1
|
Wu R, Li J, Aicher A, Jiang K, Tondi S, Dong S, Zheng Q, Tang S, Chen M, Guo Z, Šabanović B, Ananthanarayanan P, Jiang L, Sapino A, Wen C, Fu D, Shen B, Heeschen C. Gasdermin C promotes Stemness and Immune Evasion in Pancreatic Cancer via Pyroptosis-Independent Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308990. [PMID: 39297408 PMCID: PMC11558074 DOI: 10.1002/advs.202308990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/31/2024] [Indexed: 11/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic and lethal disease. Gasdermins are primarily associated with necrosis via membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. In this study, GSDMC upregulation during PDAC progression is reported. GSDMC directly induces genes related to stemness, EMT, and immune evasion. Targeting Gsdmc in murine PDAC models reprograms the immunosuppressive tumor microenvironment, rescuing the recruitment of anti-tumor immune cells through CXCL9. This not only results in diminished tumor initiation, growth and metastasis, but also enhances the response to KRASG12D inhibition and PD-1 checkpoint blockade, respectively. Mechanistically, it is discovered that ADAM17 cleaves GSDMC, releasing nuclear fragments binding to promoter regions of stemness, metastasis, and immune evasion-related genes. Pharmacological inhibition of GSDMC cleavage or prevention of its nuclear translocation is equally effective in suppressing GSDMC's downstream targets and inhibiting PDAC progression. The findings establish GSDMC as a potential therapeutic target for enhancing treatment response in this deadly disease.
Collapse
Affiliation(s)
- Renfei Wu
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Jingwei Li
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Alexandra Aicher
- Precision ImmunotherapyGraduate Institute of Biomedical SciencesChina Medical UniversityNo. 91, Xueshi RoadTaichung404Taiwan
- Immunology Research and Development CenterChina Medical UniversityNo. 91, Xueshi RoadTaichung404Taiwan
| | - Ke Jiang
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Serena Tondi
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Shuang Dong
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Siqi Tang
- School of PharmacyEast China University of Science and Technology130 Meilong RoadShanghai200237P. R. China
| | - Minchun Chen
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Zhenyang Guo
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Berina Šabanović
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Preeta Ananthanarayanan
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Lingxi Jiang
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Anna Sapino
- Department of PathologyCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| | - Chenlei Wen
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Da Fu
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Baiyong Shen
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Research Institute of Pancreatic DiseasesShanghai Key Laboratory of Translational Research for Pancreatic NeoplasmsShanghai Jiaotong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
| | - Christopher Heeschen
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- State Key Laboratory of Systems Medicine for CancerShanghai Jiao Tong University School of Medicine227 South Chongqing RoadShanghai200025P. R. China
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSStrada Provinciale 142 Km 3,95Candiolo (TO)10060Italy
| |
Collapse
|
2
|
Huang S, Qin Z, Wang F, Kang Y, Ren B. A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 2024; 52:137. [PMID: 39155864 PMCID: PMC11358674 DOI: 10.3892/or.2024.8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
Collapse
Affiliation(s)
- Shuhao Huang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zihao Qin
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feiyang Wang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiping Kang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Biqiong Ren
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
3
|
Arai J, Okumura A, Kato N, Ito K. Natural killer group 2D-major histocompatibility complex class I polypeptide-related sequence A activation enhances natural killer cell-mediated immunity against hepatocellular carcinoma: A review. Hepatol Res 2024; 54:420-428. [PMID: 38536662 DOI: 10.1111/hepr.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 05/03/2024]
Abstract
The recent clinical introduction of immune checkpoint inhibitors has improved therapeutic outcomes in patients with advanced hepatocellular carcinoma. However, these therapies targeting CD8+ T lymphocytes have a response rate of approximately 30%. In addition to CD8+ T lymphocytes, natural killer (NK) cells represent promising therapeutic targets for hepatocellular carcinoma, because they comprise 30%-50% of all lymphocytes in the liver and contribute to antitumor immunity. A recent meta-analysis revealed that the percentage of infiltrating NK cells in hepatocellular carcinoma correlates with a better patient outcome. Similarly, our previous genome-wide association study on chronic viral hepatitis showed that a single-nucleotide polymorphism of major histocompatibility complex class I polypeptide-related sequence A (MICA), a ligand to the NK activating receptor, plays a critical role in hepatocarcinogenesis. In this review, we summarize the mechanisms underlying the regulation of MICA and NK group 2D expression in chronic hepatitis. Furthermore, we describe recent reports on MICA single-nucleotide polymorphism-driven hepatocarcinogenesis. The suppression of MICA shedding could represent a promising approach for immunosurveillance, as increased expression of membrane-bound MICA achieved through the use of a MICA shedding inhibitor also enhances NK cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Jun Arai
