1
|
Garibaldi-Ríos AF, Figuera LE, Zúñiga-González GM, Gómez-Meda BC, García-Verdín PM, Carrillo-Dávila IA, Gutiérrez-Hurtado IA, Torres-Mendoza BM, Gallegos-Arreola MP. In Silico Identification of Dysregulated miRNAs Targeting KRAS Gene in Pancreatic Cancer. Diseases 2024; 12:152. [PMID: 39057123 PMCID: PMC11276408 DOI: 10.3390/diseases12070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is highly lethal, with KRAS mutations in up to 95% of cases. miRNAs inversely correlate with KRAS expression, indicating potential as biomarkers. This study identified miRNAs targeting KRAS and their impact on PC characteristics using in silico methods. dbDEMC identified dysregulated miRNAs in PC; TargetScan, miRDB, and PolymiRTS 3.0 identified miRNAs specific for the KRAS gene; and OncomiR evaluated the association of miRNAs with clinical characteristics and survival in PC. The correlation between miRNAs and KRAS was analysed using ENCORI/starBase. A total of 210 deregulated miRNAs were identified in PC (116 overexpressed and 94 underexpressed). In total, 16 of them were involved in the regulation of KRAS expression and 9 of these (hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30b-5p, hsa-miR-30e-5p, hsa-miR-377-3p, hsa-miR-495-3p, hsa-miR-654-3p, hsa-miR-877-5p and hsa-miR-885-5p) were associated with the clinical characteristics of the PC. Specifically, the overexpression of hsa-miR-30a-5p was associated with PC mortality, and hsa-miR-30b-5p, hsa-miR-377-3p, hsa-miR-495-3p, and hsa-miR-885-5p were associated with survival. Correlation analysis revealed that the expression of 10 miRNAs is correlated with KRAS expression. The dysregulated miRNAs identified in PC may regulate KRAS and some are associated with clinically relevant features, highlighting their potential as biomarkers and therapeutic targets in PC treatment. However, experimental validation is required for confirmation.
Collapse
Affiliation(s)
- Asbiel Felipe Garibaldi-Ríos
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Guillermo Moisés Zúñiga-González
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada 800, Col. Independencia, Guadalajara 44340, Jalisco, Mexico;
| | - Belinda Claudia Gómez-Meda
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Patricia Montserrat García-Verdín
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Irving Alejandro Carrillo-Dávila
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Itzae Adonai Gutiérrez-Hurtado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico; (B.C.G.-M.); (I.A.G.-H.)
| | - Blanca Miriam Torres-Mendoza
- Laboratorio de Inmunodeficiencias Humanas y Retrovirus, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico;
- Departamento de Disciplinas Filosófico-Metodológicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico; (A.F.G.-R.); (L.E.F.); (P.M.G.-V.); (I.A.C.-D.)
| |
Collapse
|
2
|
Block I, Burton M, Sørensen KP, Larsen MJ, Do TTN, Bak M, Cold S, Thomassen M, Tan Q, Kruse TA. Ensemble-based classification using microRNA expression identifies a breast cancer patient subgroup with an ultralow long-term risk of metastases. Cancer Med 2024; 13:e7089. [PMID: 38676390 PMCID: PMC11053369 DOI: 10.1002/cam4.7089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 01/18/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Current clinical markers overestimate the recurrence risk in many lymph node negative (LNN) breast cancer (BC) patients such that a majority of these low-risk patients unnecessarily receive systemic treatments. We tested if differential microRNA expression in primary tumors allows reliable identification of indolent LNN BC patients to provide an improved classification tool for overtreatment reduction in this patient group. METHODS We collected freshly frozen primary tumors of 80 LNN BC patients with recurrence and 80 recurrence-free patients (mean follow-up: 20.9 years). The study comprises solely systemically untreated patients to exclude that administered treatments confound the metastasis status. Samples were pairwise matched for clinical-pathological characteristics to minimize dependence of current markers. Patients were classified into risk-subgroups according to the differential microRNA expression of their tumors via classification model building with cross-validation using seven classification methods and a voting scheme. The methodology was validated using available data of two independent cohorts (n = 123, n = 339). RESULTS Of the 80 indolent patients (who would all likely receive systemic treatments today) our ultralow-risk classifier correctly identified 37 while keeping a sensitivity of 100% in the recurrence group. Multivariable logistic regression analysis confirmed independence of voting results from current clinical markers. Application of the method in two validation cohorts confirmed successful classification of ultralow-risk BC patients with significantly prolonged recurrence-free survival. CONCLUSION Profiles of differential microRNAs expression can identify LNN BC patients who could spare systemic treatments demanded by currently applied classifications. However, further validation studies are required for clinical implementation of the applied methodology.
