1
|
Borovskaya TG, Bokhan EA, Vychuzhanina AV, Shchemerova YA, Goldberg VE. Assessment of Ante- and Postnatal Development of the Offspring of Male Rats Crossed in Delayed Periods after Treatment with Methotrexate in Low Doses. Bull Exp Biol Med 2023; 175:503-507. [PMID: 37775703 DOI: 10.1007/s10517-023-05895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 10/01/2023]
Abstract
We studied ante- and postnatal development of the offspring of intact female rats crossed with males injected with low doses of methotrexate 3 and 6 months before mating. The time of crossing corresponded to the manifestation of the cytostatic effect on spermatogonial stem cells. The offspring of methotrexate-treated males was characterized by increased preimplantation losses and fetal growth restriction in the antenatal period and inhibition of physical development, delayed formation of sensory-motor reflexes, and impaired learning abilities in the postnatal period.
Collapse
Affiliation(s)
- T G Borovskaya
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - E A Bokhan
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A V Vychuzhanina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Yu A Shchemerova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V E Goldberg
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
2
|
Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep 2023; 10:544-553. [PMID: 37396847 PMCID: PMC10313882 DOI: 10.1016/j.toxrep.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide despite efforts in early diagnosis of the disease and advances in treatment. The use of drugs that exert toxic effects on tumor cells or chemotherapy is one of the most widely used treatments against cancer. However, its low toxic selectivity affects both healthy cells and cancer cells. It has been reported that chemotherapeutic drugs may generate neurotoxicity that induces deleterious effects of chemotherapy in the central nervous system. In this sense, patients report decreased cognitive abilities, such as memory, learning, and some executive functions after chemotherapy. This chemotherapy-induced cognitive impairment (CICI) develops during treatment and persists even after chemotherapy. Here we present a review of the literature on the main neurobiological mechanisms involved in CICI using a Boolean formula following the steps of the PRISMA guidelines that were used to perform statements searches in various databases. The main mechanisms described in the literature to explain CRCI include direct and indirect mechanisms that induce neurotoxicity by chemotherapeutic agents. Therefore, this review provides a general understanding of the neurobiological mechanisms of CICI and the possible therapeutic targets to prevent it..
Collapse
Affiliation(s)
| | | | - Sonia Luz Albarracín
- Correspondence to: Carrera 7 No. 43–82, Edificio Jesús Emilio Ramírez, Lab 304A, Bogotá C.P.110211, Colombia.
| |
Collapse
|
3
|
Chan D, Oros Klein K, Riera-Escamilla A, Krausz C, O’Flaherty C, Chan P, Robaire B, Trasler JM. Sperm DNA methylome abnormalities occur both pre- and post-treatment in men with Hodgkin disease and testicular cancer. Clin Epigenetics 2023; 15:5. [PMID: 36611168 PMCID: PMC9826600 DOI: 10.1186/s13148-022-01417-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combination chemotherapy has contributed to increased survival from Hodgkin disease (HD) and testicular cancer (TC). However, questions concerning the quality of spermatozoa after treatment have arisen. While studies have shown evidence of DNA damage and aneuploidy in spermatozoa years following anticancer treatment, the sperm epigenome has received little attention. Our objectives here were to determine the impact of HD and TC, as well as their treatments, on sperm DNA methylation. Semen samples were collected from community controls (CC) and from men undergoing treatment for HD or TC, both before initiation of chemotherapy and at multiple times post-treatment. Sperm DNA methylation was assessed using genome-wide and locus-specific approaches. RESULTS Imprinted gene methylation was not affected in the sperm of HD or TC men, before or after treatment. Prior to treatment, using Illumina HumanMethylation450 BeadChip (450 K) arrays, a subset of 500 probes was able to distinguish sperm samples from TC, HD and CC subjects; differences between groups persisted post-treatment. Comparing altered sperm methylation between HD or TC patients versus CC men, twice as many sites were affected in TC versus HD men; for both groups, the most affected CpGs were hypomethylated. For TC patients, the promoter region of GDF2 contained the largest region of differential methylation. To assess alterations in DNA methylation over time/post-chemotherapy, serial samples from individual patients were compared. With restriction landmark genome scanning and 450 K array analyses, some patients who underwent chemotherapy showed increased alterations in DNA methylation, up to 2 to 3 years post-treatment, when compared to the CC cohort. Similarly, a higher-resolution human sperm-specific assay that includes assessment of environmentally sensitive regions, or "dynamic sites," also demonstrated persistently altered sperm DNA methylation in cancer patients post-treatment and suggested preferential susceptibility of "dynamic" CpG sites. CONCLUSIONS Distinct sperm DNA methylation signatures were present pre-treatment in men with HD and TC and may help explain increases in birth defects reported in recent clinical studies. Epigenetic defects in spermatozoa of some cancer survivors were evident even up to 2 years post-treatment. Abnormalities in the sperm epigenome both pre- and post-chemotherapy may contribute to detrimental effects on future reproductive health.
