1
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
2
|
Bano A, Stevens JH, Modi PS, Gustafsson JÅ, Strom AM. Estrogen Receptor β4 Regulates Chemotherapy Resistance and Induces Cancer Stem Cells in Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24065867. [PMID: 36982940 PMCID: PMC10058198 DOI: 10.3390/ijms24065867] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) has the worst prognosis among all breast cancers, and survival in patients with recurrence is rarely beyond 12 months due to acquired resistance to chemotherapy, which is the standard of care for these patients. Our hypothesis is that Estrogen Receptor β1 (ERβ1) increases response to chemotherapy but is opposed by ERβ4, which it preferentially dimerizes with. The role of ERβ1 and ERβ4 in influencing chemotherapy sensitivity has never been studied before. CRISPR/CAS9 was used to truncate ERβ1 Ligand Binding Domain (LBD) and knock down the exon unique to ERβ4. We show that the truncated ERβ1 LBD in a variety of mutant p53 TNBC cell lines, where ERβ1 ligand dependent function was inactivated, had increased resistance to Paclitaxel, whereas the ERβ4 knockdown cell line was sensitized to Paclitaxel. We further show that ERβ1 LBD truncation, as well as treatment with ERβ1 antagonist 2-phenyl-3-(4-hydroxyphenyl)-5,7-bis(trifluoromethyl)-pyrazolo[1,5-a] pyrimidine (PHTPP), leads to increase in the drug efflux transporters. Hypoxia Inducible Factors (HIFs) activate factors involved in pluripotency and regulate the stem cell phenotype, both in normal and cancer cells. Here we show that the ERβ1 and ERβ4 regulate these stem cell markers like SOX2, OCT4, and Nanog in an opposing manner; and we further show that this regulation is mediated by HIFs. We show the increase of cancer cell stemness due to ERβ1 LBD truncation is attenuated when HIF1/2α is knocked down by siRNA. Finally, we show an increase in the breast cancer stem cell population due to ERβ1 antagonist using both ALDEFLUORTM and SOX2/OCT4 response element (SORE6) reporters in SUM159 and MDA-MB-231 cell lines. Since most TNBC cancers are ERβ4 positive, while only a small proportion of TNBC patients are ERβ1 positive, we believe that simultaneous activation of ERβ1 with agonists and inactivation of ERβ4, in combination with paclitaxel, can be more efficacious and yield better outcome for chemotherapy resistant TNBC patients.
Collapse
Affiliation(s)
- Ayesha Bano
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | - Jessica H Stevens
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | | | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
- Department of BioSciences and Nutrition, Karolinska Institutet, 171 77 Huddinge, Sweden
| | - Anders M Strom
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Meligova AK, Siakouli D, Stasinopoulou S, Xenopoulou DS, Zoumpouli M, Ganou V, Gkotsi EF, Chatziioannou A, Papadodima O, Pilalis E, Alexis MN, Mitsiou DJ. ERβ1 Sensitizes and ERβ2 Desensitizes ERα-Positive Breast Cancer Cells to the Inhibitory Effects of Tamoxifen, Fulvestrant and Their Combination with All-Trans Retinoic Acid. Int J Mol Sci 2023; 24:ijms24043747. [PMID: 36835157 PMCID: PMC9959521 DOI: 10.3390/ijms24043747] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Adjuvant endocrine therapy (AET) is the treatment of choice for early-stage estrogen receptor alpha (ERα)-positive breast cancer (BC). However, almost 40% of tamoxifen-treated cases display no response or a partial response to AET, thus increasing the need for new treatment options and strong predictors of the therapeutic response of patients at high risk of relapse. In addition to ERα, BC research has focused on ERβ1 and ERβ2 (isoforms of ERβ), the second ER isotype. At present, the impact of ERβ isoforms on ERα-positive BC prognosis and treatment remains elusive. In the present study, we established clones of MCF7 cells constitutively expressing human ERβ1 or ERβ2 and investigated their role in the response of MCF7 cells to antiestrogens [4-hydroxytamoxifen (OHΤ) and fulvestrant (ICI182,780)] and retinoids [all-trans retinoic acid (ATRA)]. We show that, compared to MCF7 cells, MCF7-ERβ1 and MCF7-ERβ2 cells were sensitized and desensitized, respectively, to the antiproliferative effect of the antiestrogens, ATRA and their combination and to the cytocidal effect of the combination of OHT and ATRA. Analysis of the global transcriptional changes upon OHT-ATRA combinatorial treatment revealed uniquely regulated genes associated with anticancer effects in MCF7-ERβ1 cells and cancer-promoting effects in MCF7-ERβ2 cells. Our data are favorable to ERβ1 being a marker of responsiveness and ERβ2 being a marker of resistance of MCF7 cells to antiestrogens alone and in combination with ATRA.