Collapse
Affiliation(s)
- Ines Block
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Present address:
Department of Mathematics and Computer ScienceUniversity of MarburgMarburgGermany
| | - Mark Burton
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Clinical Genome CenterUniversity of Southern Denmark and Region of Southern DenmarkOdenseDenmark
| | | | - Martin J. Larsen
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Thi T. N. Do
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Martin Bak
- Department of PathologyOdense University HospitalOdenseDenmark
- Department of PathologyHospital of Southwest JutlandEsbjergDenmark
| | - Søren Cold
- Department of OncologyOdense University HospitalOdenseDenmark
| | - Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Clinical Genome CenterUniversity of Southern Denmark and Region of Southern DenmarkOdenseDenmark
| | - Qihua Tan
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Clinical Genome CenterUniversity of Southern Denmark and Region of Southern DenmarkOdenseDenmark
- Epidemiology, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdenseDenmark
- Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Clinical Genome CenterUniversity of Southern Denmark and Region of Southern DenmarkOdenseDenmark
| |
Collapse
|
3
|
Aguiar Freitas AJ, Nunes CR, Mano MS, Causin RL, Calfa S, de Oliveira MA, Vidigal Santana IV, Pádua Souza CD, Chiquitelli Marques MM. Circulating microRNAs as potential biomarkers in triple-negative breast cancer: a translational research study of the NACATRINE trial. Future Oncol 2024; 20:25-38. [PMID: 38131283 DOI: 10.2217/fon-2023-0886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Liquid biopsy is increasingly vital in monitoring neoadjuvant breast cancer treatment. This study collected plasma samples at three time points from participants in the Neoadjuvant Carboplatin in Triple Negative Breast Cancer (NACATRINE), analyzing miRNA expression with NanoString's nCounter® Human v3 miRNA assay. In the carboplatin arm, four ct-miRNAs exhibited dynamic changes linked to pathologic complete response, with a combined area under the curve of 0.811. Similarly, the non-carboplatin arm featured four ct-miRNAs with an area under the curve of 0.843. These findings underscore the potential of ct-miRNAs as personalized tools in breast cancer treatment, assisting in predicting treatment response and assessing the risk of relapse. Integrating ct-miRNA analysis into clinical practice can optimize decisions and enhance patient outcomes.
Collapse
Affiliation(s)
- Ana Julia Aguiar Freitas
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Caroline Rocha Nunes
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Max Senna Mano
- Grupo Oncoclínicas São Paulo, São Paulo, BR - 04538-132, Brazil
| | - Rhafaela Lima Causin
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Stéphanie Calfa
- Barretos Cancer Hospital, Molecular Oncology Research Center Barretos, São Paulo, BR - 14784-400, Brazil
| | - Marco Antonio de Oliveira
- Barretos Cancer Hospital, Nucleus of Epidemiology & Biostatistics Barretos, São Paulo, BR - 14784-400, Brazil
| | | | | | | |
Collapse
|
4
|
Khanegheini B, Ghasemi A, Heidari MA, Aeinfar K, Firoozi S, Tamaddon M, Fereidouni Z. Role of MicroRNAs in Breast Cancer Metastasis to the Brain: A New Therapeutic Perspective. Galen Med J 2023; 12:1-4. [PMID: 38774849 PMCID: PMC11108662 DOI: 10.31661/gmj.v12i.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Indexed: 05/24/2024] Open
Affiliation(s)
- Baback Khanegheini
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran
University of Medical Sciences, Tehran, Iran
| | - Afsaneh Ghasemi
- Department of Public Health, School of Health, Fasa University of Medical Sciences,
Fasa, Iran
| | - Mohammad Amin Heidari
- Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Science,
Ilam, Iran
| | - Kamkar Aeinfar
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical
Sciences, Tehran, Iran
| | - Sina Firoozi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Tamaddon
- Chronic Disease Research Center, Endocrinology and Metabolism Population Sciences
Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Fereidouni
- Department of Nursing, School of Nursing, Fasa University of Medical Sciences, Fasa,
Iran
| |
Collapse
|
5
|
Qijiao W, Tao Z, Haimei L, Guomin L, Li S. Identifying circRNA-associated-ceRNA networks in juvenile spondyloarthropathies patients. Pediatr Rheumatol Online J 2023; 21:75. [PMID: 37507775 PMCID: PMC10386608 DOI: 10.1186/s12969-023-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Juvenile spondyloarthropathies (JSpA) are defined as a heterogeneous group of diseases that start before the age of 16. The study aimed to identify key genes and pathways that are influenced by circRNAs and to screen potential therapeutic agents for JSpA. The study involved the analysis of circRNA expression profiles, identification of circRNA-miRNA-mRNA regulatory networks, and functional annotation of differentially expressed genes. The results of the study may have provided insights into the molecular mechanisms underlying JSpA and potential therapeutic targets for this disease. METHODS In this study, sequencing data of circRNA, miRNA, and mRNA were obtained from the GEO datasets. The data were then analyzed to identify candidates for constructing a circRNA-miRNA-mRNA network based on circRNA-miRNA interactions and miRNA-mRNA interactions. Functional enrichments of genes were performed using the DAVID database. A PPI network was constructed using the STRING database and visualized using Cytoscape software. The MCODE plugin app was used to explore hub genes in the PPI network. The expression changes in immune cells were assessed using the online CIBERSORT algorithm to obtain the proportion of various types of immune cells. Finally, the Connectivity Map L1000 platform was used to identify potential agents for JSpA treatment. Overall, this study aimed to provide a comprehensive understanding of the molecular mechanisms underlying JSpA and to identify potential therapeutic agents for this disease. RESULTS A total of 225 differentially expressed circRNAs (DEcircRNAs), 23 differentially expressed miRNAs (DEmiRNAs) and 1324 differentially expressed mRNAs (DEmRNAs) were identified. We integrated 5 overlapped circRNAs, 7 miRNAs and 299 target mRNAs into a circRNA-miRNA-mRNA network. We next identified 10 hub genes based on the PPI network. KEGG pathway analysis revealed that the DEGs were mainly associated with JAK-STAT signal pathway. We found that neutrophils accounted for the majority of all enriched cells. In addition, we discovered several chemicals as potential treatment options for JSpA. CONCLUSIONS Through this bioinformatics analysis, we suggest a regulatory role for circRNAs in the pathogenesis and treatment of JSpA from the view of a competitive endogenous RNA (ceRNA) network.
