1
|
Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, Palmieri M, Hirokawa Y, Tai L, Simpson DS, Chang C, Huang AS, Lieschke E, Diepstraten ST, Kaloni D, Riffkin C, Huang DC, Li Wai Suen CS, Garnham AL, Gibbs P, Visvader JE, Sieber OM, Herold MJ, Fava LL, Kelly GL, Strasser A. Loss-of-Function but Not Gain-of-Function Properties of Mutant TP53 Are Critical for the Proliferation, Survival, and Metastasis of a Broad Range of Cancer Cells. Cancer Discov 2024; 14:362-379. [PMID: 37877779 PMCID: PMC10850947 DOI: 10.1158/2159-8290.cd-23-0402] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Mutations in the tumor suppressor TP53 cause cancer and impart poor chemotherapeutic responses, reportedly through loss-of-function, dominant-negative effects and gain-of-function (GOF) activities. The relative contributions of these attributes is unknown. We found that removal of 12 different TP53 mutants with reported GOFs by CRISPR/Cas9 did not impact proliferation and response to chemotherapeutics of 15 human cancer cell lines and colon cancer-derived organoids in culture. Moreover, removal of mutant TP53/TRP53 did not impair growth or metastasis of human cancers in immune-deficient mice or growth of murine cancers in immune-competent mice. DepMap mining revealed that removal of 158 different TP53 mutants had no impact on the growth of 391 human cancer cell lines. In contrast, CRISPR-mediated restoration of wild-type TP53 extinguished the growth of human cancer cells in vitro. These findings demonstrate that LOF but not GOF effects of mutant TP53/TRP53 are critical to sustain expansion of many tumor types. SIGNIFICANCE This study provides evidence that removal of mutant TP53, thereby deleting its reported GOF activities, does not impact the survival, proliferation, metastasis, or chemotherapy responses of cancer cells. Thus, approaches that abrogate expression of mutant TP53 or target its reported GOF activities are unlikely to exert therapeutic impact in cancer. See related commentary by Lane, p. 211 . This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Zilu Wang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Matteo Burigotto
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Sabrina Ghetti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - François Vaillant
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Tao Tan
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Bianca D. Capaldo
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Michelle Palmieri
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Yumiko Hirokawa
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Lin Tai
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Daniel S. Simpson
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Catherine Chang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - Allan Shuai Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Sarah T. Diepstraten
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Deeksha Kaloni
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Chris Riffkin
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Connie S.N. Li Wai Suen
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Alexandra L. Garnham
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Jane E. Visvader
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Oliver M. Sieber
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Marco J. Herold
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Gemma L. Kelly
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute (WEHI), Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Tang M, Yin S, Zeng H, Huang A, Huang Y, Hu Z, Shah AR, Zhang S, Li H, Chen G. The P286R mutation of DNA polymerase ε activates cancer-cell-intrinsic immunity and suppresses endometrial tumorigenesis via the cGAS-STING pathway. Cell Death Dis 2024; 15:69. [PMID: 38238314 PMCID: PMC10796917 DOI: 10.1038/s41419-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024]
Abstract
Endometrial carcinoma (EC) is a prevalent gynecological tumor in women, and its treatment and prevention are significant global health concerns. The mutations in DNA polymerase ε (POLE) are recognized as key features of EC and may confer survival benefits in endometrial cancer patients undergoing anti-PD-1/PD-L1 therapy. However, the anti-tumor mechanism of POLE mutations remains largely elusive. This study demonstrates that the hot POLE P286R mutation impedes endometrial tumorigenesis by inducing DNA breakage and activating the cGAS-STING signaling pathway. The POLE mutations were found to inhibit the proliferation and stemness of primary human EC cells. Mechanistically, the POLE mutants enhance DNA damage and suppress its repair through the interaction with DNA repair proteins, leading to genomic instability and the upregulation of cytoplasmic DNA. Additionally, the POLE P286R mutant also increases cGAS level, promotes TBK1 phosphorylation, and stimulates inflammatory gene expression and anti-tumor immune response. Furthermore, the POLE P286R mutation inhibits tumor growth and facilitates the infiltration of cytotoxic T cells in human endometrial cancers. These findings uncover a novel mechanism of POLE mutations in antagonizing tumorigenesis and provide a promising direction for effective cancer therapy.
