1
|
Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis. Cancers (Basel) 2024; 16:2153. [PMID: 38893271 PMCID: PMC11172085 DOI: 10.3390/cancers16112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.
Collapse
Affiliation(s)
- Marine Vialat
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Elissa Baabdaty
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Amalia Trousson
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Silvère Baron
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Laurent Morel
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Cyrille de Joussineau
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Chen M, Gao E, Lin G, Shen J, Wang D. The transcription factor optomotor-blind restricts apterous expression through TrxG and PcG genes. Dev Biol 2023; 497:59-67. [PMID: 36907311 DOI: 10.1016/j.ydbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
The establishment of body pattern is a fundamental process in developmental biology. In Drosophila, the wing disc is subdivided into dorsal (D) and ventral (V) compartments by the D/V boundary. The dorsal fate is adopted by expressing the selector gene apterous (ap). ap expression is regulated by three combinational cis-regulatory modules which are activated by EGFR pathway, Ap-Vg auto-regulatory and epigenetic mechanisms. Here, we found that the Tbx family transcription factor Optomotor-blind (Omb) restricted ap expression in the ventral compartment. Loss of omb induced autonomous initiation of ap expression in the middle third instar larvae in the ventral compartment. Oppositely, over-activation of omb inhibited ap in the medial pouch. All three enhancers apE, apDV and apP were upregulated in omb null mutants, indicating a combinational regulation of ap modulators. However, Omb affected ap expression neither by directly regulating EGFR signaling, nor via Vg regulation. Therefore, a genetic screen of epigenetic regulators, including the Trithorax group (TrxG) and Polycomb group (PcG) genes was performed. We found that knocking down the TrxG gene kohtalo (kto), domino (dom) or expressing the PcG gene grainy head (grh), the ectopic ap in omb mutants was repressed. The inhibition of apDV by kto knockdown and grh activation could contribute to ap repression. Moreover, Omb and the EGFR pathway are genetically parallel in ap regulation in the ventral compartment. Collectively, Omb is a repressive signal for ap expression in the ventral compartment, which requires TrxG and PcG genes.
Collapse
Affiliation(s)
- Min Chen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Erqing Gao
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Chen CK, Kiyama T, Weber N, Whitaker CM, Pan P, Badea TC, Massey SC, Mao CA. Characterization of Tbr2-expressing retinal ganglion cells. J Comp Neurol 2021; 529:3513-3532. [PMID: 34245014 DOI: 10.1002/cne.25208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
The mammalian retina contains more than 40 retinal ganglion cell (RGC) subtypes based on their unique morphologies, functions, and molecular profiles. Among them, intrinsically photosensitive RGCs (ipRGCs) are the first specified RGC type emerging from a common retinal progenitor pool during development. Previous work has shown that T-box transcription factor T-brain 2 (Tbr2) is essential for the formation and maintenance of ipRGCs, and that Tbr2-expressing RGCs activate Opn4 expression upon native ipRGC ablation, suggesting that Tbr2+ RGCs contain a reservoir for ipRGCs. However, the identity of Tbr2+ RGCs has not been fully vetted. Here, using genetic sparse labeling and single cell recording, we showed that Tbr2-expressing retinal neurons include RGCs and a subset of GABAergic displaced amacrine cells (dACs). Most Tbr2+ RGCs are intrinsically photosensitive and morphologically resemble native ipRGCs with identical retinofugal projections. Tbr2+ RGCs also include a unique and rare Pou4f1-expressing OFF RGC subtype. Using a loss-of-function strategy, we have further demonstrated that Tbr2 is essential for the survival of these RGCs and dACs, as well as maintaining the expression of Opn4. These data set a strong foundation to study how Tbr2 regulates ipRGC development and survival, as well as the expression of molecular machinery regulating intrinsic photosensitivity.
Collapse
Affiliation(s)
- Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Nicole Weber
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher M Whitaker
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Ping Pan
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA.,Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Stephen C Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.,The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.,The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
4
|
Fan WM, Luo D, Zhang JZ, Wang D, Shen J. Vestigial suppresses apoptosis and cell migration in a manner dependent on the level of JNK-Caspase signaling in the Drosophila wing disc. INSECT SCIENCE 2021; 28:63-76. [PMID: 32037698 DOI: 10.1111/1744-7917.12762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The Decapentaplegic (Dpp) and Wingless (Wg) signal pathways play important roles in numerous biological processes in Drosophila. The Drosophila vestigial (vg) gene is selectively required for wing imaginal disc cell proliferation, which is essential for the formation of the adult wing and halter structures, and is regulated by Dpp and Wg signaling. Using a Drosophila invasion model of wing epithelium, we showed herein that inhibition of Dpp or Wg signaling promoted cells to migrate across the cell lineage restrictive anterior/posterior (A/P) compartment boundary. Being downstream of both Dpp and Wg signaling, vg can block cell migration induced by loss of either pathway. In addition, suppression of vg is sufficient to induce cell migration across the A/P boundary. Transcriptomic analysis revealed potential downstream genes involved in the cell migration after suppressing vg in the wing disc. We further demonstrated that the c-Jun N-terminal kinase (JNK) signaling promoted cell migration induced by vg suppression by upregulating Caspase activity. Taken together, our results revealed the requirement of Vg for suppressing cell migration and clarified how developmental signals collaborate to stabilize cells along the compartment boundary.
