1
|
Song H, Hu Z, Zhang S, Yang L, Feng J, Lu L, Liu Y, Wang T. Application of urine proteomics in the diagnosis and treatment effectiveness monitoring of early-stage Mycosis Fungoides. Clin Proteomics 2024; 21:53. [PMID: 39138419 PMCID: PMC11321143 DOI: 10.1186/s12014-024-09503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) is the most common type of cutaneous T cell lymphoma. As the early clinical manifestations of MF are non-specific (e.g., erythema or plaques), it is often misdiagnosed as inflammatory skin conditions (e.g., atopic dermatitis, psoriasis, and pityriasis rosea), resulting in delayed treatment. As there are no effective biological markers for the early detection and management of MF, the aim of the present study was to perform a proteomic analysis of urine samples (as a non-invasive protein source) to identify reliable MF biomarkers. METHODS Thirteen patients with early-stage MF were administered a subcutaneous injection of interferon α-2a in combination with phototherapy for 6 months. The urine proteome of patients with early-stage MF before and after treatment was compared against that of healthy controls by liquid chromatography-tandem mass spectrometry. The differentially expressed proteins were subjected to Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups analyses. For validation, the levels of the selected proteins were evaluated by enzyme-linked immunosorbent assay (ELISA). RESULTS We identified 41 differentially expressed proteins (11 overexpressed and 30 underexpressed) between untreated MF patients and healthy control subjects. The proteins were mainly enriched in focal adhesion, endocytosis, and the PI3K-Akt, phospholipase D, MAPK, and calcium signaling pathways. The ELISA results confirmed that the urine levels of Serpin B5, epidermal growth factor (EGF), and Ras homologous gene family member A (RhoA) of untreated MF patients were significantly lower than those of healthy controls. After 6 months of treatment, however, there was no significant difference in the urine levels of Serpin B5, EGF, and RhoA between MF patients and healthy control subjects. The area under the receiver operating characteristic curve values for Serpin B5, EGF, and RhoA were 0.817, 0.900, and 0.933, respectively. CONCLUSIONS This study showed that urine proteomics represents a valuable tool for the study of MF, as well as identified potential new biomarkers (Serpin B5, EGF, and RhoA), which could be used in its diagnosis and management.
Collapse
Affiliation(s)
- Hongbin Song
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
- Department of Dermatology, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| | - Zhonghui Hu
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
| | - Shiyu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
| | - Lu Yang
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
| | - Jindi Feng
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
| | - Lu Lu
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China.
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Dhaouadi S, Bouhaouala-Zahar B, Orend G. Tenascin-C targeting strategies in cancer. Matrix Biol 2024; 130:1-19. [PMID: 38642843 DOI: 10.1016/j.matbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological conditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already extensively targeted in clinical trials on cancer patients. This review provides an overview of the current most advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced clinical strategies. We also discuss novel treatment protocols, where targeting immune modulating functions of TNC could be center stage.
Collapse
Affiliation(s)
- Sayda Dhaouadi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia; Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| | - Gertraud Orend
- INSERM U1109, The Tumor Microenvironment laboratory, Université Strasbourg, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
3
|
Chen W, Wu Y, Wang J, Yu W, Shen X, Zhao K, Liang B, Hu X, Wang S, Jiang H, Liu X, Zhang M, Xing X, Wang C, Xing D. Clinical advances in TNC delivery vectors and their conjugate agents. Pharmacol Ther 2024; 253:108577. [PMID: 38081519 DOI: 10.1016/j.pharmthera.2023.108577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Tenascin C (TNC), a glycoprotein that is abundant in the tumor extracellular matrix (ECM), is strongly overexpressed in tumor tissues but virtually undetectable in most normal tissues. Many TNC antibodies, peptides, aptamers, and nanobodies have been investigated as delivery vectors, including 20A1, α-A2, α-A3, α-IIIB, α-D, BC-2, BC-4 BC-8, 81C6, ch81C6, F16, FHK, Ft, Ft-NP, G11, G11-iRGD, GBI-10, 19H12, J1/TN1, J1/TN2, J1/TN3, J1/TN4, J1/TN5, NJT3, NJT4, NJT6, P12, PL1, PL3, R6N, SMART, ST2146, ST2485, TN11, TN12, TNFnA1A2-Fc, TNfnA1D-Fc, TNfnBD-Fc, TNFnCD-Fc, TNfnD6-Fc, TNfn78-Fc, TTA1, TTA1.1, and TTA1.2. In particular, BC-2, BC-4, 81C6, ch81C6, F16, FHK, G11, PL1, PL3, R6N, ST2146, TN11, and TN12 have been tested in human tissues. G11-iRGD and simultaneous multiple aptamers and arginine-glycine-aspartic acid (RGD) targeting (SMART) may be assessed in clinical trials because G11, iRGD and AS1411 (SMART components) are already in clinical trials. Many TNC-conjugate agents, including antibody-drug conjugates (ADCs), antibody fragment-drug conjugates (FDCs), immune-stimulating antibody conjugates (ISACs), and radionuclide-drug conjugates (RDCs), have been investigated in preclinical and clinical trials. RDCs investigated in clinical trials include 111In-DTPA-BC-2, 131I-BC-2, 131I-BC-4, 90Y-BC4, 131I81C6, 131I-ch81C6, 211At-ch81C6, F16124I, 131I-tenatumomab, ST2146biot, FDC 131I-F16S1PF(ab')2, and ISAC F16IL2. ADCs (including FHK-SSL-Nav, FHK-NB-DOX, Ft-NP-PTX, and F16*-MMAE) and ISACs (IL12-R6N and 125I-G11-IL2) may enter clinical trials because they contain components of marketed treatments or agents that were investigated in previous clinical studies. This comprehensive review presents historical perspectives on clinical advances in TNC-conjugate agents to provide timely information to facilitate tumor-targeting drug development using TNC.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Yudong Wu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Wanpeng Yu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Xin Shen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Kai Zhao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China; Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Xiaokun Hu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China; Interventional Medicine Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Key Laboratory of Precision Radiation Therapy for Tumors in Weifang City, School of Medical Imaging, Weifang Medical University, Weifang, Shandong 261031, China