Collapse
Affiliation(s)
- Wei Qijiao
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhang Tao
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Liu Haimei
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Li Guomin
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | - Sun Li
- Department of Rheumatology, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel) 2023; 15:cancers15041346. [PMID: 36831687 PMCID: PMC9953970 DOI: 10.3390/cancers15041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Large numbers of breast cancers arise within a familial context, either with known inherited germline mutations largely within DNA repair genes, or with a strong family history of breast and/or ovarian cancer, with unknown genetic underlying mechanisms. These cancers appear to be different to sporadic cases, with earlier age of onset, increased multifocality and with association with specific breast cancer histological and phenotypic subtypes. Furthermore, tumours showing homologous recombination deficiency, due to loss of BRCA1, BRCA2, PALB2 and CHEK2 function, have been shown to be especially sensitive to platinum-based chemotherapeutics and PARP inhibition. While there is extensive research and data accrued on risk stratification and genetic predisposition, there are few data pertaining to relevant prognostic and predictive biomarkers within this breast cancer subgroup. The following is a review of such biomarkers in male and female familial breast cancer, although the data for the former are particularly sparse.
Collapse
Affiliation(s)
- Siddhartha Deb
- Anatpath, Gardenvale, VIC 3185, Australia
- Monash Health Pathology, Clayton, VIC 3168, Australia
- Correspondence:
| | | | - Stephen B. Fox
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Mebourne, Melbourne, VIC 3101, Australia
| |
Collapse
|
7
|
LINC02389/miR-7-5p Regulated Cisplatin Resistance of Non-Small-Cell Lung Cancer via Promoting Oxidative Stress. Anal Cell Pathol (Amst) 2022; 2022:6100176. [PMID: 36311891 PMCID: PMC9605833 DOI: 10.1155/2022/6100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 09/03/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is one of the most common malignancies worldwide, and cisplatin-based chemotherapy is the main treatment for NSCLC. However, cisplatin resistance of NSCLC cells is a major challenge for NSCLC treatment. Materials and Methods qRT-PCR and Western blot were performed to detect the expression of LINC02389 and miR-7-5p in NSCLC tissues and cell lines. Cell counting kit-8 (CCK-8) assay and flow cytometry assay were applied to exam cell proliferation and apoptosis rate of NSCLC cells. The interaction between LINC02389 and miR-7-5p was verified by dual luciferase reporter gene assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. Additionally, cisplatin-resistant NSCLC cells were generated to assess the biological function of LINC02389 and miR-7-5p in cisplatin resistance of NSCLC. Results LINC02389 was highly expressed in NSCLC tissues and was correlated with poor prognosis of NSCLC patients. Knockdown of LINC02389 inhibited cell proliferation and promoted cell apoptosis of NSCLC, whereas miR-7-5p knockdown exerted the opposite effects. Moreover, LINC02389 negatively regulated the expression of miR-7-5p. In addition, LINC02389 was overexpressed, yet miR-7-5p was downregulated in cisplatin-resistant NSCLC cells compared with their parental cells. Moreover, oxidative stress biomarkers were overexpressed in cisplatin-resistant cells and were regulated by LINC02389. Besides, LINC02389 could reverse the inhibitory effect of cisplatin on NSCLC cells, which was partially reversed by attenuating the expression of miR-7-5p. Conclusion Our research firstly demonstrated that lncRNA LINC02389 acted as an oncogene to promote progression, oxidative stress, and cisplatin resistance through sponging miR-7-5p and may provide therapeutic targets for NSCLC.
Collapse
|
8
|
Nalla LV, Gondaliya P, Kalia K, Khairnar A. Targeting specificity protein 1 with miR-128-3p overcomes TGF-β1 mediated epithelial-mesenchymal transition in breast cancer: An in vitro study. Mol Biol Rep 2022; 49:6987-6996. [PMID: 35486287 DOI: 10.1007/s11033-022-07466-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Specificity protein 1 (SP1) was found to play a critical role in the regulation of TGF-β1 driven epithelial-mesenchymal transition (EMT). Recent clinical findings demonstrated a significant drop in the expression of miR-128-3p with the cancer progression in breast cancer patients. However, the impact of miR-128-3p on the SP1 expression in breast cancer remains unknown. Herein, we evaluated the role of miR-128-3p mimics in suppressing EMT of breast cancer cell lines by regulating the TGF-β1/SP1 axis. METHODS miR-128-3p interaction with SP1 was detected by in silico tools and dual-luciferase reporter assay. qPCR, western blot, and immunocytochemistry experiments were conducted for determining the expression levels of miR-128-3p and EMT markers with and without the treatment of miR-128-3p mimics. Further, to understand the effect of miR-128-3p mimics on cancer progression, experiments such as wound healing assay, transwell assay, adhesion assay, and cell cycle analysis were performed. RESULTS A significant inverse relation between SP1 and miR-128-3p levels was found in MCF-7 and MDA-MB-231 cell lines. miR-128-3p overexpression impeded the SP1 mediated EMT markers in TGF-β1 stimulated cells by inhibiting the SP1 nuclear function. Further, treatment with miR-128-3p mimics significantly reduced the migration, invasion and spreading capability of TGF-β1 stimulated cells. Flow cytometry results showed the impeding role of miR-128-3p on the cell cycle progression. CONCLUSIONS Upregulated miR-128-3p inhibited SP1, thereby limiting the TGF-β1 induced EMT in MCF-7 and MDA-MB-231 cell lines for the first time. This study may pave the path to explore novel miRNA therapeutics for eradicating advanced breast cancer cases.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, Gujarat, 382355, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
9
|
Alves dos Santos K, Clemente dos Santos IC, Santos Silva C, Gomes Ribeiro H, de Farias Domingos I, Nogueira Silbiger V. Circulating Exosomal miRNAs as Biomarkers for the Diagnosis and Prognosis of Colorectal Cancer. Int J Mol Sci 2020; 22:ijms22010346. [PMID: 33396209 PMCID: PMC7795745 DOI: 10.3390/ijms22010346] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract. It is a multifactorial disease that involves environmental factors, genetic factors, and lifestyle factors. Due to the absence of specific and sensitive biomarkers, CRC patients are usually diagnosed at an advanced stage and consequently suffer from a low 5-year overall survival rate. Despite improvements in surgical resection and adjuvant chemotherapy, the prognosis of patients with CRC remains unfavorable due to local and distant metastases. Several studies have shown that small noncoding RNAs, such as microRNAs packed in exosomes, are potential biomarkers in various types of cancers, including CRC, and that they can be detected in a stable form in both serum and plasma. In this review, we report the potential of circulating exosomal miRNAs to act as biomarkers for the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Katiusse Alves dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Isabelle Cristina Clemente dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Carollyne Santos Silva
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Hériks Gomes Ribeiro
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
| | - Igor de Farias Domingos
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (K.A.d.S.); (I.C.C.d.S.); (I.d.F.D.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
| | - Vivian Nogueira Silbiger
- Bioanalysis and Molecular Biotechnology Laboratory, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil; (C.S.S.); (H.G.R.)