- Department of Gastroenterology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
4
|
Dekky B, Azar F, Bonnier D, Monseur C, Kalebić C, Arpigny E, Colige A, Legagneux V, Théret N. ADAMTS12 is a stromal modulator in chronic liver disease. FASEB J 2023; 37:e23237. [PMID: 37819632 DOI: 10.1096/fj.202200692rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Adamalysins, a family of metalloproteinases containing a disintegrin and metalloproteinases (ADAMs) and ADAM with thrombospondin motifs (ADAMTSs), belong to the matrisome and play important roles in various biological and pathological processes, such as development, immunity and cancer. Using a liver cancer dataset from the International Cancer Genome Consortium, we developed an extensive in silico screening that identified a cluster of adamalysins co-expressed in livers from patients with hepatocellular carcinoma (HCC). Within this cluster, ADAMTS12 expression was highly associated with recurrence risk and poorly differentiated HCC signatures. We showed that ADAMTS12 was expressed in the stromal cells of the tumor and adjacent fibrotic tissues of HCC patients, and more specifically in activated stellate cells. Using a mouse model of carbon tetrachloride-induced liver injury, we showed that Adamts12 was strongly and transiently expressed after a 24 h acute treatment, and that fibrosis was exacerbated in Adamts12-null mice submitted to carbon tetrachloride-induced chronic liver injury. Using the HSC-derived LX-2 cell line, we showed that silencing of ADAMTS12 resulted in profound changes of the gene expression program. In particular, genes previously reported to be induced upon HSC activation, such as PAI-1, were mostly down-regulated following ADAMTS12 knock-down. The phenotype of these cells was changed to a less differentiated state, showing an altered actin network and decreased nuclear spreading. These phenotypic changes, together with the down-regulation of PAI-1, were offset by TGF-β treatment. The present study thus identifies ADAMTS12 as a modulator of HSC differentiation, and a new player in chronic liver disease.
Collapse
Affiliation(s)
- Bassil Dekky
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Fida Azar
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Dominique Bonnier
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Chiara Kalebić
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Esther Arpigny
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-R, University of Liege, Liege, Belgium
| | - Vincent Legagneux
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| | - Nathalie Théret
- University of Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
5
|
El Hafez AA, Elesawy BH, E I Hany HS. Differential expression of "A Disintegrin and Metalloproteinase 10" in hepatocellular carcinoma and the noncancerous hepatic tissues: Contribution to HCV-promoted hepatocarcinogenesis. INDIAN J PATHOL MICR 2023; 66:517-525. [PMID: 37530332 DOI: 10.4103/ijpm.ijpm_608_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background A disintegrin and metalloproteinases (ADAMs) have emerged as therapeutic targets in many cancers. ADAM10 was particularly studied in hepatocellular carcinoma (HCC) for its potential role in hepatocarcinogenesis and HCC progression. Objective To investigate the immunohistochemical (IHC) expression of ADAM10 in HCCs and the adjacent noncancerous tissues from 70 HCC patients, attempting to elucidate any association between ADAM10 and HCC development and/or progression. Materials and Methods IHC staining for anti-ADAM10 was performed using horseradish peroxidase technique. An extent and intensity-dependent scoring was applied dividing samples into high- and low-expression groups. HCCs were statistically compared in relation with gender, age, cirrhosis, hepatitis C virus (HCV) status, alpha-fetoprotein (AFP) serum level, tumor size, multiplicity, encapsulation/invasion, grade, histological pattern and variant, mitosis, necrosis, vascular emboli, portal thrombosis, stage, recurrence, and mortality. Kaplan-Meier's method was used to analyze disease-free and overall survival (DFS and OS). Results ADAM10 was expressed in 77.1% of HCCs compared with 42.9% of noncancerous tissues. Differential expression showed significant statistical difference (P = 0.02), as 38.6% of HCCs showed high expression, whereas 92.8% of noncancerous samples showed low expression. No significant differences were observed when high- and low-ADAM10 expression HCCs were compared with respect to all tested prognostic parameters except the HCV status. Patients whose tumors showed high-ADAM10 expression had relatively longer DFS and OS times, but with insignificant log-rank differences. Conclusions ADAM10 is frequently expressed in HCCs compared with noncancerous hepatic tissues suggesting its role in hepatocarcinogenesis, especially in association with HCV. It has no association with HCC progression or survival. Further studies should be sought to investigate its validity as a therapeutic target.