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Xinlin Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Miao Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China
| | - Xiaohui Xing
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266000, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
5
|
Lovisa F, Garbin A, Crotti S, Di Battista P, Gallingani I, Damanti CC, Tosato A, Carraro E, Pillon M, Mafakheri E, Romanato F, Gaffo E, Biffi A, Bortoluzzi S, Agostini M, Mussolin L. Increased Tenascin C, Osteopontin and HSP90 Levels in Plasmatic Small Extracellular Vesicles of Pediatric ALK-Positive Anaplastic Large Cell Lymphoma: New Prognostic Biomarkers? Diagnostics (Basel) 2021; 11:diagnostics11020253. [PMID: 33562105 PMCID: PMC7915848 DOI: 10.3390/diagnostics11020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past 15 years, several biological and pathological characteristics proved their significance in pediatric anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphoma (ALCL) prognostic stratification. However, the identification of new non-invasive disease biomarkers, relying on the most important disease mechanisms, is still necessary. In recent years, plasmatic circulating small extracellular vesicles (S-EVs) gathered great importance both as stable biomarker carriers and active players in tumorigenesis. In the present work, we performed a comprehensive study on the proteomic composition of plasmatic S-EVs of pediatric ALCL patients compared to healthy donors (HDs). By using a mass spectrometry-based proteomics approach, we identified 50 proteins significantly overrepresented in S-EVs of ALCL patients. Gene Ontology enrichment analysis disclosed cellular components and molecular functions connected with S-EV origin and vesicular trafficking, whereas cell adhesion, glycosaminoglycan metabolic process, extracellular matrix organization, collagen fibril organization and acute phase response were the most enriched biological processes. Of importance, consistently with the presence of nucleophosmin (NPM)-ALK fusion protein in ALCL cells, a topological enrichment analysis based on Reactome- and Kyoto Encyclopedia of Genes and Genomes (KEGG)-derived networks highlighted a dramatic increase in proteins of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in ALCL S-EVs, which included heat shock protein 90-kDa isoform alpha 1 (HSP90AA1), osteopontin (SPP1/OPN) and tenascin C (TNC). These results were validated by Western blotting analysis on a panel of ALCL and HD cases. Further research is warranted to better define the role of these S-EV proteins as diagnostic and, possibly, prognostic parameters at diagnosis and for ALCL disease monitoring.
Collapse
Affiliation(s)
- Federica Lovisa
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Anna Garbin
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Sara Crotti
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Piero Di Battista
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Ilaria Gallingani
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Carlotta Caterina Damanti
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Anna Tosato
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Elisa Carraro
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128 Padova, Italy; (E.C.); (M.P.)
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128 Padova, Italy; (E.C.); (M.P.)
| | - Erfan Mafakheri
- Department of Physics and Astronomy, Padova University, 35131 Padova, Italy; (E.M.); (F.R.)
| | - Filippo Romanato
- Department of Physics and Astronomy, Padova University, 35131 Padova, Italy; (E.M.); (F.R.)
- IOM-CNR, S.S. 14 km 163,5, 34149 Trieste, Italy
| | - Enrico Gaffo
- Department of Molecular Medicine, Padova University, 35121 Padova, Italy; (E.G.); (S.B.)
| | - Alessandra Biffi
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, Padova University, 35121 Padova, Italy; (E.G.); (S.B.)
- CRIBI Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), Padova University, 35121 Padova, Italy
| | - Marco Agostini
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, Padova University, 35128 Padova, Italy
| | - Lara Mussolin
- Maternal and Child Health Department, Padova University, 35128 Padova, Italy; (F.L.); (A.G.); (P.D.B.); (I.G.); (C.C.D.); (A.T.); (A.B.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy; (S.C.); (M.A.)
- Correspondence:
| |
Collapse
|
6
|
The extracellular matrix: A key player in the pathogenesis of hematologic malignancies. Blood Rev 2020; 48:100787. [PMID: 33317863 DOI: 10.1016/j.blre.2020.100787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022]
Abstract
Hematopoietic stem and progenitor cells located in the bone marrow lay the foundation for multiple lineages of mature hematologic cells. Bone marrow niches are architecturally complex with specific cellular, physiochemical, and biomechanical factors. Increasing evidence suggests that the bone marrow microenvironment contributes to the pathogenesis of hematological neoplasms. Numerous studies have deciphered the role of genetic mutations and chromosomal translocations in the development hematologic malignancies. Significant progress has also been made in understanding how the cellular components and cytokine interactions within the bone marrow microenvironment promote the evolution of hematologic cancers. Although the extracellular matrix is known to be a key player in the pathogenesis of various diseases, it's role in the progression of hematologic malignancies is less understood. In this review, we discuss the interactions between the extracellular matrix and malignant cells, and provide an overview of the role of extracellular matrix remodeling in sustaining hematologic malignancies.
Collapse
|
7
|
Synthesis and preliminary in vitro evaluation of DOTA-Tenatumomab conjugates for theranostic applications in tenascin expressing tumors. Bioorg Med Chem 2019; 27:3248-3253. [DOI: 10.1016/j.bmc.2019.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/25/2022]
|