1
|
Yang S, Liu C, Jiang M, Liu X, Geng L, Zhang Y, Sun S, Wang K, Yin J, Ma S, Wang S, Belmonte JCI, Zhang W, Qu J, Liu GH. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes. Protein Cell 2024; 15:98-120. [PMID: 37378670 PMCID: PMC10833472 DOI: 10.1093/procel/pwad039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Aging increases the risk of liver diseases and systemic susceptibility to aging-related diseases. However, cell type-specific changes and the underlying mechanism of liver aging in higher vertebrates remain incompletely characterized. Here, we constructed the first single-nucleus transcriptomic landscape of primate liver aging, in which we resolved cell type-specific gene expression fluctuation in hepatocytes across three liver zonations and detected aberrant cell-cell interactions between hepatocytes and niche cells. Upon in-depth dissection of this rich dataset, we identified impaired lipid metabolism and upregulation of chronic inflammation-related genes prominently associated with declined liver functions during aging. In particular, hyperactivated sterol regulatory element-binding protein (SREBP) signaling was a hallmark of the aged liver, and consequently, forced activation of SREBP2 in human primary hepatocytes recapitulated in vivo aging phenotypes, manifesting as impaired detoxification and accelerated cellular senescence. This study expands our knowledge of primate liver aging and informs the development of diagnostics and therapeutic interventions for liver aging and associated diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Chengyu Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yiyuan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, Beijing 100101, China
| |
Collapse
|
2
|
Liu P, Han B, Zhang Y, Wang X. Network Pharmacology-Based Strategy to Investigate the Mechanisms of Lenvatinib in the Treatment of Hepatocellular Carcinoma. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7102500. [PMID: 35720901 PMCID: PMC9205703 DOI: 10.1155/2022/7102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is a complex and refractory malignant tumor, ranking the third cause of cancer-related deaths worldwide. Lenvatinib is currently employed to treat advanced, unresectable HCC as a first-line drug. The purpose of this study was to explore the pharmacological mechanisms of lenvatinib acting on HCC through the analysis of differential expressed genes based on network pharmacology. The target genes of lenvatinib were collected from PubChem, SwissTargetPrediction, PharmMapper, and BATMAN-TCM online public databases. In addition, related gene targets for HCC were obtained using NCBI Gene Expression Omnibus (NCBI-GEO) database. Afterward, the protein-protein interaction (PPI) network was established to visualize and understand the interaction relationships of overlapping gene targets from both lenvatinib and HCC. Furthermore, according to the data obtained, Gene Ontology (GO) analysis indicated that these intersectant genes were mainly enriched in response to xenobiotic stimulus, gland development, ion channel complex, membrane raft, and steroid binding. Besides, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the therapeutic effects of lenvatinib on HCC probably involved bile secretion, MAPK signaling pathway, cGMP-PKG signaling pathway, PI3K-Akt signaling pathway, and Ras signaling pathway. Moreover, a total of six key differential genes, namely, ALB, CCND1, ESR1, AR, CCNA2, and AURKA, were identified as most significant targets associated with lenvatinib treating HCC and further verified by molecular docking, which demonstrated that lenvatinib had a strong binding efficiency with these six key gene-encoded proteins. Taken together, this study systematically provided new insights for researchers to determine the intervention mechanisms of lenvatinib in HCC therapy.