Collapse
Affiliation(s)
- Wen-Min Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Luo
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jun-Zheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Control, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Ai X, Wang D, Zhang J, Shen J. Hippo signaling promotes Ets21c-dependent apical cell extrusion in the Drosophila wing disc. Development 2020; 147:dev.190124. [PMID: 33028612 DOI: 10.1242/dev.190124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/28/2020] [Indexed: 01/11/2023]
Abstract
Cell extrusion is a crucial regulator of epithelial tissue development and homeostasis. Epithelial cells undergoing apoptosis, bearing pathological mutations or possessing developmental defects are actively extruded toward elimination. However, the molecular mechanisms of Drosophila epithelial cell extrusion are not fully understood. Here, we report that activation of the conserved Hippo (Hpo) signaling pathway induces both apical and basal cell extrusion in the Drosophila wing disc epithelia. We show that canonical Yorkie targets Diap1, Myc and Cyclin E are not required for either apical or basal cell extrusion induced by activation of this pathway. Another target gene, bantam, is only involved in basal cell extrusion, suggesting novel Hpo-regulated apical cell extrusion mechanisms. Using RNA-seq analysis, we found that JNK signaling is activated in the extruding cells. We provide genetic evidence that JNK signaling activation is both sufficient and necessary for Hpo-regulated cell extrusion. Furthermore, we demonstrate that the ETS-domain transcription factor Ets21c, an ortholog of proto-oncogenes FLI1 and ERG, acts downstream of JNK signaling to mediate apical cell extrusion. Our findings reveal a novel molecular link between Hpo signaling and cell extrusion.
Collapse
Affiliation(s)
- Xianlong Ai
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Rambur A, Lours-Calet C, Beaudoin C, Buñay J, Vialat M, Mirouse V, Trousson A, Renaud Y, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Sequential Ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of Drosophila. Nat Commun 2020; 11:2300. [PMID: 32385236 PMCID: PMC7210301 DOI: 10.1038/s41467-020-16123-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
One of the most important but less understood step of epithelial tumourigenesis occurs when cells acquire the ability to leave their epithelial compartment. This phenomenon, described as basal epithelial cell extrusion (basal extrusion), represents the first step of tumour invasion. However, due to lack of adequate in vivo model, implication of emblematic signalling pathways such as Ras/Mitogen-Activated Protein Kinase (MAPK) and phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathways, is scarcely described in this phenomenon. We have developed a unique model of basal extrusion in the Drosophila accessory gland. There, we demonstrate that both Ras/MAPK and PI3K/AKT/mTOR pathways are necessary for basal extrusion. Furthermore, as in prostate cancer, we show that these pathways are co-activated. This occurs through set up of Epidermal Growth Factor Receptor (EGFR) and Insulin Receptor (InR) dependent autocrine loops, a phenomenon that, considering human data, could be relevant for prostate cancer.