Collapse
Affiliation(s)
- Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Ao Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Yujia Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ab Rauf Shah
- Department of Pathology and Microbiology, UNMC, Omaha, USA
| | - Shuyong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou, 341000, China.
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China.
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
- AoBio Medical Co., Shanghai, 200438, China.
| | - Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
More P, Ngaffo JAM, Goedtel-Armbrust U, Hähnel PS, Hartwig UF, Kindler T, Wojnowski L. Transcriptional Response to Standard AML Drugs Identifies Synergistic Combinations. Int J Mol Sci 2023; 24:12926. [PMID: 37629110 PMCID: PMC10455220 DOI: 10.3390/ijms241612926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.
Collapse
Affiliation(s)
- Piyush More
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Joëlle Aurelie Mekontso Ngaffo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
- Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Ute Goedtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| | - Patricia S. Hähnel
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Udo F. Hartwig
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
- Research Center of Immunotherapy, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT) Mainz, Johannes Gutenberg-University, 55131 Mainz, Germany; (P.S.H.); (T.K.)
- Department of Hematology & Medical Oncology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany;
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany; (J.A.M.N.); (U.G.-A.); (L.W.)
| |
Collapse
|
4
|
Guo Z, Li Z, Zhang M, Bao M, He B, Zhou X. LncRNA FAS-AS1 upregulated by its genetic variation rs6586163 promotes cell apoptosis in nasopharyngeal carcinoma through regulating mitochondria function and Fas splicing. Sci Rep 2023; 13:8218. [PMID: 37217794 DOI: 10.1038/s41598-023-35502-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common head and neck malignant with a high incidence in Southern China. Genetic aberrations play a vital role in the pathogenesis, progression and prognosis of NPC. In the present study, we elucidated the underlying mechanism of FAS-AS1 and its genetic variation rs6586163 in NPC. We demonstrated that FAS-AS1 rs6586163 variant genotype carriers were associated with lower risk of NPC (CC vs. AA, OR = 0.645, P = 0.006) and better overall survival (AC + CC vs. AA, HR = 0.667, P = 0.030). Mechanically, rs6586163 increased the transcriptional activity of FAS-AS1 and contributed to ectopic overexpression of FAS-AS1 in NPC. rs6586163 also exhibited an eQTL trait and the genes affected by rs6586163 were enriched in apoptosis related signaling pathway. FAS-AS1 was downregulated in NPC tissues and over-expression of FAS-AS1 was associated with early clinical stage and better short-term treatment efficacy for NPC patients. Overexpression of FAS-AS1 inhibited NPC cell viability and promoted cell apoptosis. GSEA analysis of RNA-seq data suggested FAS-AS1 participate in mitochondria regulation and mRNA alternative splicing. Transmission electron microscopic examination verified that the mitochondria was swelled, the mitochondrial cristae was fragmented or disappeared, and their structures were destroyed in FAS-AS1 overexpressed cells. Furthermore, we identified HSP90AA1, CS, BCL2L1, SOD2 and PPARGC1A as the top 5 hub genes of FAS-AS1 regulated genes involved in mitochondria function. We also proved FAS-AS1 could affect Fas splicing isoform sFas/mFas expression ratio, and apoptotic protein expression, thus leading to increased apoptosis. Our study provided the first evidence that FAS-AS1 and its genetic polymorphism rs6586163 triggered apoptosis in NPC, which might have a potential as new biomarkers for NPC susceptibility and prognosis.
Collapse
Affiliation(s)
- Zhen Guo
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
- Hunan Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, People's Republic of China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - ZiBo Li
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - MengLing Zhang
- School of Stomatology, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - MeiHua Bao
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - BinSheng He
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China
| | - XiaoLong Zhou
- Academician Workstation, Changsha Medical University, LeiFeng Avenue No.1501, Changsha, 410219, People's Republic of China.
