913. [PMID: 28682311 PMCID: PMC5550844 DOI: 10.1038/cddis.2017.284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/10/2017] [Accepted: 05/26/2017] [Indexed: 11/18/2022]
Abstract
Chronic myelogenous leukemia (CML) is characterized by the chimeric tyrosine kinase Bcr-Abl. T315I Bcr-Abl is the most notorious point mutation to elicit acquired resistance to imatinib (IM), leading to poor prognosis. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that platinum pyrithione (PtPT) potently inhibits the ubiquitin–proteasome system (UPS) via targeting the 26 S proteasome-associated deubiquitinases (DUBs), without effecting on the 20 S proteasome. Here we further report that (i) PtPT induces apoptosis in Bcr-Abl wild-type and Bcr-Abl-T315I mutation cells including the primary mononuclear cells from CML patients clinically resistant to IM, as well as inhibits the growth of IM-resistant Bcr-Abl-T315I xenografts in vivo; (ii) PtPT downregulates Bcr-Abl level through restraining Bcr-Abl transcription, and decreasing Bcr-Abl protein mediated by DUBs inhibition-induced caspase activation; (iii) UPS inhibition is required for PtPT-induced caspase activation and cell apoptosis. These findings support that PtPT overcomes IM resistance through both Bcr-Abl-dependent and -independent mechanisms. We conclude that PtPT can be a lead compound for further drug development to overcome imatinib resistance in CML patients.
Collapse
|
48
|
Cai J, Xia X, Liao Y, Liu N, Guo Z, Chen J, Yang L, Long H, Yang Q, Zhang X, Xiao L, Wang X, Huang H, Liu J. A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 2017; 8:63232-63246. [PMID: 28968984 PMCID: PMC5609916 DOI: 10.18632/oncotarget.18774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) remains a leading cause of cancer-related death in men. Especially, a subset of patients will eventually progress to the metastatic castrate-resistant prostate cancer (CRPC) which is currently incurable. Deubiquitinases (DUBs) associated with the 19S proteasome regulatory particle are increasingly emerging as significant therapeutic targets in numerous cancers. Recently, a novel small molecule b-AP15 is identified as an inhibitor of the USP14/UCHL5 (DUBs) of the 19S proteasome, resulting in cell growth inhibition and apoptosis in several human cancer cell lines. Here, we studied the therapeutic effect of b-AP15 in PCa, and our results indicate that (i) b-AP15 decreases viability, proliferation and triggers cytotoxicity to both androgen receptor-dependent and -independent PCa cells in vitro and in vivo, associated with caspase activation, inhibition of mitochondria function, increased reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress; (ii) pan-caspase inhibitor z-VAD-FMK and ROS scavenger N-acetyl-L-cysteine (NAC) efficiently block apoptosis but not proteasome inhibition induced by exposure of b-AP15; (iii) treatment with b-AP15 in androgen-dependent prostate cancer (ADPC) cells down-regulates the expression of androgen receptor (AR), which is degraded via the ubiquitin proteasome system. Hence, the potent anti-tumor effect of b-AP15 on both androgen receptor-dependent and -independent PCa cells identifies a new promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Jianyu Cai
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xiaohong Xia
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Yuning Liao
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Ningning Liu
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Zhiqiang Guo
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Jinghong Chen
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Li Yang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Huidan Long
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xiaolan Zhang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Lu Xiao
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xuejun Wang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Hongbiao Huang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Jinbao Liu
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| |
Collapse
|
49
|
Lee JE, Kwon YJ, Baek HS, Ye DJ, Cho E, Choi HK, Oh KS, Chun YJ. Synergistic induction of apoptosis by combination treatment with mesupron and auranofin in human breast cancer cells. Arch Pharm Res 2017; 40:746-759. [DOI: 10.1007/s12272-017-0923-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
|
50
|
Abstract
SIGNIFICANCE There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. CRITICAL ISSUES The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. FUTURE DIRECTIONS If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Collapse
Affiliation(s)
| | - Garth Powis
- 2 Sanford Burnham Prebys Medical Discovery Institute Cancer Center , La Jolla, California
| |
Collapse
|