1
|
Xia S, Duan W, Xu M, Li M, Tang M, Wei S, Lin M, Li E, Liu W, Wang Q. Mesothelin promotes brain metastasis of non-small cell lung cancer by activating MET. J Exp Clin Cancer Res 2024; 43:103. [PMID: 38570866 PMCID: PMC10988939 DOI: 10.1186/s13046-024-03015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Brain metastasis (BM) is common among cases of advanced non-small cell lung cancer (NSCLC) and is the leading cause of death for these patients. Mesothelin (MSLN), a tumor-associated antigen expressed in many solid tumors, has been reported to be involved in the progression of multiple tumors. However, its potential involvement in BM of NSCLC and the underlying mechanism remain unknown. METHODS The expression of MSLN was validated in clinical tissue and serum samples using immunohistochemistry and enzyme-linked immunosorbent assay. The ability of NSCLC cells to penetrate the blood-brain barrier (BBB) was examined using an in vitro Transwell model and an ex vivo multi-organ microfluidic bionic chip. Immunofluorescence staining and western blotting were used to detect the disruption of tight junctions. In vivo BBB leakiness assay was performed to assess the barrier integrity. MET expression and activation was detected by western blotting. The therapeutic efficacy of drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) on BM was evaluated in animal studies. RESULTS MSLN expression was significantly elevated in both serum and tumor tissue samples from NSCLC patients with BM and correlated with a poor clinical prognosis. MSLN significantly enhanced the brain metastatic abilities of NSCLC cells, especially BBB extravasation. Mechanistically, MSLN facilitated the expression and activation of MET through the c-Jun N-terminal kinase (JNK) signaling pathway, which allowed tumor cells to disrupt tight junctions and the integrity of the BBB and thereby penetrate the barrier. Drugs targeting MSLN (anetumab) and MET (crizotinib/capmatinib) effectively blocked the development of BM and prolonged the survival of mice. CONCLUSIONS Our results demonstrate that MSLN plays a critical role in BM of NSCLC by modulating the JNK/MET signaling network and thus, provides a potential novel therapeutic target for preventing BM in NSCLC patients.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mingxin Xu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mengqi Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Song Wei
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Wenwen Liu
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian, China.
- Department of Scientific Research Center, The Second Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Zhao J, Dong J, Deng C, Zhang Q, Sun S, Li H, Bai Y, Deng H. Enhancing T cell anti-tumor efficacy with a PD1-TIGIT chimeric immune-checkpoint switch receptor. Oncoimmunology 2023; 12:2265703. [PMID: 37808405 PMCID: PMC10557556 DOI: 10.1080/2162402x.2023.2265703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated success in the treatment of hematological malignancies; however, its efficacy and applications in solid tumors remain limited. Immunosuppressive factors, particularly inhibitory checkpoint molecules, restrict CAR T cell activity inside solid tumors. The modulation of checkpoint pathways has emerged as a promising approach to promote anti-tumor responses in CAR T cells. Programmed cell death protein 1 (PD1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two critical immune-checkpoint molecules that suppress anti-tumor activity in T cells. Simultaneous targeting of these two inhibitory molecules could be an efficient checkpoint modulation strategy. Here, we developed a PD1-TIGIT chimeric immune-checkpoint switch receptor (CISR) that enhances the efficacy of CAR T cell immunotherapy by reversing the inhibitory checkpoint signals of PD1/PDL1 and/or TIGIT/CD155. In addition to neutralizing PDL1 and CD155, this chimeric receptor is engineered with the transmembrane region and intracellular domain of CD28, thereby effectively enhancing T cell survival and tumor-targeting functions. Notably, under simultaneous stimulation of PDL1 and CD155, CISR-CAR T cells demonstrate superior performance in terms of cell survival, proliferation, cytokine release, and cytotoxicity in vitro, compared with conventional CAR T cells. Experiments utilizing both cell line- and patient-derived xenotransplantation tumor models showed that CISR-CAR T cells exhibit robust infiltration and anti-tumor efficiency in vivo. Our results highlight the potential for the CISR strategy to enhance T cell anti-tumor efficacy and provide an alternative approach for T cell-based immunotherapies.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Jiebin Dong