- Hunan Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
5
|
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line. Cells 2023; 12:cells12050757. [PMID: 36899893 PMCID: PMC10001195 DOI: 10.3390/cells12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive research for the last two decades has significantly contributed to understanding the roles of lamins in the maintenance of nuclear architecture and genome organization which is drastically modified in neoplasia. It must be emphasized that alteration in lamin A/C expression and distribution is a consistent event during tumorigenesis of almost all tissues of human bodies. One of the important signatures of a cancer cell is its inability to repair DNA damage which befalls several genomic events that transform the cells to be sensitive to chemotherapeutic agents. This genomic and chromosomal instability is the most common feature found in cases of high-grade ovarian serous carcinoma. Here, we report elevated levels of lamins in OVCAR3 cells (high-grade ovarian serous carcinoma cell line) in comparison to IOSE (immortalised ovarian surface epithelial cells) and, consequently, altered damage repair machinery in OVCAR3. We have analysed the changes in global gene expression as a sequel to DNA damage induced by etoposide in ovarian carcinoma where lamin A is particularly elevated in expression and reported some differentially expressed genes associated with pathways conferring cellular proliferation and chemoresistance. We hereby establish the role of elevated lamin A in neoplastic transformation in the context of high-grade ovarian serous cancer through a combination of HR and NHEJ mechanisms.
Collapse
|
6
|
Weber Boutros S, Unni VK, Raber J. An Adaptive Role for DNA Double-Strand Breaks in Hippocampus-Dependent Learning and Memory. Int J Mol Sci 2022; 23:8352. [PMID: 35955487 PMCID: PMC9368779 DOI: 10.3390/ijms23158352] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
DNA double-strand breaks (DSBs), classified as the most harmful type of DNA damage based on the complexity of repair, lead to apoptosis or tumorigenesis. In aging, DNA damage increases and DNA repair decreases. This is exacerbated in disease, as post-mortem tissue from patients diagnosed with mild cognitive impairment (MCI) or Alzheimer's disease (AD) show increased DSBs. A novel role for DSBs in immediate early gene (IEG) expression, learning, and memory has been suggested. Inducing neuronal activity leads to increases in DSBs and upregulation of IEGs, while increasing DSBs and inhibiting DSB repair impairs long-term memory and alters IEG expression. Consistent with this pattern, mice carrying dominant AD mutations have increased baseline DSBs, and impaired DSB repair is observed. These data suggest an adaptive role for DSBs in the central nervous system and dysregulation of DSBs and/or repair might drive age-related cognitive decline (ACD), MCI, and AD. In this review, we discuss the adaptive role of DSBs in hippocampus-dependent learning, memory, and IEG expression. We summarize IEGs, the history of DSBs, and DSBs in synaptic plasticity, aging, and AD. DSBs likely have adaptive functions in the brain, and even subtle alterations in their formation and repair could alter IEGs, learning, and memory.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Vivek K. Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Health & Science University Parkinson Center, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
7
|
Zhang X, Qu K, Jia P, Zhang J, Liu J, Lei C, Huang B. Assessing Genomic Diversity and Productivity Signatures in Dianzhong Cattle by Whole-Genome Scanning. Front Genet 2021; 12:719215. [PMID: 34675962 PMCID: PMC8523829 DOI: 10.3389/fgene.2021.719215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Dianzhong cattle is a classic Chinese indigenous cattle breed with historical records dating back to 200 BC. But with its genomic differences having not been clearly elucidated, the quest for genomic characterization will be an essential step towards understanding the genomic basis of productivity and adaptation to survival under Chinese farming systems. Here we compared 10 Dianzhong cattle (four newly sequenced and six downloaded) with 29 published genomes of three underlying ancestral populations (Chinese zebu, Indian zebu, and Yanbian cattle) to characterize the genomic variations of Dianzhong cattle. Dianzhong cattle has a high nucleotide diversity (0.0034), second only to Chinese zebu. Together with analyses of linkage disequilibrium decay and runs of homozygosity, Dianzhong cattle displayed higher genomic diversity and weaker artificial selection compared with Yanbian cattle. From a selective sweep analysis by four methods (Fst, π-ratio, XP-CLR, and XP-EHH), the positive selective signals were mainly manifested in candidate genes and pathways related to heat resistance, growth and development, fat deposition, and male reproduction. Missense mutations were detected in candidate genes, SDS (c.944C > A and p.Ala315Glu), PDGFD (c.473A > G and p.Lys158Arg), and DDX4 (rs460251486, rs722912933, and rs517668236), which related to heat resistance, fat deposition, and spermatogenesis, respectively. Our findings unravel, at the genome-wide level, the unique diversity of Dianzhong cattle while emphasizing the opportunities for improvement of livestock productivity in further breeding programs.