Collapse
Affiliation(s)
- Aggeliki K. Meligova
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dimitra Siakouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiria Stasinopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Despoina S. Xenopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Zoumpouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Vassiliki Ganou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aristotelis Chatziioannou
- Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Michael N. Alexis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| | - Dimitra J. Mitsiou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (M.N.A.); (D.J.M.)
| |
Collapse
|
4
|
Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther 2023; 242:108350. [PMID: 36690079 DOI: 10.1016/j.pharmthera.2023.108350] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Estrogen receptor β (ERβ) is closely related to breast cancer (BC) progression. Traditional concepts regard ERβ as a tumor suppressor. As studies show the carcinogenic effect of ERβ, some people have come to a new conclusion that ERβ serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERβ and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERβ plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERβ on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERβ selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERβ, promoting ERβ-targeted breast cancer therapy.
Collapse
|
5
|
Chen D, Wang M, Zhang H, Zhou S, Luo C. Estrogen receptor β2 (ERβ2)-mediated upregulation of hsa_circ_0000732 promotes tumor progression via sponging microRNA-1184 in triple-negative breast cancer (TNBC). Inflamm Res 2022; 71:255-266. [DOI: 10.1007/s00011-021-01536-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
|
6
|
Abstract
Despite the improvements in diagnostic and therapeutic approaches, breast cancer still remains one of the world’s leading causes of death among women. Particularly, triple negative breast cancer (TNBC) is characterized by aggressiveness, metastatic spreading, drug resistance and a very high percentage of death in patients. Nowadays, identification of new targets in TNBC appears very compelling. TNBC are considered negative for the estrogen receptor alpha (ERα) expression. Nevertheless, they often express ERβ and its variants. As such, this TNBC subtype still responds to estrogens. While the ERβ1 variant seems to act as a tumor-suppressor, the two variants ERβ2 and 5 exhibit pro-oncogenic activities in TNBC. Thus, ERβ1 activation might be used to limit the growth and spreading as well as to increase the drug sensitivity of TNBC. In contrast, the pro-oncogenic properties of ERβ2 and ERβ5 suggest the possible development and clinical use of specific antagonists in TNBC treatment. Furthermore, the role of ERβ might be regarded in the context of the androgen receptor (AR) expression, which represents another key marker in TNBC. The relationship between AR and ERβ as well as the ability to modulate the receptor-mediated effects through agonists/antagonists represent a challenge to develop more appropriate therapies in clinical management of TNBC patients. In this review, we will discuss the most recent data in the field. Therapeutic implications of these findings are also presented in the light of the discovery of specific ERβ modulators.
Collapse
|
7
|
van Barele M, Heemskerk-Gerritsen BAM, Louwers YV, Vastbinder MB, Martens JWM, Hooning MJ, Jager A. Estrogens and Progestogens in Triple Negative Breast Cancer: Do They Harm? Cancers (Basel) 2021; 13:2506. [PMID: 34063736 PMCID: PMC8196589 DOI: 10.3390/cancers13112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often considered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further.