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, China
| | - Qianjing Zhang
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Shicheng Sun
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Honggang Li
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Yun Bai
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Hongkui Deng
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
- College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Keshavarz A, Salehi A, Khosravi S, Shariati Y, Nasrabadi N, Kahrizi MS, Maghsoodi S, Mardi A, Azizi R, Jamali S, Fotovat F. Recent findings on chimeric antigen receptor (CAR)-engineered immune cell therapy in solid tumors and hematological malignancies. Stem Cell Res Ther 2022; 13:482. [PMID: 36153626 PMCID: PMC9509604 DOI: 10.1186/s13287-022-03163-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in adoptive cell therapy over the last four decades have revealed various new therapeutic strategies, such as chimeric antigen receptors (CARs), which are dedicated immune cells that are engineered and administered to eliminate cancer cells. In this context, CAR T-cells have shown significant promise in the treatment of hematological malignancies. However, many obstacles limit the efficacy of CAR T-cell therapy in both solid tumors and hematological malignancies. Consequently, CAR-NK and CAR-M cell therapies have recently emerged as novel therapeutic options for addressing the challenges associated with CAR T-cell therapies. Currently, many CAR immune cell trials are underway in various human malignancies around the world to improve antitumor activity and reduce the toxicity of CAR immune cell therapy. This review will describe the comprehensive literature of recent findings on CAR immune cell therapy in a wide range of human malignancies, as well as the challenges that have emerged in recent years.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University,, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Setareh Khosravi
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Yasaman Shariati
- Department of General Surgery, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sairan Maghsoodi
- Department of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramyar Azizi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Jamali
- Department of Endodontics, College of Stomatology, Stomatological Hospital, Xi’an Jiaotong University, Shaanxi, People’s Republic of China
| | - Farnoush Fotovat
- Department of Prosthodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Wu X, Liang Y. Screening and Prognostic Analysis of Immune-Related Genes in Pancreatic Cancer. Front Genet 2021; 12:721419. [PMID: 34737763 PMCID: PMC8560963 DOI: 10.3389/fgene.2021.721419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer remains to have a high mortality, which is partly due to the lack of effective treatment strategies. In this study, genes with potential associations with immunophenotyping of pancreatic cancer were screened through bioinformatics analysis and the correlation between immune-related genes and the prognosis of pancreatic cancer patients was assessed. Firstly, differentially expressed immune genes were extracted from the pancreatic cancer-related datasets obtained for purposes of this study. The samples were processed by the "Consensus Cluster Plus" R package to determine the number of immune subtypes. Then, the pancreatic cancer immunophenotyping-related gene modules were determined. Differential analysis of immune gene modules was performed, and the function of genes related to pancreatic cancer immune subtypes was identified. The number of immune cells in the samples was calculated, followed by the differential expression analysis of immune cell numbers in each immune subtype of pancreatic cancer. The immune infiltration score was also estimated, and the correlation between the immune infiltration score and the patient prognosis with different immune subtypes was determined. Gene differences between each immune subtype were identified by differential expression analysis, and key immune genes affecting immunophenotyping were obtained. Following the analysis, 426 immune-related genes were identified to have potential involvement in the occurrence and development of pancreatic cancer, of which CD19 may be the most critical gene affecting the immunophenotyping of pancreatic cancer. CD19 played a significant role in the occurrence and development of IS2 and IS3 immune subtypes of pancreatic cancer through its action on B cells and T cells. Moreover, the expression of CD19 was increased in the collected pancreatic cancer tissues. Overall, our findings uncovered the critical role of CD19 in the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Xin Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Sahlolbei M, Dehghani M, Kheiri Yeghane Azar B, Vafaei S, Roviello G, D'Angelo A, Madjd Z, Kiani J. Evaluation of targetable biomarkers for chimeric antigen receptor T-cell (CAR-T) in the treatment of pancreatic cancer: a systematic review and meta-analysis of preclinical studies. Int Rev Immunol 2020; 39:223-232. [PMID: 32546036 DOI: 10.1080/08830185.2020.1776274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