Collapse
Affiliation(s)
- Peng Liu
- Department of Gastroenterology, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200123, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yanxia Zhang
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiaojuan Wang
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai 201199, China
| |
Collapse
|
3
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
4
|
Al-Ali AAA, Al-Tamimi SQ, Al-Maliki SJ, Abdullah MA. Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Park S, Chung MJ, Son JY, Yun HH, Park JM, Yim JH, Jung SJ, Lee SH, Jeong KS. The role of Sirtuin 2 in sustaining functional integrity of the liver. Life Sci 2021; 285:119997. [PMID: 34597608 DOI: 10.1016/j.lfs.2021.119997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023]
Abstract
AIM Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase involved in various biological functions via deacetylation of proteins, including histone protein. Hepatic fat accumulation from aging and excess caloric intake contribute to development of non-alcoholic fatty liver disease. The study aim was to elucidate the role of SIRT2 in lipid metabolism homeostasis. MATERIALS AND METHODS SIRT2+/+ (C57BL/6) and SIRT2-/- were randomly assigned to normal diet or high-fat diet (HFD) groups and fed for 6 weeks. Histological features of the livers were evaluated by hematoxylin and eosin and Masson's trichrome staining, and the levels of selected factors were determined by quantitative reverse transcription-polymerase chain reaction and western blot analysis. KEY FINDINGS Although the SIRT2-/- mice were viable, their livers exhibited higher glycogen accumulation, and skeletal muscle showed features of increased metabolic demand. The SIRT2-/- mice attenuated HFD-induced weight gain, visceral adipose tissue formation, and fat accumulation in the liver in which the expressions of genes involved in metabolic substrate transport were modified. Additionally, the hepatocellular senescence and upregulated cell-cycle factors upon HFD intake in SIRT2-/- livers suggested a role of SIRT2 in gene expression during abnormal metabolism. Moreover, the fibrotic phenotype of liver tissue without fat accumulation and the increased expression of genes involved in liver fibrosis in the HFD-fed SIRT2-/- mice indicated that SIRT2 had a role in hepatocyte and hepatic stellate cell activation. SIGNIFICANCE Our results indicated that SIRT2 has a critical role in regulating lipid metabolic homeostasis and in sustaining liver integrity by modulating related gene expression.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun Ho Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Min Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Jun Jung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea; Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
6
|
Cui HX, Luo Y, Mao YY, Yuan K, Jin SH, Zhu XT, Zhong BW. Purified anthocyanins from Zea mays L. cob ameliorates chronic liver injury in mice via modulating of oxidative stress and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4672-4680. [PMID: 33491773 DOI: 10.1002/jsfa.11112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Purple corn (Zea mays L.) is one of the main economic crops in China and has been used in the treatment of cystitis, urinary infections and obesity. However, purple corncobs, the by-product remaining after processing and having an intense purple-black color, are normally disposed of as waste or used as animal feed. Therefore, to further expand the medicinal value of purple corncob, its content was analyzed and, after purification, the effect and mechanism of purified purple corncob anthocyanins (PPCCA) on CCl4 -induced chronic liver injury in mice were investigated. RESULTS It was observed that the total anthocyanin content (TAC) from PPCCA (317.51 ± 9.30 mg cyanidin 3-O-glucoside (C-3-G) g-1 dry weight) was significantly higher than that from the purified purple corn seed anthocyanin (266.73 ± 3.67 mg C-3-G g-1 dry weight), of which C-3-G accounted for 90.6% and 90.4% of the TAC, respectively. Furthermore, compared with the CCl4 group, PPCCA treatment significantly reduced liver index, serum total bilirubin, alanine transaminase, aspartate transaminase and liver malondialdehyde levels, but increased liver superoxide dismutase activity. The pathological changes were also improved, such as more regular arrangement of hepatocytes, less swelling, and fewer vacuoles and apoptotic cells. Additionally, mechanistic studies showed that PPCCA downregulated the expression of Caspase-3, Bax and cytochrome P450 2E1 proteins in the liver and upregulated the expression of Bcl-2. CONCLUSION These results demonstrated that PPCCA could ameliorate CCl4 -induced chronic liver injury by regulating oxidative stress and hepatocyte apoptosis pathways. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Xin Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Disease by Henan & Education Ministry of PR China, Zhengzhou, China
| | - Yang Luo
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Yue-Yue Mao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ke Yuan
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Song-Heng Jin
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Xiang-Tao Zhu
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| | - Bing-Wei Zhong
- Jiyang College of Zhejiang Agriculture and Forestry University, Zhu'ji, China
| |
Collapse
|
7
|