- Department of Clinical and Toxicological, Federal University of Rio Grande do Norte, RN 59012-570 Natal, Brazil
- Correspondence: ; Tel.: +55-84-99939-4224
| |
Collapse
|
10
|
Liu X, Dong C, Ma S, Wang Y, Lin T, Li Y, Yang S, Zhang W, Zhang R, Zhao G. Nanocomplexes loaded with miR-128-3p for enhancing chemotherapy effect of colorectal cancer through dual-targeting silence the activity of PI3K/AKT and MEK/ERK pathway. Drug Deliv 2020; 27:323-333. [PMID: 32090639 PMCID: PMC7054961 DOI: 10.1080/10717544.2020.1716882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although microRNAs (miRNAs)-based cancer therapy strategies have been proved to be efficient and superior to chemotherapeutic agents in certain extent, the unstable properties of miRNAs significantly impaired the wide application. Therefore, how to safely deliver the miRNAs to the targeted site of action is the most pivotal step to achieve the ideal treatment effect. In the present work, the miR-128-3p, which is able of inducing chromosomal instability, was loaded into the nanocomplexes developed by the PEG-PDMAEMA (PDMAEMA-NP). By this way, the miR-128-3p was shielded from exposure to various degrading enzymes in bloodstream. Additionally, the PEGylation endowed the PDMAEMA-NP with long time of circulation as demonstrated in vivo by pharmacokinetics investigation. To target and deliver the miR-128-3p to the site of action, a tumor-homing peptide CPKSNNGVC, which specifically targets the monocarboxylate transporter 1 (MCT1), was decorated on the surface of PDMAEMA-NP. Both in vitro and in vivo experiments demonstrated that more efficient delivery of miR-128-3p to cells or tumor tissues was obtained by the PDMAEMA-NP than plasmid. Additionally, modification of C peptides further enhanced the tumor accumulation of miR-128-3p, and in turn contributed to the stronger tumor growth inhibition effect. Underlying mechanisms study revealed that the miR-128-3p inhibited the growth, migration, and invasion of colorectal cancer (CRC) cells and progress of CRC tissues through silence of the activity of PI3K/AKT and MEK/ERK pathway. By this way, the chemotherapy effect of 5-Fluorouracil (5-Fu) was dramatically improved after co-treating the cells with miR-128-3p formulations.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chao Dong
- Department of the Second Medical Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, China
| | - Siping Ma
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yongpeng Wang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Tao Lin
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yanxi Li
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shihua Yang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wanchuan Zhang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guohua Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.,Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
11
|
Yan S, Ren X, Yang J, Wang J, Zhang Q, Xu D. Exosomal miR-548c-5p Regulates Colorectal Cancer Cell Growth and Invasion Through HIF1A/CDC42 Axis. Onco Targets Ther 2020; 13:9875-9885. [PMID: 33116573 PMCID: PMC7547144 DOI: 10.2147/ott.s273008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Mounting evidence has implicated that exosomes-delivered noncoding RNAs are key regulators in carcinogenesis. The effect of miR-548c-5p has been elucidated in some cancers. However, the role of exosomal miR-548c-5p in colorectal cancer (CRC) is not fully understood. We aim to explore the function and mechanism of exosome-delivered miR-548c-5p in CRC. The altering effect of exosome-derived miR-548c-5p on the prognosis of CRC patients is also investigated by estimating overall survival and disease-free survival. Materials and Methods The expression of miR-548c-5p in exosomes is determined by real-time PCR. The proliferation and invasion of CRC cells are estimated by MTT, transwell assay and scratch test. The targeted gene of miR-548c-5p is investigated by luciferase reporter assay, real-time PCR, Western blot and chromosome immunoprecipitation (CHIP) assay. CRC cells are transplanted subcutaneously in BALB/c nude mice to estimate their growth in vivo. Results MiR-548c-5p derived from CRC cell exosomes inhibits the proliferation and invasion of CRC cells in vitro. Exosomal miR-548c-5p can also prevent from colorectal carcinogenesis in nude mice in vivo. HIF1A is documented to be a target of miR-548c-5p, and HIF1A can targetedly regulate CDC42 in CRC cells. Exosomal miR-548c-5p affects CRC cell growth, migration and invasion via miR-548c-5p/HIF1A/CDC42 axis. In addition, exosomal miR-548c-5p can be a predictive factor for CRC prognosis. Conclusion Our study has suggested that exosomal miR-548c-5p can regulate CRC through HIF1A/CDC42 axis, which helps to understand CRC pathogenesis more clearly and identify novel therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, People's Republic of China
| | - Xiaoxia Ren
- Department of Gastrointestinal Surgery, Yantai Shan Hospital, Yantai, Shandong Province, People's Republic of China
| | - Jinghan Yang
- Central Laboratory and Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, People's Republic of China
| | - Jinghua Wang
- Central Laboratory and Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, People's Republic of China
| | - Quan Zhang
- Department of Cardiology of Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, People's Republic of China
| | - Donghua Xu
- Central Laboratory and Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, People's Republic of China
| |
Collapse
|
12
|
Chen Y, Wu N, Liu L, Dong H, Liu X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J Cell Mol Med 2020; 24:7353-7369. [PMID: 32558224 PMCID: PMC7339185 DOI: 10.1111/jcmm.15317] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44+CD24−/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Nian Wu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Lei Liu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Xinao Liu