Collapse
Affiliation(s)
- Amal Abd El Hafez
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura; Faculty of Medicine, Horus University in Egypt, New Damietta, Damietta, Egypt
| | - Basem H Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Heba S E I Hany
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Pommergaard HC. Prognostic biomarkers in and selection of surgical patients with hepatocellular carcinoma. APMIS 2023; 131 Suppl 146:1-39. [PMID: 37186326 DOI: 10.1111/apm.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
7
|
Arai J, Otoyama Y, Nozawa H, Kato N, Yoshida H. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: a review. Oncogene 2023; 42:549-558. [PMID: 36572816 PMCID: PMC9937921 DOI: 10.1038/s41388-022-02583-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Metalloproteinases cleave transmembrane proteins that play critical roles in inflammation and cancers. Metalloproteinases include a disintegrin and metalloprotease (ADAM), which we previously examined using a fluorescence assay system, and described their association with resistance to systemic therapy in cancer patients. There are also many reports on the relation between ADAM expression and the prognosis of patients with gastroenterological chronic inflammatory diseases and cancers. Inhibiting their immunomodulating activity in chronic inflammation restores innate immunity and potentially prevents the development of various cancers. Among the numerous critical immune system-related molecules, we focus on major histocompatibility complex class I polypeptide-related sequence A (MICA), MICB, intracellular adhesion molecule (ICAM)-1, TNF-α, IL-6 receptor (IL-6R), and Notch. This review summarizes our current understanding of the role of ADAMs in gastroenterological diseases with regard to the immune system. Several Food and Drug Administration (FDA)-approved inhibitors of ADAMs have been identified, and potential therapies for targeting ADAMs in the treatment of chronic inflammatory diseases and cancers are discussed. Some ongoing clinical trials for cancers targeting ADAMs are also introduced.
Collapse
Affiliation(s)
- Jun Arai
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Yumi Otoyama
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hisako Nozawa
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- grid.136304.30000 0004 0370 1101Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Yoshida
- grid.410714.70000 0000 8864 3422Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Disulfiram enhances chemotherapeutic effects of doxorubicin liposomes against human hepatocellular carcinoma via activating ROS-induced cell stress response pathways. Cancer Chemother Pharmacol 2022; 90:455-465. [PMID: 36251033 DOI: 10.1007/s00280-022-04481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Increasing evidences have revealed the anti-cancer effect of disulfiram. Current disulfiram-based cancer therapies still have limitations, such as poor tumor-targeting ability and insufficient studies on anti-tumor mechanisms. METHODS In the present study, tumor-targeting liposomes were prepared as drug carriers to increase retention of disulfiram in tumor cells. Then, anti-tumor efficacy of liposomes and the underlying mechanisms were investigated in in vitro, in vivo, and transcriptomic level. RESULTS The results showed that disulfiram enhanced sensitivity of human hepatocellular carcinoma cells to doxorubicin by 15-27-fold, and increased reactive oxygen species (ROS) production as well as caspase-dependent apoptosis. Inhibition of tumor migration and invasion by doxorubicin were further enhanced by disulfiram. In vivo study showed that disulfiram additive doxorubicin liposomes had better performance in suppressing tumor growth than single doxorubicin liposomes. Gene expression profiling found that cellular components destruction, cell stress, check point regulation, and immunoregulation were the main anti-tumor mechanisms of disulfiram. More importantly, disulfiram possessed a great potential to be a protein ubiquitination and murine double minute 4 (MDM4) targeting compound. CONCLUSIONS Due to its low price and good safety, it is worth to repurposing disulfiram as a chemotherapeutic drug. Furthermore, MDM4 may act as a biomarker for observation the clinical effect of disulfiram-based treatment.