Collapse
Affiliation(s)
- Mark van Barele
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Bernadette A. M. Heemskerk-Gerritsen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Yvonne V. Louwers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mijntje B. Vastbinder
- Department of Internal Medicine, Ijsselland Hospital, Prins Constantijnweg 2, 2906 ZC Capelle aan den IJssel, The Netherlands;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| |
Collapse
|
8
|
DR5 antibody conjugated lipid-based nanocarriers of gamma-secretase inhibitor for the treatment of triple negative breast cancer. Chem Phys Lipids 2020; 235:105033. [PMID: 33385372 DOI: 10.1016/j.chemphyslip.2020.105033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
In the present study, Death receptor-5 (DR5) antibody conjugated solid lipid nanoparticles (DR5-DAPT-SLNs) has been formulated for effective intracellular of γ-secretase inhibitor, N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) to cancer cells. Emulsification-solvent evaporation, followed by EDC cross-linking methods, was employed to prepare DR5 targeted DAPT-SLNs (DR5-DAPT-SLNs). The formulation was characterized by its particle size, shape, and surface charge. The in vitro & in vivo anticancer efficacy was studied in MDA-MB231 triple negative breast cancer (TNBC) cells and DMBA induced breast cancer model in mice, respectively. The results show that thatDR5-DAPT-SLNs is found to be a spherical shape with an average particle size of 187 ± 0.98 nm and having an average surface charge of 23 ± 2.3 mV. DR5-DAPT-SLNs have higher cytotoxicity in MDA-MB231 cells compared to DAPT-SLNs (non-targeted) and the bulk drug. However, in DR5 negative HEK 293 noncancer cells, the formulation shows minimal cytotoxic effects. The above results, therefore, demonstrate DR5 mediated uptake is responsible for improved cytotoxicity of DAPT. In the in vivo anticancer study, DR5-DAPT-SLNs show greater tumor regression when compared to DAPT-SLNs and the bulk drug. In conclusion, the results of the present study demonstrate that the DR5-DAPT-SLNs selectively target cancer cells and potentiate the anticancer efficacy of DAPT against TNBC cells.
Collapse
|
9
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estrogen Receptor Beta (ERβ): A Ligand Activated Tumor Suppressor. Front Oncol 2020; 10:587386. [PMID: 33194742 PMCID: PMC7645238 DOI: 10.3389/fonc.2020.587386] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) belong to a superfamily of nuclear receptors called steroid hormone receptors, which, upon binding ligand, dimerize and translocate to the nucleus where they activate or repress the transcription of a large number of genes, thus modulating critical physiologic processes. ERβ has multiple isoforms that show differing association with prognosis. Expression levels of the full length ERβ1 isoform are often lower in aggressive cancers as compared to normal tissue. High ERβ1 expression is associated with improved overall survival in women with breast cancer. The promise of ERβ activation, as a potential targeted therapy, is based on concurrent activation of multiple tumor suppressor pathways with few side effects compared to chemotherapy. Thus, ERβ is a nuclear receptor with broad-spectrum tumor suppressor activity, which could serve as a potential treatment target in a variety of human cancers including breast cancer. Further development of highly selective agonists that lack ERα agonist activity, will be necessary to fully harness the potential of ERβ.