- Clinical laboratory, Chongqing Hospital, University of Chinese Academy of Science, Chongqing, China
| |
Collapse
|
13
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
14
|
Glineur SF, Hanon E, Dremier S, Snelling S, Berteau C, De Ron P, Nogueira da Costa A. Assessment of a Urinary Kidney MicroRNA Panel as Potential Nephron Segment-Specific Biomarkers of Subacute Renal Toxicity in Preclinical Rat Models. Toxicol Sci 2019; 166:409-419. [PMID: 30169741 DOI: 10.1093/toxsci/kfy213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Drug-induced kidney injury (DIKI) remains a significant concern during drug development. Whereas FDA-endorsed urinary protein biomarkers encounter limitations including the lack of translatability, there is a considerable interest surrounding the application of microRNAs (miRNAs) in the renal biomarker space. Current knowledge about the value of these novel biomarkers for subacute preclinical rodent studies is still sparse. In this work, Wistar rats were treated with three nephrotoxic compounds-cisplatin (CIS, proximal tubule, 2.5 mg/kg, intraperitoneal [i.p.]), puromycin (PUR, glomerulus, 20/10 mg/kg, i.p.) and N-phenylanthranylic acid (NPAA, collecting ducts, 500 mg/kg, per os)-for up to 28 days to evaluate the performance of a panel of 68 urinary miRNAs as potential nephron segment-specific biomarkers. Out of these 68 kidney injury associated-miRNAs, our selection strategy ultimately revealed rno-miR-34c-5p significantly dysregulated after CIS single administration, and rno-miR-335 and rno-miR-155-5p significantly dysregulated after PUR treatment. In contrast, NPAA daily administration strongly altered the expression profile of 28 miRNAs, with rno-miR-210-3p displaying the most robust changes. A thorough evaluation showed that these miRNA candidates could complement urinary protein biomarkers to detect CIS- or PUR-induced kidney injury in a subacute setting, with a mechanistic (based on rno-miR-34c-5p) and/or a kidney injury detection potential. Our results also provide the first evidence that urinary miRNAs could enhance the detection of collecting duct damage. Overall, these data improve our understanding of the utility of urinary miRNAs as DIKI biomarkers in a subacute DIKI preclinical setting and support the value of using urinary biomarker panels comprising proteins and miRNAs.
Collapse
Affiliation(s)
- Stéphanie F Glineur
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Medvet, AML Lab BVBA, E. Vloorstraat 9, B-2020 Antwerpen, Belgium
| | - Etienne Hanon
- Bio Data Analysis, New Medicines Therapeutics, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium
| | - Sarah Dremier
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Head HTS & In Vitro Pharmacology, Ogeda SA, 47 Rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sara Snelling
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,Immunology, Abzena, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Caroline Berteau
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium.,School of Medicine, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, LS9 7FT, UK
| | - Pierrette De Ron
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
15
|
Wu H, Wang Q, Zhong H, Li L, Zhang Q, Huang Q, Yu Z. Differentially expressed microRNAs in exosomes of patients with breast cancer revealed by next‑generation sequencing. Oncol Rep 2019; 43:240-250. [PMID: 31746410 PMCID: PMC6908931 DOI: 10.3892/or.2019.7401] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) in exosomes play crucial roles in the onset, progression and metastasis of cancer by regulating the stability of target mRNAs or by inhibiting translation. In the present study, differentially expressed miRNAs were identified in exosomes of 27 breast cancer patients and 3 healthy controls using RNA sequencing. The differentially expressed microRNAs were selected by bioinformatic analysis. Subjects were followed up for 2 years and exosomal miRNA profiles were compared between patients with and without recurrence of breast cancer. A total of 30 complementary DNA libraries were constructed and sequenced and 1,835 miRNAs were detected. There were no significant differences in the expression of miRNAs between the basal-like, human epidermal growth factor receptor-2+, luminal A, luminal B and healthy control (HC) groups. A total of 54 differentially expressed miRNAs were identified in triple-negative breast cancer (TNBC) patients vs. HCs, including 20 upregulated and 34 downregulated miRNAs. The results of the reverse transcription-quantitative PCR were consistent with this. Receiver operating characteristic curve analyses indicated that miR-150-5p [area under the curve (AUC)=0.705, upregulated], miR-576-3p (AUC=0.691, upregulated), miR-4665-5p (AUC=0.681, upregulated) were able to distinguish breast cancer patients with recurrence from those without recurrence. In conclusion, the present results indicated differences in miRNA expression profiles between patients with TNBC and healthy controls. Certain exosomal miRNAs were indicated to have promising predictive value as biomarkers for distinguishing breast cancer with recurrence from non-recurrence, which may be utilized for preventive strategies.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qiuming Wang
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Hua Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Liang Li
- Center for Cancer Prevention and Treatment, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qunji Zhang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat‑sen University, Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
16
|