Collapse
|
9
|
Arai J, Otoyama Y, Fujita KI, Goto K, Tojo M, Katagiri A, Nozawa H, Kubota Y, Takahashi T, Ishida H, Tsunoda T, Matsumoto N, Ogawa K, Nakagawa R, Muroyama R, Kato N, Yoshida H. Baseline soluble MICA levels act as a predictive biomarker for the efficacy of regorafenib treatment in colorectal cancer. BMC Cancer 2022; 22:428. [PMID: 35443621 PMCID: PMC9019943 DOI: 10.1186/s12885-022-09512-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background To evaluate the effect of regorafenib on soluble MHC class I polypeptide-related sequence A (MICA) (sMICA) level in vitro. In addition, we clinically examined whether its plasma levels were associated with regorafenib activity in terms of progression-free survival (PFS) in patients with CRC. Methods Human CRC cell line HCT116 and HT29 cells were treated with regorafenib and its pharmacologically active metabolites, M2 or M5 at the same concentrations as those in sera of patients. We also examined the sMICA levels and the area under the plasma concentration–time curve of regorafenib, M2 and M5. Results Regorafenib, M2, and M5 significantly suppressed shedding of MICA in human CRC cells without toxicity. This resulted in the reduced production of sMICA. In the clinical examination, patients with CRC who showed long median PFS (3.7 months) had significantly lower sMICA levels than those with shorter median PFS (1.2 months) (p = 0.045). Conclusions MICA is an attractive agent for manipulating the immunological control of CRC and baseline sMICA levels could be a predictive biomarker for the efficacy of regorafenib treatment.
Collapse
Affiliation(s)
- Jun Arai
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| | - Yumi Otoyama
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Kaku Goto
- Institut de Recherche Sur Les Maladies Virales Et Hépatiques, INSERM, Strasbourg, France
| | - Masayuki Tojo
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Atsushi Katagiri
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Hisako Nozawa
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takehiro Takahashi
- Division of Medical Oncology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroo Ishida
- Division of Internal Medicine, Department of Medicine, Showa University Hokubu Hospital, Yokohama, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Natsumi Matsumoto
- Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan
| | - Keita Ogawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryosuke Muroyama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
10
|
Nakayama A, Arai J, Otoyama Y, Sugiura I, Nakajima Y, Kajiwara A, Ichikawa Y, Uozumi S, Shimozuma Y, Uchikoshi M, Sakaki M, Tazawa S, Shiozawa E, Yamochi T, Takimoto M, Yoshida H. Muscular Metastasis of Hepatocellular Carcinoma: Case Report and Literature Review. Intern Med 2022; 61:189-196. [PMID: 34219106 PMCID: PMC8851169 DOI: 10.2169/internalmedicine.7200-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are few case reports of hepatocellular carcinoma (HCC) metastasis to the skeletal muscle. A 78-year-old man developed a mass in the right shoulder. Washout of contrast medium during contrast-enhanced ultrasonography (CEUS) in both the primary HCC and the metastatic site was detected. Several nodules were scattered throughout the liver on an autopsy. In addition, the moderately differentiated HCC had metastasized to the right teres major muscle. Rare muscular metastasis should be considered if a hepatic tumor is moderately or poorly differentiated HCC. Early washout during CEUS is consistent with a pathological diagnosis of moderately or poorly differentiated HCC.