Collapse
Affiliation(s)
- Amandine Rambur
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Corinne Lours-Calet
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Claude Beaudoin
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Julio Buñay
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Vincent Mirouse
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, 63009, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Sun J, Zhang J, Wang D, Shen J. The transcription factor Spalt and human homologue SALL4 induce cell invasion via the dMyc-JNK pathway in Drosophila. Biol Open 2020; 9:bio048850. [PMID: 32098783 PMCID: PMC7104861 DOI: 10.1242/bio.048850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer cell metastasis is a leading cause of mortality in cancer patients. Therefore, revealing the molecular mechanism of cancer cell invasion is of great significance for the treatment of cancer. In human patients, the hyperactivity of transcription factor Spalt-like 4 (SALL4) is sufficient to induce malignant tumorigenesis and metastasis. Here, we found that when ectopically expressing the Drosophila homologue spalt (sal) or human SALL4 in Drosophila, epithelial cells delaminated basally with penetration of the basal lamina and degradation of the extracellular matrix, which are essential properties of cell invasion. Further assay found that sal/SALL4 promoted cell invasion via dMyc-JNK signaling. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway through suppressing matrix metalloprotease 1, or basket can achieve suppression of cell invasion. Moreover, expression of dMyc, a suppressor of JNK signaling, dramatically blocked cell invasion induced by sal/SALL4 in the wing disc. These findings reveal a conserved role of sal/SALL4 in invasive cell movement and link the crucial mediator of tumor invasion, the JNK pathway, to SALL4-mediated cancer progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jie Sun
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Kiyama T, Long Y, Chen CK, Whitaker CM, Shay A, Wu H, Badea TC, Mohsenin A, Parker-Thornburg J, Klein WH, Mills SL, Massey SC, Mao CA. Essential Roles of Tbr1 in the Formation and Maintenance of the Orientation-Selective J-RGCs and a Group of OFF-Sustained RGCs in Mouse. Cell Rep 2019; 27:900-915.e5. [PMID: 30995485 PMCID: PMC6542366 DOI: 10.1016/j.celrep.2019.03.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 02/10/2019] [Accepted: 03/20/2019] [Indexed: 01/27/2023] Open
Abstract
In the mouse retina, more than 30 retinal ganglion cell (RGC) subtypes have been classified based on a combined metric of morphological and functional characteristics. RGCs arise from a common pool of retinal progenitor cells during embryonic stages and differentiate into mature subtypes in adult retinas. However, the cellular and molecular mechanisms controlling formation and maturation of such remarkable cellular diversity remain unknown. Here, we demonstrate that T-box transcription factor T-brain 1 (Tbr1) is expressed in two groups of morphologically and functionally distinct RGCs: the orientation-selective J-RGCs and a group of OFF-sustained RGCs with symmetrical dendritic arbors. When Tbr1 is genetically ablated during retinal development, these two RGC groups cannot develop. Ectopically expressing Tbr1 in M4 ipRGCs during development alters dendritic branching and density but not the inner plexiform layer stratification level. Our data indicate that Tbr1 plays critical roles in regulating the formation and dendritic morphogenesis of specific RGC types.
Collapse
Affiliation(s)
- Takae Kiyama
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Ye Long
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Ching-Kang Chen
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher M Whitaker
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Allison Shay
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongyu Wu
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Tudor C Badea
- National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Amir Mohsenin
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Robert Cizik Eye Clinic, Houston, TX 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - William H Klein
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen L Mills
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Stephen C Massey
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Chai-An Mao
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA.
| |
Collapse
|
9
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Moritz MNDO, Eustáquio LMS, Micocci KC, Nunes ACC, Dos Santos PK, de Castro Vieira T, Selistre-de-Araujo HS. Alternagin-C binding to α 2β 1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J Venom Anim Toxins Incl Trop Dis 2018; 24:13. [PMID: 29713337 PMCID: PMC5917863 DOI: 10.1186/s40409-018-0150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2β1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2β1 integrin. Herein, we used ALT-C as a α2β1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2β1 integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results Our data demonstrate that ALT-C, after binding to α2β1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion These results demonstrate that α2β1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies. Electronic supplementary material The online version of this article (10.1186/s40409-018-0150-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lívia Mara Santos Eustáquio
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kelli Cristina Micocci
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Ana Carolina Caetano Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Tamires de Castro Vieira
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | | |
Collapse
|
11
|
Abstract