Hsa-miR-210-3p expression in breast cancer and its putative association with worse outcome in patients treated with Docetaxel. Sci Rep 2019; 9:14913. [PMID: 31624308 PMCID: PMC6797767 DOI: 10.1038/s41598-019-51581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-210-3p is the most prominent hypoxia regulated microRNA, and it has been found significantly overexpressed in different human cancers. We performed the expression analysis of miR-210-3p in a retrospective cohort of breast cancer patients with a median follow-up of 76 months (n = 283). An association between higher levels of miR-210-3p and risk of disease progression (HR: 2.13, 95%CI: 1.33-3.39, P = 0.002) was found in the subgroup of patients treated with Epirubicin and Cyclophosphamide followed by Docetaxel. Moreover, a cut off value of 20.966 established by ROC curve analyses allowed to discriminate patients who developed distant metastases with an accuracy of 85% at 3- (AUC: 0.870, 95%CI: 0.690-1.000) and 83% at 5-years follow up (AUC: 0.832, 95%CI: 0.656–1.000). Whereas the accuracy in discriminating patients who died for the disease was of 79.6% at both 5- (AUC: 0.804, 95%CI: 0.517–1.000) and 10-years (AUC: 0.804. 95%CI: 0.517–1.000) follow-up. In silico analysis of miR-210-3p and Docetaxel targets provided evidence for a putative molecular cross-talk involving microtubule regulation, drug efflux metabolism and oxidative stress response. Overall, our data point to the miR-210-3p involvement in the response to therapeutic regimens including Docetaxel in sequential therapy with anthracyclines, suggesting it may represent a predictive biomarker in breast cancer patients.
Collapse
|
17
|
Wang W, Mu S, Zhao Q, Xue L, Wang S. Identification of differentially expressed microRNAs and the potential of microRNA-455-3p as a novel prognostic biomarker in glioma. Oncol Lett 2019; 18:6150-6156. [PMID: 31788089 PMCID: PMC6865136 DOI: 10.3892/ol.2019.10927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is an aggressive central nervous system malignancy. MicroRNAs (miRNAs/miRs) have been reported to be involved in the tumorigenesis of numerous types of cancer, including glioma. The present study aimed to identify the differentially expressed miRNAs in glioma, and further explore the clinical value of miR-455-3p in patients with glioma. GEO2R was used for the identification of the differentially expressed miRNAs according to the miRNA expression profiles obtained from the Gene Expression Omnibus database. OncomiR was used to analyze the relationship of miRNAs with the survival outcomes of the patients with glioma. A total of 108 patients with glioma were recruited to examine the expression levels of miR-455-3p and further explore its clinical value. The bioinformatics analysis results suggested that a total of 64 and 48 differentially expressed miRNAs were identified in the GSE90603 and GSE103229 datasets, respectively. There were 12 miRNAs in the overlap of the two datasets, of which three were able to accurately predict overall cancer survival, namely hsa-miR-7-5p, hsa-miR-21-3p and hsa-miR-455-3p. In patients with glioma, miR-455-3p was determined to be significantly upregulated (P<0.001). Additionally, patients with high miR-455-3p expression had significantly lower 5-year overall survival than those with low miR-455-3p expression (log-rank test, P=0.001). Cox regression analysis further determined that miR-455-3p was an independent prognostic indicator for overall survival in patients with glioma (hazard ratio=2.136; 95% CI=1.177–3.877; P=0.013). In conclusion, the present study revealed a series of miRNAs with potential functional roles in the pathogenesis of glioma, and provides findings that indicate miR-455-3p as a promising biomarker for the prognosis of glioma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Shuwen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Qingshuang Zhao
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Liang Xue
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Shousen Wang
- Department of Neurosurgery, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China.,Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
18
|
Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular Subtyping. JOURNAL OF ONCOLOGY 2019; 2019:8393769. [PMID: 31485228 PMCID: PMC6702831 DOI: 10.1155/2019/8393769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/15/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
Early detection is crucial for achieving a reduction in breast cancer mortality. Analysis of circulating cell-free microRNAs present in the serum of cancer patients has emerged as a promising new noninvasive biomarker for early detection of tumors and for predicting their molecular classifications. The rationale for this study was to identify subtype-specific molecular profiles of cell-free microRNAs for early detection of breast cancer in serum. Fifty-four early-stage breast cancers with 27 age-matched controls were selected for circulating microRNAs evaluation in the serum. The 54 cases were molecularly classified (luminal A, luminal B, luminal B Her2 positive, Her-2, triple negative). NanoString platform was used for digital detection and quantitation of 800 tagged microRNA probes and comparing the overall differences in serum microRNA expression from breast cancer cases with controls. We identified the 42 most significant (P ≤ 0.05, 1.5-fold) differentially expressed circulating microRNAs in each molecular subtype for further study. Of these microRNAs, 19 were significantly differentially expressed in patients presenting with luminal A, eight in the luminal B, ten in luminal B HER 2 positive, and four in the HER2 enriched subtype. AUC is high with suitable sensitivity and specificity. For the triple negative subtype miR-25-3p had the best accuracy. Predictive analysis of the mRNA targets suggests they encode proteins involved in molecular pathways such as cell adhesion, migration, and proliferation. This study identified subtype-specific molecular profiles of cell-free microRNAs suitable for early detection of breast cancer selected by comparison to the microRNA profile in serum for female controls without apparent risk of breast cancer. This molecular profile should be validated using larger cohort studies to confirm the potential of these miRNA for future use as early detection biomarkers that could avoid unnecessary biopsy in patients with a suspicion of breast cancer.