Network Pharmacology-Based Study on the Molecular Biological Mechanism of Action for Qingdu Decoction against Chronic Liver Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661667. [PMID: 33747110 PMCID: PMC7952185 DOI: 10.1155/2021/6661667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Background Qingdu Decoction (QDD) is a traditional Chinese medicine formula for treating chronic liver injury (CLI). Materials and methods. A network pharmacology combining experimental validation was used to investigate potential mechanisms of QDD against CLI. We firstly screened the bioactive compounds with pharmacology analysis platform of the Chinese medicine system (TCMSP) and gathered the targets of QDD and CLI. Then, we constructed a compound-target network and a protein-protein interaction (PPI) network and enriched core targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. At last, we used a CLI rat model to confirm the effect and mechanism of QDD against CLI. Enzyme-linked immunosorbent assay (ELISA), western blot (WB), and real-time quantitative polymerase chain reaction (RT-qPCR) were used. Results 48 bioactive compounds of QDD passed the virtual screening criteria, and 53 overlapping targets were identified as core targets of QDD against CLI. A compound-CLI related target network containing 94 nodes and 263 edges was constructed. KEGG enrichment of core targets contained some pathways related to CLI, such as hepatitis B, tumor necrosis factor (TNF) signaling pathway, apoptosis, hepatitis C, interleukin-17 (IL-17) signaling pathway, and hypoxia-inducible factor (HIF)-1 signaling pathway. Three PPI clusters were identified and enriched in hepatitis B and tumor necrosis factor (TNF) signaling pathway, apoptosis and hepatitis B pathway, and peroxisome pathway, respectively. Animal experiment indicated that QDD decreased serum concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), endotoxin (ET), and IL-17 and increased prothrombin time activity (PTA) level. WB and RT-qPCR analyses indicated that, compared with the model group, the expression of cysteinyl aspartate specific proteinase-9 (caspase-9) protein, caspase-3 protein, B-cell lymphoma-2 associated X protein (Bax) mRNA, and cytochrome c (Cyt c) mRNA was inhibited and the expression of B-cell lymphoma-2 (Bcl-2) mRNA was enhanced in the QDD group. Conclusions QDD has protective effect against CLI, which may be related to the regulation of hepatocyte apoptosis. This study provides novel insights into exploring potential biological basis and mechanisms of clinically effective formula systematically.
Collapse
|
8
|
Li X, Dong G, Xiong H, Diao H. A narrative review of the role of necroptosis in liver disease: a double-edged sword. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:422. [PMID: 33842643 PMCID: PMC8033311 DOI: 10.21037/atm-20-5162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acute and chronic liver injuries lead to hepatocyte death and turnover. When injuries become chronic, continuous cell death and transformation lead to chronic inflammation, fibrosis, cirrhosis, and eventually carcinoma. A therapeutic strategy of great significance for liver disease is to control hepatocyte death in acute and chronic injuries. This strategy prevents hepatocytes from causing liver failure and inhibits both secondary inflammation and fibrosis. Both apoptosis and necrosis have been proven to occur in the liver, but the role of necroptosis in liver diseases is controversial. Necroptosis, which has features of necrosis and apoptosis, is a regulatory process that occurs in some cell types when caspases are inhibited. The signaling pathway of necroptosis is characterized by the activation of receptor-interacting proteins kinase (RIPK) and mixed lineage kinase domain-like (MLKL). Necroptosis is associated with a variety of inflammatory diseases and has been the focus of research in recent years. The incidence of necroptosis in liver tissues has been studied recently in several liver injury models, but the results of the studies are not consistent. The purpose of this review is to summarize the published data on the involvement of necroptosis in liver injury, focusing on the controversies, issues remaining to be discussed, and potential therapeutic applications in this area.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Block PD, Shinn B, Kim JH, Hann HW. Hepatitis B-related hepatocellular carcinoma and stress: untangling the host immune response from clinical outcomes. Hepat Oncol 2020; 8:HEP35. [PMID: 33680431 PMCID: PMC7907965 DOI: 10.2217/hep-2020-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major public health challenge on the global scale. Affecting hundreds of millions worldwide, HBV is a leading risk factor for hepatocellular carcinoma (HCC). Clinical outcomes from chronic HBV infection are varied and appear to be influenced by a complex and dysregulated host immune response. In turn, much attention has been given to the immunologic response to HBV in an effort to identify host factors that lead to the development of HCC. However, the role of nonimmunologic host factors, such as chronic stress, in HBV-related HCC is poorly defined. Indeed, a growing appreciation for the effects of stress on chronic liver diseases raises the question of its role in chronic HBV infection. In this light, the present review will untangle the roles of key host factors in HBV-related HCC with an emphasis on chronic stress as a viable contributor. First discussed is the interplay of stress, inflammation and chronic liver disease. The host immune response's role as a driver of HBV-related HCC is then reviewed, allowing for a close exploration of the effects of stress on immune function in chronic hepatitis B and as a potential risk factor for HBV-related HCC.