One of the cutting edge techniques for treating cancer is the use of the patient's immune system to prevail cancerous disease. The versatility of the chimeric antigen receptor (CAR) T-cell approach in conjugation with promising treatments in haematological cancer has led to countless cases of research literature for the treatment of solid cancer. A systematic search of online databases as well as gray literature and reference lists of retrieved studies were carried out up to March 2019 to identify experimental animal studies that investigated the antigens targeted by CAR T-cell for pancreatic cancer treatment. Studies were evaluated for methodological quality using the SYstematic Review Center for Laboratory Animal Experimentation bias risk tool (SYRCLE's ROB tool). Pooled cytotoxicity ratio/percentage and 95% confidence intervals were calculated using the inverse-variance method while random-effects meta-analysis was used, taking into account conceptual heterogeneity. Heterogeneity was assessed with the Cochran Q statistic and quantified with the I2 statistic using Stata 13.0. Of the 485 identified studies, 56 were reviewed in-depth with 16 preclinical animal studies eligible for inclusion in the systematic review and 11 studies included in our meta-analysis. CAR immunotherapy significantly increased the cytotoxicity assay (percentage: 65%; 95% CI: 46%, 82%). There were no evidence for significant heterogeneity across studies [P = 0.38 (Q statistics), I2 = 7.14%] and for publication bias. The quality assessment of included studies revealed that the evidence was moderate to low quality and none of studies was judged as having a low risk of bias across all domains. CAR T-cell therapy is effective for pancreatic cancer treatment in preclinical animal studies. Further high-quality studies are needed to confirm our finding and a standard approach of this type of studies is necessary according to our assessment.
Collapse
Affiliation(s)
- Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Dehghani
- Department of, Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behghat Kheiri Yeghane Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - G Roviello
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Montemagno C, Cassim S, Pouyssegur J, Broisat A, Pagès G. From Malignant Progression to Therapeutic Targeting: Current Insights of Mesothelin in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:E4067. [PMID: 32517181 PMCID: PMC7312874 DOI: 10.3390/ijms21114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all pancreatic tumors, is a highly devastating disease with poor prognosis and rising incidence. The lack of available specific diagnostics tests and the limited treatment opportunities contribute to this pejorative issue. Over the last 10 years, a growing interest pointing towards mesothelin (MSLN) as a promising PDAC-associated antigen has emerged. The limited expression of MSLN in normal tissues (peritoneum, pleura and pericardium) and its overexpression in 80 to 90% of PDAC make it an attractive candidate for therapeutic management of PDAC patients. Moreover, its role in malignant progression related to its involvement in tumor cell proliferation and resistance to chemotherapy has highlighted the relevance of its targeting. Hence, several clinical trials are investigating anti-MSLN efficacy in PDAC. In this review, we provide a general overview of the different roles sustained by MSLN during PDAC progression. Finally, we also summarize the different MSLN-targeted therapies that are currently tested in the clinic.
Collapse
Affiliation(s)
- Christopher Montemagno
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Shamir Cassim
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
| | - Jacques Pouyssegur
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| | - Alexis Broisat
- Laboratoire Radiopharmaceutiques Biocliniques, INSERM, 1039-Université de Grenoble, 38700 La Tronche, France;
| | - Gilles Pagès
- Département de Biologie Médicale, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (S.C.); (J.P.); (G.P.)