Collapse
|
19
|
Natarajan L, Pu M, Davies SR, Vickery TL, Nelson SH, Pittman E, Parker BA, Ellis MJ, Flatt SW, Mardis ER, Marinac CR, Pierce JP, Messer K. miRNAs and Long-term Breast Cancer Survival: Evidence from the WHEL Study. Cancer Epidemiol Biomarkers Prev 2019; 28:1525-1533. [PMID: 31186261 DOI: 10.1158/1055-9965.epi-18-1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is substantial variation in breast cancer survival rates, even among patients with similar clinical and genomic profiles. New biomarkers are needed to improve risk stratification and inform treatment options. Our aim was to identify novel miRNAs associated with breast cancer survival and quantify their prognostic value after adjusting for established clinical factors and genomic markers. METHODS Using the Women's Healthy Eating and Living (WHEL) breast cancer cohort with >15 years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 miRNAs using the Nanostring nCounter platform. RESULTS We obtained high-quality reads on 1,253 samples (75% of available specimens) and used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). We identified miRNAs significantly associated with breast cancer outcomes and then tested these in independent TCGA samples. miRNAs that were also prognostic in TCGA samples were further evaluated in multiple regression Cox models. We also used penalized regression for unbiased discovery. CONCLUSIONS Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the WHEL and TCGA studies and further improved risk stratification within PAM50 risk groups: 10-year survival was 62% in the node-negative high miR-210-high ROR-PT group versus 75% in the low miR-210- high ROR-PT group. Similar results were obtained for miR-29c. We identified three additional miRNAs, 187-3p, 143-3p, and 205-5p, via penalized regression. IMPACT Our findings suggest that miRNAs might be prognostic for long-term breast cancer survival and might improve risk stratification. Further research to incorporate miRNAs into existing clinicogenomic signatures is needed.
Collapse
Affiliation(s)
- Loki Natarajan
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California. .,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Minya Pu
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Tammi L Vickery
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Sandahl H Nelson
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California
| | - Emily Pittman
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Barbara A Parker
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Department of Medicine, University of California, San Diego, La Jolla, California
| | - Matthew J Ellis
- Baylor College of Medicine, Lester and Sue Smith Breast Center, Houston, Texas
| | - Shirley W Flatt
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Catherine R Marinac
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - John P Pierce
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Karen Messer
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
20
|
He YH, Deng YS, Peng PX, Wang N, Wang JF, Ding ZS, Chen X, Zhou XF. A novel messenger RNA and long noncoding RNA signature associated with the progression of nonmuscle invasive bladder cancer. J Cell Biochem 2019; 120:8101-8109. [PMID: 30426560 DOI: 10.1002/jcb.28089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
AIM To explore the molecular mechanism of nonmuscle invasive bladder cancer (NMIBC), matched normal, and cancer tissues of 10 NMIBC were examined for RNA sequencing. METHODS We profiled the messenger RNA (mRNA) and long noncoding RNA (lncRNA) expression of patients with NMIBC. Differentially expressed mRNAs and lncRNAs were screened between cancer and normal tissues and validated by quantitative polymerase chain reaction (qPCR), and lncRNA-mRNA-miRNA interaction network was constructed. RESULTS A total of 91 upregulated and 190 downregulated genes and 34 upregulated and 58 downregulated lncRNAs were screened from the sequencing result. The differentially expressed mRNAs were enriched in focal adhesion, rap1 signaling pathway, Hippo signaling pathway, PI3K-Akt signaling pathway, extracellular matrix (ECM)-receptor interaction, Ras signaling pathway, and mitogen-activated protein kinases signaling pathway, of which some pathways were involved in the cancer development. In the RNA sequencing, KIT and laminin subunitγ γ3 (LAMC3) were significantly downregulated in the NMIBC group compared with the normal group. The results of quantitative reverse transcription PCR showed that the expression of LAMC3 and KIT were significantly decreased in the NMIBC group compared with the normal group. The lncRNA-mRNA-miRNA interaction network was constructed by Cytoscape software to further investigate the interaction correlations. The results implied that KIT and LAMC3 might regulate the lncRNAs (such as ENST00000445707, ENST00000501122, ENST00000505254, ENST00000528986, ENST00000557661, ENST00000602964, ENST00000614517, ENST00000620864, and ENST00000623414) by the miRNAs (such as hsa-let-7f-2-3p, hsa-miR-125a-3p, hsa-miR-134-3p, hsa-miR-191-5p, hsa-miR-210-5p, hsa-miR-30a-5p, hsa-miR-30d-5p, hsa-miR-30e-5p, hsa-miR-92a-2-5p, and hsa-miR-95-3p), and finally played a role in the development of NMIBC cancer. CONCLUSION Altogether, our study preliminarily indicated that KIT and LAMC3 might play a crucial role in the development of NMIBC cancer via a complex mRNA-lncRNA-miRNA regulatory network.