Collapse
Affiliation(s)
- Donovan Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada
| | - Kathleen Oros Klein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC Canada
| | - Antoni Riera-Escamilla
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain
| | - Csilla Krausz
- grid.7080.f0000 0001 2296 0625Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia Spain ,grid.8404.80000 0004 1757 2304Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Cristian O’Flaherty
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Surgery, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada
| | - Peter Chan
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Urology, McGill University, Montréal, QC Canada
| | - Bernard Robaire
- grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Obstetrics and Gynecology, McGill University, Montréal, QC Canada
| | - Jacquetta M. Trasler
- grid.63984.300000 0000 9064 4811Research Institute of the McGill University Health Centre, 1001 Décarie Boul. Block E, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada ,grid.14709.3b0000 0004 1936 8649Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC Canada
| |
Collapse
|
4
|
Yang GS, Mi X, Jackson-Cook CK, Starkweather AR, Lynch Kelly D, Archer KJ, Zou F, Lyon DE. Differential DNA methylation following chemotherapy for breast cancer is associated with lack of memory improvement at one year. Epigenetics 2019; 15:499-510. [PMID: 31793401 DOI: 10.1080/15592294.2019.1699695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The biological basis underlying cognitive dysfunction in women with early-stage breast cancer (BC) remains unclear, but could reflect gene expression changes that arise from the acquisition and long-term retention of soma-wide alterations in DNA methylation in response to chemotherapy. In this longitudinal study, we identified differences in peripheral methylation patterns present in women prior to treatment (T1) and 1 year after receiving chemotherapy (T4) and evaluated relationships among the differential methylation (DM) ratios with changes in cognitive function. A total of 58 paired (T1 and T4) blood specimens were evaluated. Methylation values were determined for DNA isolated from whole blood using a genome-wide array . Cognitive function was measured using the validated, computerized CNS Vital Signs platform. Relationships between methylation patterns and cognitive domain scores were compared using a stepwise linear regression analysis, with demographic variables as covariates. The symptom comparison analysis was restricted to 2,199 CpG positions showing significant methylation ratio changes between T1 and T4. The positions with DM were enriched for genes involved in the modulation of cytokine concentrations. Significant DM ratios were associated with memory domain (56 CpGs). Eight of the ten largest DM ratio changes associated with lack of memory improvement were localized to genes involved in either neural function (ECE2, PPFIBP2) or signalling processes (USP6NL, RIPOR2, KLF5, UBE2V1, DGKA, RPS6KA1). These results suggest that epigenetic changes acquired and retained for at least one year in non-tumour cells following chemotherapy may be associated with a lack of memory improvement following treatment in BC survivors.
Collapse
Affiliation(s)
- Gee Su Yang
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Xinlei Mi
- Department of Biostatistics, Columbia University Mailman School of Public Health, NY, USA
| | - Colleen K Jackson-Cook
- Departments of Pathology and Human & Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Debra Lynch Kelly
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Kellie J Archer
- Division of Biostatistics, The Ohio State University College of Public Health, Columbus, OH, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Debra E Lyon
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| |
Collapse
|
5
|
Walczak P, Janowski M. Chemobrain as a Product of Growing Success in Chemotherapy - Focus on Glia as both a Victim and a Cure. ACTA ACUST UNITED AC 2019; 9:2207-2216. [PMID: 31316584 DOI: 10.4172/neuropsychiatry.1000565] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapy-induced cognitive impairment or chemobrain is a frequent consequence of cancer treatment with many psychiatric features. Ironically, the increasing efficacy of chemotherapy leaves growing number of patients alive with chemobrain. Therefore, there is an urgent need for strategies capable of returning cancer survivors back to their pre-morbid quality of life. Molecular mechanisms of chemobrain are largely unknown. Over the last decade there was a lot of emphasis in preclinical research on inflammatory consequences of chemotherapy and oxidative stress but so far none of these approaches were translated into clinical scenario. The co-administration of chemotherapy with protective agents was evaluated preclinically but it should be introduced with caution as potential interference was not yet studied and that could blunt therapeutic efficacy. Stem cell-based regenerative medicine approach has so far been exploited very sparsely in the context of chemobrain and the focus was on indirect mechanisms or neuronal replacement in the hippocampus. However, there is evidence for widespread white matter abnormalities in patients with chemobrain. This is quite logical considering life-long proliferation and turnover of glial cells, which makes them vulnerable to chemotherapeutic agents. Feasibility of glia replacement has been established in mice with global dysmyelination where profound therapeutic effect has been observed but only in case of global cell engraftment (across the entire brain). While global glia replacement has been achieved in mice translation to clinical setting might be challenging due to much larger brain size. Therefore, a lot of attention should be directed towards the route of administration to accomplish widespread cell delivery. Techniques facilitating that broad cell distribution including intra-arterial and intrathecal methods should be considered as very compelling options. Summarizing, chemobrain is a rapidly growing medical problem and global glia replacement should be considered as worthwhile therapeutic strategy.
Collapse
Affiliation(s)
- Piotr Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|