The aim of the current study was to investigate and discuss the function of T-box 3 (TBX3) gene expression in the pathogenesis of renal carcinoma. The carcinoma, adjacent and normal renal tissues of 210 patients with renal carcinoma who presented to The Central Hospital of Wuhan, Tongji Medical College from March, 2006 to March, 2012 were collected to extract total RNAs. The total RNAs were reverse-transcribed into complementary DNA (cDNA), and quantitative polymerase chain reaction (qPCR) was applied to detect the expression of TBX3 gene in these tissues, followed by its association with the prognosis of renal carcinoma as well as clinical features. A comparison of the renal carcinoma tissues with the adjacent tissues showed that TBX3 gene was obviously highly expressed in renal carcinoma tissues (P<0.05). In addition, compared with normal renal tissues, TBX3 gene was obviously highly expressed in renal carcinoma tissues (P<0.05). There was no significant difference in the expression levels of TBX3 gene in normal renal tissues and adjacent tissues (P=0.15). The expression of TBX3 gene in renal carcinoma tissues was not associated with patient age, sex and tumor size (P>0.05), but it was associated with tumor-node-metastasis (TNM) staging and lymph node metastasis (P<0.05). The Kaplan-Meier survival analysis revealed that the median survival time of patients in the positive TBX3 gene expression group (37.5 months) was shorter than that in the negative TBX3 gene expression group (66 months), and there was a statistical difference (P<0.05). The 3- and 5-year survival rates in the negative TBX3 gene expression group were 74 and 62%, respectively, and the 3- and 5-year survival rates in the positive TBX3 gene expression group were 52 and 32%, respectively, and the differences were significant (P<0.05). The results suggest that TBX3 gene is highly expressed in renal carcinoma tissues, and it is associated with TNM staging, lymph node metastasis and distant metastasis, which may be involved in the occurrence and metastasis of renal carcinoma.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
12
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wang D, Li L, Lu J, Liu S, Shen J. Complementary expression of optomotor-blind and the Iroquois complex promotes fold formation to separate wing notum and hinge territories. Dev Biol 2016; 416:225-234. [DOI: 10.1016/j.ydbio.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023]
|
14
|
Tang W, Wang D, Shen J. Asymmetric distribution of Spalt in Drosophila wing squamous and columnar epithelia ensures correct cell morphogenesis. Sci Rep 2016; 6:30236. [PMID: 27452716 PMCID: PMC4958983 DOI: 10.1038/srep30236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The Drosophila wing imaginal disc is a sac-like structure that is composed of two opposing cell layers: peripodial epithelium (PE, also known as squamous epithelia) and disc proper (DP, also known as pseudostratified columnar epithelia). The molecular mechanism of cell morphogenesis has been well studied in the DP but not in the PE. Although proper Dpp signalling activity is required for proper PE formation, the detailed regulation mechanism is poorly understood. Here, we found that the Dpp target gene sal is only expressed in DP cells, not in PE cells, although pMad is present in the PE. Increasing Dpp signalling activity cannot activate Sal in PE cells. The absence of Sal in the PE is essential for PE formation. The ectopic expression of sal in PE cells is sufficient to increase the PE cell height. Down-regulation of sal in the DP reduced DP cell height. We further demonstrated that the known PE cell height regulator Lines, which can convert PE into a DP cell fate, is mediated by sal mis-activation in PE because sal-RNAi and lines co-expression largely restores PE cell morphology. By revealing the microtubule distribution, we demonstrated that Lines- and Sal-heightened PE cells are morphologically similar to the intermediate cell with cuboidal morphology.
Collapse
Affiliation(s)
- Wenqian Tang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Dan Wang
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| | - Jie Shen
- Department of Entomology, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
15
|
Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, Timpson P, Sibson N, O'Neill E. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion. Curr Biol 2015; 25:3019-34. [PMID: 26549256 PMCID: PMC4683097 DOI: 10.1016/j.cub.2015.09.072] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control.
Collapse
Affiliation(s)
- Nikola Vlahov
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Scrace
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Manuel Sarmiento Soto
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anna M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Leanne Bradley
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Daniela Pankova
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Karen S Yee
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Francesca Buffa
- Applied Computational Genomics Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Colin R Goding
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Paul Timpson
- Faculty of Medicine, Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola Sibson
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
16
|
Fischer K, Pflugfelder GO. Putative Breast Cancer Driver Mutations in TBX3 Cause Impaired Transcriptional Repression. Front Oncol 2015; 5:244. [PMID: 26579496 PMCID: PMC4625211 DOI: 10.3389/fonc.2015.00244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
The closely related T-box transcription factors TBX2 and TBX3 are frequently overexpressed in melanoma and various types of human cancers, in particular, breast cancer. The overexpression of TBX2 and TBX3 can have several cellular effects, among them suppression of senescence, promotion of epithelial-mesenchymal transition, and invasive cell motility. In contrast, loss of function of TBX3 and most other human T-box genes causes developmental haploinsufficiency syndromes. Stephens and colleagues (1), by exome sequencing of breast tumor samples, identified five different mutations in TBX3, all affecting the DNA-binding T-domain. One in-frame deletion of a single amino acid, p.N212delN, was observed twice. Due to the clustering of these mutations to the T-domain and for statistical reasons, TBX3 was inferred to be a driver gene in breast cancer. Since mutations in the T-domain generally cause loss of function and because the tumorigenic action of TBX3 has generally been attributed to overexpression, we determined whether the putative driver mutations had loss- or gain-of-function properties. We tested two in-frame deletions, one missense, and one frameshift mutant protein for DNA-binding in vitro, and for target gene repression in cell culture. In addition, we performed an in silico analysis of somatic TBX mutations in breast cancer, collected in The Cancer Genome Atlas (TCGA). Both the experimental and the in silico analysis indicate that the observed mutations predominantly cause loss of TBX3 function.
Collapse
|