Collapse
Affiliation(s)
- Xianfu Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Peng Jia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
8
|
Kasprzycka W, Trębińska-Stryjewska A, Lewandowski RB, Stępińska M, Osuchowska PN, Dobrzyńska M, Achour Y, Osuchowski ŁP, Starzyński J, Mierczyk Z, Trafny EA. Nanosecond Pulsed Electric Field Only Transiently Affects the Cellular and Molecular Processes of Leydig Cells. Int J Mol Sci 2021; 22:ijms222011236. [PMID: 34681896 PMCID: PMC8541366 DOI: 10.3390/ijms222011236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray’s transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.
Collapse
Affiliation(s)
- Wiktoria Kasprzycka
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Alicja Trębińska-Stryjewska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Rafał Bogdan Lewandowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Małgorzata Stępińska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Paulina Natalia Osuchowska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Monika Dobrzyńska
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Yahia Achour
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Łukasz Paweł Osuchowski
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Jacek Starzyński
- Faculty of Electronics, Military University of Technology, 00-908 Warsaw, Poland; (Y.A.); (J.S.)
| | - Zygmunt Mierczyk
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
| | - Elżbieta Anna Trafny
- Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 00-908 Warsaw, Poland; (W.K.); (A.T.-S.); (R.B.L.); (M.S.); (P.N.O.); (M.D.); (Ł.P.O.); (Z.M.)
- Correspondence:
| |
Collapse
|
9
|
Tang J, Casey PJ, Wang M. Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair. Life Sci Alliance 2021; 4:4/12/e202101144. [PMID: 34610973 PMCID: PMC8500237 DOI: 10.26508/lsa.202101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of isoprenylcysteine carboxylmethyltransferase reduces cancer cells’ ability to repair DNA damage by suppressing the expression of critical DNA damage repair pathway genes, hence increasing their vulnerability to DNA damaging insults such as PARP inhibitors and other DNA damage agents. DNA damage is a double-edged sword for cancer cells. On the one hand, DNA damage–induced genomic instability contributes to cancer development; on the other hand, accumulating damage compromises proliferation and survival of cancer cells. Understanding the key regulators of DNA damage repair machinery would benefit the development of cancer therapies that induce DNA damage and apoptosis. In this study, we found that isoprenylcysteine carboxylmethyltransferase (ICMT), a posttranslational modification enzyme, plays an important role in DNA damage repair. We found that ICMT suppression consistently reduces the activity of MAPK signaling, which compromises the expression of key proteins in the DNA damage repair machinery. The ensuing accumulation of DNA damage leads to cell cycle arrest and apoptosis in multiple breast cancer cells. Interestingly, these observations are more pronounced in cells grown under anchorage-independent conditions or grown in vivo. Consistent with the negative impact on DNA repair, ICMT inhibition transforms the cancer cells into a “BRCA-like” state, hence sensitizing cancer cells to the treatment of PARP inhibitor and other DNA damage–inducing agents.