Collapse
Affiliation(s)
- Peter D Block
- Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Brianna Shinn
- Department of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jin Hyang Kim
- Bristol-Myers Squibb, 3401 Princeton Pike, Lawrenceville, NJ 08648, USA
| | - Hie-Won Hann
- Department of Gastroenterology & Hepatology, Liver Disease Prevention Center, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Chen Y, Li R, Hu N, Yu C, Song H, Li Y, Dai Y, Guo Z, Li M, Zheng Y, Guo Z, Qi Y. Baihe Wuyao decoction ameliorates CCl 4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling, anti-inflammation and anti-oxidation effects. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113227. [PMID: 32783983 DOI: 10.1016/j.jep.2020.113227] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Wuyao decoction (BWD), a prescription of Traditional Chinese Medicines, composed of Lilium brownii var. viridulum Baker.(Lilii Bulbus) and Lindera aggregata (Sims) Kosterm. (Linderae Radix), has been used to treat epigastric pain and superficial gastritis for hundreds of years in China. Recently, some compounds obtained from Lilii Bulbus and Linderae Radix had active effects of hepatic protection or liver fibrosis alleviation. Thus, we aim to evaluate the effects of BWD on treatment of chronic liver injury and liver fibrosis induced by carbon tetrachloride (CCl4) and to elucidate the possible molecular mechanism. MATERIALS AND METHODS Mice were treated with BWD (low, medium and high dose), diammonium glycyrrhizinate or vehicle by oral gavage once daily, simultaneously intraperitoneal injected with a single dose of CCl4 (1 μl/g body weight) twice a week for consecutive 6 weeks. Next, all mice were sacrificed after fasted 12 h, and serums and liver tissues were harvested for analysis. The hepatic injury was detected by serum biomarker assay, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The hepatic histology and collagen were illustrated by hematoxylin-eosin staining and Sirius red staining respectively. The antioxidant capacity of liver tissues was evaluated by the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenization. The mRNA gene or protein expressions related to fibrosis, oxidative stress and inflammation molecules were performed by real-time quantitative PCR (RT-PCR) or Western-blot. RESULTS BWD exhibited a good hepatic protection with ameliorating liver histological changes, decreasing serum AST and ALT contents, and reducing hepatic fibrosis with stimulation ECMs (such as Collagen1 and Collagen3) degradation. BWD inhibited hepatic stellate cells (HSCs) activation, promoted matrix metalloproteinase-2 (MMP2), MMP9, and MMP12 while suppressing tissue inhibitors of matrix metalloproteinase-1 (TIMP1) expression, and blocked traditional fibrosis TGF-β1/Smad2/3 signal pathway. Moreover, BWD exhibited anti-inflammation effect proved by the reduction of liver Interleukin-1β (IL-1β), TNF-α, IL-11 mRNA levels and promoted anti-oxidation effects determined by inhibition of liver MDA and iNOS levels while promoting liver SOD and Mn-SOD. CONCLUSION BWD ameliorates CCl4-induced CLI and liver fibrosis which is correlated to its blocking TGF-β1/Smad2/3 signaling, anti-inflammation, and anti-oxidation effects. BWD, as a small traditional prescription, is a promising treatment for CLI and liver fibrosis through multiple pharmacological targets.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Ruofei Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Nan Hu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Chunping Yu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Hongyu Song
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yida Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yujiao Dai
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhao Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Meng Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yi Zheng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiyi Guo