- Institute for Research on Cancer and Aging of Nice, Université Cote d’Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, 06200 Nice, France
| |
Collapse
|
7
|
Sur D, Havasi A, Cainap C, Samasca G, Burz C, Balacescu O, Lupan I, Deleanu D, Irimie A. Chimeric Antigen Receptor T-Cell Therapy for Colorectal Cancer. J Clin Med 2020; 9:jcm9010182. [PMID: 31936611 PMCID: PMC7019711 DOI: 10.3390/jcm9010182] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a new genetically engineered method of immunotherapy for cancer. The patient’s T-cells are modified to express a specific receptor that sticks to the tumor antigen. This modified cell is then reintroduced into the patient’s body to fight the resilient cancer cells. After exhibiting positive results in hematological malignancies, this therapy is being proposed for solid tumors like colorectal cancer. The clinical data of CAR T-cell therapy in colorectal cancer is rather scarce. In this review, we summarize the current state of knowledge, challenges, and future perspectives of CAR T-cell therapy in colorectal cancer. A total of 22 articles were included in this review. Eligible studies were selected and reviewed by two researchers from 49 articles found on Pubmed, Web of Science, and clinicaltrials.gov. This therapy, at the moment, provides modest benefits in solid tumors. Not taking into consideration the high manufacturing and retail prices, there are still limitations like increased toxicities, relapses, and unfavorable tumor microenvironment for CAR T-cell therapy in colorectal cancer.
Collapse
Affiliation(s)
- Daniel Sur
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Andrei Havasi
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Calin Cainap
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
| | - Gabriel Samasca
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
- Correspondence:
| | - Claudia Burz
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (A.H.); (C.B.)
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Ovidiu Balacescu
- 11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400015 Cluj-Napoca, Romania; (D.S.); (C.C.); (O.B.)
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Molecular Biology and Biotehnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Diana Deleanu
- Department of Immunology and Allergology, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400162 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, “IuliuHatieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
| |
Collapse
|
8
|
The Vascular Disrupting Agent CA4P Improves the Antitumor Efficacy of CAR-T Cells in Preclinical Models of Solid Human Tumors. Mol Ther 2019; 28:75-88. [PMID: 31672285 DOI: 10.1016/j.ymthe.2019.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/29/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy remains relatively ineffective against solid tumors due to inadequate infiltration and in vivo expansion of CAR-T cells. Unlike hematological malignancies, solid tumors have vascular barriers that hinder CAR-T cells from reaching the tumor site. Here, we demonstrated that combretastatin A-4 phosphate (CA4P), a vascular disrupting agent (VDA), can significantly improve the infiltration ability of CAR-T cells in solid tumors as evidenced by elevated levels of IFN-γ. Moreover, combined treatment with CA4P and CAR-T cells greatly increased the therapeutic efficiency of the CAR-T cells in subcutaneous ovarian cancer mouse xenograft models and patient-derived xenograft (PDX) models of colon and ovarian carcinoma. Our findings highlight CA4P as an effective antitumor agent candidate for combination with CAR-T cells in clinical applications to treat solid tumors.
Collapse
|
9
|
Abstract
CAR-T cell therapy targeting CD19 has achieved remarkable success in the treatment of B cell malignancies, while various solid malignancies are still refractory for lack of suitable target. In recent years, a large number of studies have sought to find suitable targets with low “on target, off tumor” concern for the treatment of solid tumors. Mesothelin (MSLN), a tumor-associated antigen broadly overexpressed on various malignant tumor cells, while its expression is generally limited to normal mesothelial cells, is an attractive candidate for targeted therapy. Strategies targeting MSLN, including antibody-based drugs, vaccines and CAR-T therapies, have been assessed in a large number of preclinical investigations and clinical trials. In particular, the development of CAR-T therapy has shown great promise as a treatment for various types of cancers. The safety, efficacy, doses, and pharmacokinetics of relevant strategies have been evaluated in many clinical trials. This review is intended to provide a brief overview of the characteristics of mesothelin and the development of strategies targeting MSLN for solid tumors. Further, we discussed the challenges and proposed potential strategies to improve the efficacy of MSLN targeted immunotherapy.
Collapse
Affiliation(s)
- Jiang Lv
- 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,2Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,3University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Peng Li
- 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,2Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 585] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|