Collapse
Affiliation(s)
- Rahul Mal
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Alexa Magner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Joel David
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Jharna Datta
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Meghna Vallabhaneni
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Mahmoud Kassem
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jasmine Manouchehri
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Willingham
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Daniel Stover
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Jeffery Vandeusen
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Sagar Sardesai
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Nicole Williams
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Maryam Lustberg
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Ramesh K Ganju
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Bhuvaneswari Ramaswamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| | - Mathew A Cherian
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Stefanie Spielman Comprehensive Breast Cancer, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
SS Pindiprolu SK, Krishnamurthy PT, Ghanta VR, Chintamaneni PK. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine (Lond) 2020; 15:1551-1565. [DOI: 10.2217/nnm-2020-0003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To study the active targeting efficacy of phenylboronic acid-modified niclosamide solid lipid nanoparticles (PBA-Niclo-SLN) in triple-negative breast cancer (TNBC). Materials & methods: PBA-Niclo-SLNs were formulated by an emulsification-solvent evaporation method using PBA-associated stearylamine (PBSA) as lipid. The drug uptake and the anticancer propensity of PBA-Niclo-SLN were studied in TNBC (MDA-MB231) cells and tumor-bearing mice. Results: PBA-Niclo-SLN formulation resulted in greater antitumor efficacy by inducing G0/G1 cell cycle arrest and apoptosis. Besides, PBA-Niclo-SLN effectively inhibited STAT3, CD44+/CD24- TNBC stem cell subpopulation, epithelial–mesenchymal transition markers. Besides, PBA-Niclo-SLN selectively accumulated at the tumor site with more significant tumor regression and improved the survivability in TNBC tumor-bearing mice. Conclusion: PBA-Niclo-SLN formulation would be an effective strategy to eradicate TNBC cells (breast cancer stem cells and nonbreast cancer stem cells) efficiently.
Collapse
Affiliation(s)
- Sai Kiran SS Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Venkata Rao Ghanta
- Synthetic Organic Chemistry Division, GVK Biosciences Private Limited, IDA Nacharam, Hyderabad, 500076, Telangana, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
11
|
Greish K, Nehoff H, Bahman F, Pritchard T, Taurin S. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. J Drug Target 2019; 27:903-916. [PMID: 30615483 DOI: 10.1080/1061186x.2019.1566341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that differs in progression, recurrence, and prognosis from other forms of breast cancer. The heterogeneity of TNBC has remained a challenge as no targeted therapy is currently available. Previously, we and others have demonstrated that raloxifene, a selective oestrogen receptor modulator, was also acting independently of the oestrogen receptor-α. However, raloxifene is characterised by a low bioavailability in vivo. Thus, we encapsulated raloxifene into a styrene-maleic acid (SMA) micelle to improve its pharmacokinetics. The micellar raloxifene had higher cytotoxicity when compared to the free formulation, promoted a higher cellular uptake and affected critical signalling pathways. Furthermore, SMA-raloxifene reduced TNBC tumour growth more efficiently than free raloxifene. Finally, we showed that this effect was partially mediated through oestrogen receptor-β. In conclusion, we have provided new insight into the role of raloxifene nanoformulation in improving the management of TNBC.
Collapse
Affiliation(s)
- Khaled Greish
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain.,b Department of Oncology , Suez Canal University , Ismailia , Egypt
| | - Hayley Nehoff
- c Department of Pharmacology and Toxicology , University of Otago , Dunedin , New Zealand
| | - Fatemah Bahman
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Tara Pritchard
- d Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Sebastien Taurin
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| |
Collapse
|
12
|
Hua H, Zhang H, Kong Q, Jiang Y. Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol 2018; 7:24. [PMID: 30250760 PMCID: PMC6148803 DOI: 10.1186/s40164-018-0116-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023] Open
Abstract
Estrogen is a steroid hormone that has critical roles in reproductive development, bone homeostasis, cardiovascular remodeling and brain functions. However, estrogen also promotes mammary, ovarian and endometrial tumorigenesis. Estrogen antagonists and drugs that reduce estrogen biosynthesis have become highly successful therapeutic agents for breast cancer patients. The effects of estrogen are largely mediated by estrogen receptor (ER) α and ERβ, which are members of the nuclear receptor superfamily of transcription factors. The mechanisms underlying the aberrant expression of ER in breast cancer and other types of human tumors are complex, involving considerable alternative splicing of ERα and ERβ, transcription factors, epigenetic and post-transcriptional regulation of ER expression. Elucidation of mechanisms for ER expression may not only help understand cancer progression and evolution, but also shed light on overcoming endocrine therapy resistance. Herein, we review the complex mechanisms for regulating ER expression in human cancer.
Collapse
Affiliation(s)
- Hui Hua
- 1Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| | - Yangfu Jiang
- 2Laboratory of Oncogene, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|