Collapse
Affiliation(s)
- Jingyi Tang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore
| | - Patrick J Casey
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Mei Wang
- Duke-NUS Medical School, Program in Cancer and Stem Cell, Singapore, Singapore .,Department of Biochemistry, National University of Singapore, Singapore 117596
| |
Collapse
|
10
|
Differential Expression of a Panel of Ten CNTN1-Associated Genes during Prostate Cancer Progression and the Predictive Properties of the Panel Towards Prostate Cancer Relapse. Genes (Basel) 2021; 12:genes12020257. [PMID: 33578925 PMCID: PMC7916715 DOI: 10.3390/genes12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Contactin 1 (CNTN1) is a new oncogenic protein of prostate cancer (PC); its impact on PC remains incompletely understood. We observed CNTN1 upregulation in LNCaP cell-derived castration-resistant PCs (CRPC) and CNTN1-mediated enhancement of LNCaP cell proliferation. CNTN1 overexpression in LNCaP cells resulted in enrichment of the CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 gene set that facilitates endocrine resistance in breast cancer. The leading-edge (LE) genes (n = 10) of this enrichment consist of four genes with limited knowledge on PC and six genes novel to PC. These LE genes display differential expression during PC initiation, metastatic progression, and CRPC development, and they predict PC relapse following curative therapies at hazard ratio (HR) 2.72, 95% confidence interval (CI) 1.96–3.77, and p = 1.77 × 10−9 in The Cancer Genome Atlas (TCGA) PanCancer cohort (n = 492) and HR 2.72, 95% CI 1.84–4.01, and p = 4.99 × 10−7 in Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 140). The LE gene panel classifies high-, moderate-, and low-risk of PC relapse in both cohorts. Additionally, the gene panel robustly predicts poor overall survival in clear cell renal cell carcinoma (ccRCC, p = 1.13 × 10−11), consistent with ccRCC and PC both being urogenital cancers. Collectively, we report multiple CNTN1-related genes relevant to PC and their biomarker values in predicting PC relapse.
Collapse
|
11
|
Parreira JR, Hernández-Castellano LE, Argüello A, Capote J, Castro N, de Sousa Araújo S, de Almeida AM. Understanding seasonal weight loss tolerance in dairy goats: a transcriptomics approach. BMC Genomics 2020; 21:629. [PMID: 32928114 PMCID: PMC7489022 DOI: 10.1186/s12864-020-06968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Seasonal weight loss (SWL) is a very important limitation to the production of ruminants in the Mediterranean and Tropical regions. In these areas, long dry seasons lead to poor pastures with low nutritional value. During the dry season, ruminants, particularly those raised in extensive production systems, lose around 30% of their body weight. Seasonal weight loss has important consequences on animal productive performance and health. In this study, RNA sequencing was used to characterize feed restriction effects in dairy goat of 2 breeds with different SWL tolerance: Majorera (tolerant) and Palmera (susceptible). Nine Majorera and ten Palmera goats were randomly distributed in a control and a restricted group: Majorera Control (adequately fed; MC; n = 4), Palmera Control (adequately fed; PC; n = 6), Majorera Restricted (feed restricted; ME; n = 5) and Palmera Restricted (feed restricted; PE; n = 4). On day 22 of the trial, mammary gland biopsies were collected for transcriptomics analysis. Results From these samples, 24,260 unique transcripts were identified. From those, 82 transcripts were differentially expressed between MC and ME, 99 between PC and PE, twelve between both control groups and twenty-nine between both restricted groups. Conclusions Feed restriction affected several biochemical pathways in both breeds such as: carbohydrate and lipid transport; intracellular trafficking, RNA processing and signal transduction. This research also highlights the importance or involvement of the genes in tolerance (ENPP1, S-LZ, MT2A and GPNB) and susceptibility (GPD1, CTPS1, ELOVL6 and NR4A1) to SWL with respectively higher expression in the Majorera restriced group and the Palmera restricted group in comparison to the control groups. In addition, results from the study may be extrapolated to other dairy ruminant species.