- Medical Research Center, North China University of Science and Technology, Tangshan, 063210, China
| | - Yajuan Qi
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China; Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China; Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
11
|
Liu P, Tang Q, Chen M, Chen W, Lu Y, Liu Z, He Z. Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Front Oncol 2020; 10:589908. [PMID: 33330071 PMCID: PMC7732623 DOI: 10.3389/fonc.2020.589908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. The lack of effective targeted drugs has become a challenge on treating HCC patients. Cellular senescence is closely linked to the occurrence, development, and therapy of tumor. Induction of cellular senescence and further activation of immune surveillance provides a new strategy to develop HCC targeted drugs, that is, senescence-induced therapy for HCC. Precancerous hepatocytes or HCC cells can be induced into senescent cells, subsequently producing senescence-associated secretory phenotype (SASP) factors. SASP factors recruit and activate various types of immune cells, including T cells, NK cells, macrophages, and their subtypes, which carry out the role of immune surveillance and elimination of senescent cells, ultimately preventing the occurrence of HCC or inhibiting the progression of HCC. Specific interventions in several checkpoints of senescence-mediated therapy will make positive contributions to suppress tumorigenesis and progression of HCC, for instance, by applying small molecular compounds to induce cellular senescence or selecting cytokines/chemokines to activate immunosurveillance, supplementing adoptive immunocytes to remove senescent cells, and screening chemical drugs to induce apoptosis of senescent cells or accelerate clearance of senescent cells. These interventional checkpoints become potential chemotherapeutic targets in senescence-induced therapy for HCC. In this review, we focus on the frontiers of senescence-induced therapy and discuss senescent characteristics of hepatocytes during hepatocarcinogenesis as well as the roles and mechanisms of senescent cell induction and clearance, and cellular senescence-related immunosurveillance during the formation and progression of HCC.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Qinghe Tang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Miaomiao Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wenjian Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yanli Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
12
|
Kumar A, Bano D, Ehninger D. Cellular senescence in vivo: From cells to tissues to pathologies. Mech Ageing Dev 2020; 190:111308. [PMID: 32622996 DOI: 10.1016/j.mad.2020.111308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/22/2023]
Abstract
Senescent cells accumulate during aging in a variety of tissues. Although scarce, they could influence tissue function non-cell-autonomously via secretion of a range of factors in their neighborhood. Recent studies support a role of senescent cells in age-related morbidity, including neurodegenerative diseases, cardiovascular pathologies, cancers, aging-associated nephrological alterations, chronic pulmonary disease and osteoarthritis, indicating that senescent cells could represent an interesting target for therapeutic exploitation across a range of pathophysiological contexts. In this article, we review data available to indicate which cell types can undergo senescence within various mammalian tissue environments and how these processes may contribute to tissue-specific pathologies associated with old age. We also consider markers used to identify senescent cells in vitro and in vivo. The data discussed may serve as an important starting point for an extended definition of molecular and functional characteristics of senescent cells in different organs and may hence promote the development and refinement of targeting strategies aimed at removing senescent cells from aging tissues.