Collapse
Affiliation(s)
- Yu-Hui He
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Yi-Sen Deng
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Pan-Xin Peng
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Ning Wang
- College of Psychology, North China University of Science and Technology, Tangshan, China
| | - Jian-Feng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Zhen-Shan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xing Chen
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Feng Zhou
- China-Japan Friendship School of Clinical Medicine, Peking University, Beijing, China.,Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
21
|
Ge J, Li J, Na S, Wang P, Zhao G, Zhang X. miR-548c-5p inhibits colorectal cancer cell proliferation by targeting PGK1. J Cell Physiol 2019; 234:18872-18878. [PMID: 30932211 DOI: 10.1002/jcp.28525] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Accumulating studies have implicated that microRNAs (miRNAs) are involved in the pathogenesis of colorectal cancer (CRC). However, the role of miR-548c-5p, a novel identified miRNA in malignancies, in colorectal carcinogenesis remains largely unknown. The present study is aimed to investigate the effect and molecular mechanism of miR-548c-5p in CRC by a sequence of cellular experiments. miR-548c-5p was significantly downregulated, whereas phosphoglycerate kinase 1 (PGK1), a key enzyme for glycolysis, was obviously upregulated in peripheral blood mononuclear cells and cancer tissues from patients with CRC. Besides, miR-548c-5p and PGK1 were negatively associated with each other. The luciferase reporter assay revealed that PGK1 was a targeted gene of miR-548c-5p. Moreover, the proliferation and generation of inflammatory cytokines (TNF-α and IL-6) were significantly inhibited in miR-548c-5p-overexpressed SW480 CRC cells stimulated by lipopolysaccharide (LPS). Accordingly, miR-548c-5p may serve as a cancer suppressor in CRC by targeting PGK1.
Collapse
Affiliation(s)
- Jianxin Ge
- Department of Gastroenterology, People's hospital of Jiangbei, Nanjing, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Su Na
- Department of Oncology, People's Hospital of Rizhao, Rizhao, China
| | - Pingping Wang
- Department of Gynecology and Obstetrics, Weifang Hospital of Maternal and Child Health, Weifang, China
| | - Guifeng Zhao
- Department of Antenatal Diagnosis, People's Hospital of Weifang, Weifang, China
| | - Xiaoyan Zhang
- Operating Room, People's Hospital of Zhucheng, Zhucheng, China
| |
Collapse
|
22
|
Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 2019; 18:40. [PMID: 30866952 PMCID: PMC6417285 DOI: 10.1186/s12943-019-0959-5] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is the main cause of lung cancer mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment and contribute to cancer progression. Intratumoral hypoxia affects both cancer and stromal cells. Exosomes are recognized as mediators of intercellular communication. Here, we aim to further elucidate the communication between BMSC-derived exosomes and cancer cells in the hypoxic niche. Methods Exosomal miRNA profiling was performed using a microRNA array. Lung cancer cells and an in vivo mouse syngeneic tumor model were used to evaluate the effects of select exosomal microRNAs. Hypoxic BMSC-derived plasma exosomal miRNAs were assessed for their capacity to discriminate between cancer patients and non-cancerous controls and between cancer patients with or without metastasis. Results We demonstrate that exosomes derived from hypoxic BMSCs are taken by neighboring cancer cells and promote cancer cell invasion and EMT. Exosome-mediated transfer of select microRNAs, including miR-193a-3p, miR-210-3p and miR-5100, from BMSCs to epithelial cancer cells activates STAT3 signaling and increases the expression of mesenchymal related molecules. The diagnostic accuracy of individual microRNA showed that plasma exosomal miR-193a-3p can discriminate cancer patients from non-cancerous controls. A panel of these three plasma exosomal microRNAs showed a better diagnostic accuracy to discriminate lung cancer patients with or without metastasis than individual exosomal microRNA. Conclusions Exosome-mediated transfer of miR-193a-3p, miR-210-3p and miR-5100, could promote invasion of lung cancer cells by activating STAT3 signalling-induced EMT. These exosomal miRNAs may be promising noninvasive biomarkers for cancer progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0959-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xina Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Buqing Sai
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujuan Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuhui Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leliang Zheng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
23
|
He L, Zhu D, Wang J, Wu X. A highly efficient method for isolating urinary exosomes. Int J Mol Med 2018; 43:83-90. [PMID: 30365060 PMCID: PMC6257847 DOI: 10.3892/ijmm.2018.3944] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
In the present study, a highly efficient method, referred to as optimized ultrafiltration (OUF), was developed. This method is effective for exosome purification and also facilitates clinical work involving substantial urinary exosome isolation. In the OUF method, 0.22-µm filters along with a dialysis membrane with a molecular weight cut-off of 10,000 kDa were introduced, in order to remove extracellular microvesicles that were >200 nm and concentrate the supernatant up to 1/50 of the initial volume. The existence, purity and production of the exosomes isolated by OUF and conventional ultracentrifugation (UC) were systematically compared by transmission electron microscopy, western blotting and nanoparticle tracking analysis. In addition, colloidal Coomassie-stained gel and reverse transcription-quantitative polymerase chain reaction were used to investigate the stability and integrity of exosomes isolated by these two protocols. The time required and cost of these two methods in the process of isolating urinary exosomes were also estimated. The results indicated that OUF clearly outperforms UC in quantity, quality and biological stability, and this improved method may have extensive applications in the growing fields of clinical biomarker discovery and exosome research.
Collapse
Affiliation(s)
- Liuqing He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ding Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|