Collapse
Affiliation(s)
- José Ricardo Parreira
- IBET - Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.,ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Juan Capote
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas, Canary Islands Institute for Agricultural Research, 38270, La Laguna, Spain
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Susana de Sousa Araújo
- ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 13409-017, Lisbon, Portugal.
| |
Collapse
|
12
|
David R. The promise of toxicogenomics for genetic toxicology: past, present and future. Mutagenesis 2020; 35:153-159. [PMID: 32087008 DOI: 10.1093/mutage/geaa007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023] Open
Abstract
Toxicogenomics, the application of genomics to toxicology, was described as 'a new era' for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundreds of billions of base pairs can be sequenced simultaneously cheaper and quicker than traditional Sanger methods. In relation to genetic toxicology, and thousands of cancer genomes have been sequenced with single-base substitution mutational signatures identified, and mutation signatures have been identified following treatment of cells with known or suspected environmental carcinogens. RNAseq has been applied to detect transcriptional changes following treatment with genotoxins; modified RNAseq protocols have been developed to identify adducts in the genome and Duplex sequencing is an example of a technique that has recently been developed to accurately detect mutation. Machine learning, including MutationSeq and SomaticSeq, has also been applied to somatic mutation detection and improvements in automation and/or the application of machine learning algorithms may allow high-throughput mutation sequencing in the future. This review will discuss the initial promise of transcriptomics for genetic toxicology, and how the development of NGS technologies and new machine learning algorithms may finally realise that promise.
Collapse
Affiliation(s)
- Rhiannon David
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
13
|
Jiang Y, Lin X, Kapoor A, He L, Wei F, Gu Y, Mei W, Zhao K, Yang H, Tang D. FAM84B promotes prostate tumorigenesis through a network alteration. Ther Adv Med Oncol 2019; 11:1758835919846372. [PMID: 31205500 PMCID: PMC6535720 DOI: 10.1177/1758835919846372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 01/04/2023] Open
Abstract
Background: The aim of this study was to investigate the contributions of FAM84B in prostate tumorigenesis and progression. Methods: A FAM84B mutant with deletion of its HRASLS domain (ΔHRASLS) was constructed. DU145 prostate cancer (PC) cells stably expressing an empty vector (EV), FAM84B, or FAM84B (ΔHRASLS) were produced. These lines were examined for proliferation, invasion, and growth in soft agar in vitro. DU145 EV and FAM84B cells were investigated for tumor growth and lung metastasis in NOD/SCID mice. The transcriptome of DU145 EV xenografts (n = 2) and DU145 FAM84B tumors (n = 2) was determined using RNA sequencing, and analyzed for pathway alterations. The FAM84B-affected network was evaluated for an association with PC recurrence. Results: FAM84B but not FAM84B (ΔHRASLS) increased DU145 cell invasion and growth in soft agar. Co-immunoprecipitation and co-localization analyses revealed an interaction between FAM84B and FAM84B (ΔHRASLS), suggesting an intramolecular association among FAM84B molecules. FAM84B significantly enhanced DU145 cell-derived xenografts and lung metastasis. In comparison with DU145 EV cell-produced tumors, those generated by DU145 FAM84B cells showed a large number of differentially expressed genes (DEGs; n = 4976). A total of 51 pathways were enriched in these DEGs, which function in the Golgi-to-endoplasmic reticulum processes, cell cycle checkpoints, mitochondrial events, and protein translation. A novel 27-gene signature (SigFAM) was derived from these DEGs; SigFAM robustly stratifies PC recurrence in two large PC populations (n = 490, p = 0; n = 140, p = 4e−11), and remains an independent risk factor of PC recurrence after adjusting for age at diagnosis, Gleason scores, surgical margin, and tumor stages. Conclusions: FAM84B promotes prostate tumorigenesis through a complex network that predicts PC recurrence.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON. Canada Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Hamilton Urologic Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Anil Kapoor
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lizhi He
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen, Guangdong, China
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Wenjuan Mei
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kuncheng Zhao
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Department of Medicine, McMaster University, T3310, St. Joseph's Hospital, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| |
Collapse
|