Collapse
Affiliation(s)
- Avadh Kumar
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
13
|
Hussain F, Basu S, Heng JJH, Loo LH, Zink D. Predicting direct hepatocyte toxicity in humans by combining high-throughput imaging of HepaRG cells and machine learning-based phenotypic profiling. Arch Toxicol 2020; 94:2749-2767. [PMID: 32533217 DOI: 10.1007/s00204-020-02778-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Accurate prediction of drug- and chemical-induced hepatotoxicity remains to be a problem for pharmaceutical companies as well as other industries and regulators. The goal of the current study was to develop an in vitro/in silico method for the rapid and accurate prediction of drug- and chemical-induced hepatocyte injury in humans. HepaRG cells were employed for high-throughput imaging in combination with phenotypic profiling. A reference set of 69 drugs and chemicals was screened at a range of 7 concentrations, and the cellular response values were used for training a supervised classifier and for determining assay performance by using tenfold cross-validation. The results showed that the best performing phenotypic features were related to nuclear translocation of RELA (RELA proto-oncogene, NF-kB subunit; also known as NF-kappa B p65), DNA organization, and the F-actin cytoskeleton. Using a subset of 30 phenotypic features, direct hepatocyte toxicity in humans could be predicted with a test sensitivity, specificity and balanced accuracy of 73%, 92%, and 83%, respectively. The method was applied to another set of 26 drugs and chemicals with unclear annotation and their hepatocyte toxicity in humans was predicted. The results also revealed that the identified discriminative phenotypic changes were related to cell death and cellular senescence. Whereas cell death-related endpoints are widely applied in in vitro toxicology, cellular senescence-related endpoints are not, although cellular senescence can be induced by various drugs and other small molecule compounds and plays an important role in liver injury and disease. These findings show how phenotypic profiling can reveal unexpected chemical-induced mechanisms in toxicology.
Collapse
Affiliation(s)
- Faezah Hussain
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Sreetama Basu
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Javen Jun Hao Heng
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore. .,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Daniele Zink
- NanoBio Lab and Institute of Bioengineering and Nanotechnology (IBN), 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore.
| |
Collapse
|
14
|
Yao Y, Zang Y, Qu J, Tang M, Zhang T. The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes. Int J Nanomedicine 2019; 14:8787-8804. [PMID: 31806972 PMCID: PMC6844216 DOI: 10.2147/ijn.s212907] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Metallic nanoparticles (MNPs) are new engineering materials with broad prospects for biomedical applications; thus, their biosafety has drawn great concern. The liver is the main detoxification organ of vertebrates. However, many issues concerning the interactions between MNPs and biological systems (cells and tissues) are unclear, particularly the toxic effects of MNPs on hepatocytes and other liver cells. Numerous researchers have shown that some MNPs can induce decreased cell survival rate, production of reactive oxygen species (ROS), mitochondrial damage, DNA strand breaks, and even autophagy, pyroptosis, apoptosis, or other forms of cell death. Our review focuses on the recent researches on the liver toxicity of MNPs and its mechanisms at cellular and subcellular levels to provide a scientific basis for the subsequent hepatotoxicity studies of MNPs.
Collapse
Affiliation(s)
- Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Yiteng Zang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Jing Qu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing210009, People’s Republic of China
| |
Collapse
|
15
|
Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM. Hepatic senescence, the good and the bad. World J Gastroenterol 2019; 25:5069-5081. [PMID: 31558857 PMCID: PMC6747293 DOI: 10.3748/wjg.v25.i34.5069] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Gradual alterations of cell’s physiology and functions due to age or exposure to various stresses lead to the conversion of normal cells to senescent cells. Once becoming senescent, the cell stops dividing permanently but remains metabolically active. Cellular senescence does not have a single marker but is characterized mainly by a combination of multiple markers, such as, morphological changes, expression of cell cycle inhibitors, senescence associated β-galactosidase activity, and changes in nuclear membrane. When cells in an organ become senescent, the entire organism can be affected. This may occur through the senescence-associated secretory phenotype (SASP). SASP may exert beneficial or harmful effects on the microenvironment of tissues. Research on senescence has become a very exciting field in cell biology since the link between age-related diseases, including cancer, and senescence has been established. The loss of regenerative and homeostatic capacity of the liver over the age is somehow connected to cellular senescence. The major contributors of senescence properties in the liver are hepatocytes and cholangiocytes. Senescent cells in the liver have been implicated in the etiology of chronic liver diseases including cirrhosis and hepatocellular carcinoma and in the interference of liver regeneration. This review summarizes recently reported findings in the understanding of the molecular mechanisms of senescence and its relationship with liver diseases.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|