Collapse
Affiliation(s)
- Akihiro Nakayama
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Jun Arai
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Yumi Otoyama
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Ikuya Sugiura
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Yoko Nakajima
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Atsushi Kajiwara
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Yuki Ichikawa
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Shojiro Uozumi
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Yuu Shimozuma
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Manabu Uchikoshi
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Masashi Sakaki
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| | - Sakiko Tazawa
- Division of Pathology, Department of Medicine, Showa University School of Medicine, Japan
| | - Eisuke Shiozawa
- Division of Pathology, Department of Medicine, Showa University School of Medicine, Japan
| | - Toshiko Yamochi
- Division of Pathology, Department of Medicine, Showa University School of Medicine, Japan
| | - Masafumi Takimoto
- Division of Pathology, Department of Medicine, Showa University School of Medicine, Japan
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Japan
| |
Collapse
|
11
|
Pommergaard HC, Rasmussen A, Hillingsø J, Kugler JM. Aldehyde dehydrogenase expression may be a prognostic biomarker and associated with liver cirrhosis in patients resected for hepatocellular carcinoma. Surg Oncol 2021; 40:101677. [PMID: 34896911 DOI: 10.1016/j.suronc.2021.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Several members of the aldehyde dehydrogenase (ALDH) isoenzyme family have been suggested as prognostic biomarkers in patients with hepatocellular carcinoma (HCC). The aim of the study was to evaluate overall ALDH family member expression by RNA sequencing and hierarchical clustering in tumor and adjacent liver tissue to predict survival and evaluate correlation with liver cirrhosis in patients undergoing liver resection for HCC. METHODS We included patients having undergone liver resection for HCC between May 2014 and January 2018 at a tertiary referral university hospital (Copenhagen University Hospital, Rigshospitalet, Denmark). ALDH family member expression was evaluated by RNA sequencing of tumor and non-tumor liver tissue. Hierarchical clustering of ALDH genes was used to identify patient groups and correlations were established with overall survival, recurrence and histological features. RESULTS Fifty-two patients were included with 88.5% males, 84.6% with only one HCC and 73.1% with a non-cirrhotic background liver. Median follow-up was 45.7 months. Patients in one cluster defined by its ALDH expression in the tumor tissue showed significantly worse overall survival (log-rank p = 0.015), also when adjusted for age, cirrhosis, microvascular invasion, resection margins and tumor number (hazard ratio 4.2, 95% confidence interval (CI) 1.5-11.9, p = 0.007). When evaluated individually, the isoenzyme ALDH1L1 may be of particular importance. Several clusters in non-tumor tissue were correlated with cirrhosis. Especially one cluster had a high discriminative ability (area under receiver operating characteristic curve of 0.839) and remained significantly associated with cirrhosis when corrected for age, microvascular invasion, resection margins and tumor number (odds ratio 44.2, 95% CI 5.5-352.0, p < 0.001). The combination of ALDH and a previously identified candidate biomarker (expression signature of the transcriptional targets of the peroxisome proliferator-activated receptors (PPARs)) may add additional prognostic value. CONCLUSION The expression of ALDH family members in HCC was correlated with overall survival. Moreover, ALDH expression in non-tumor liver tissue was correlated with cirrhosis. Members of the ALDH family of enzymes may serve as a prognostic biomarker as well as potential targets for systemic treatment.
Collapse
Affiliation(s)
- Hans-Christian Pommergaard
- Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, Department of Clinical Medicine, Inge Lehmannsvej 7, 2100, Copenhagen, Denmark.
| | - Allan Rasmussen
- Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, Department of Clinical Medicine, Inge Lehmannsvej 7, 2100, Copenhagen, Denmark
| | - Jens Hillingsø
- Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, Department of Clinical Medicine, Inge Lehmannsvej 7, 2100, Copenhagen, Denmark
| | - Jan-Michael Kugler
- Institute for Molecular and Cellular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
12
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
13
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
14
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
15
|
Leukotriene receptor antagonists enhance HCC treatment efficacy by inhibiting ADAMs and suppressing MICA shedding. Cancer Immunol Immunother 2020; 70:203-213. [PMID: 32683508 PMCID: PMC7838147 DOI: 10.1007/s00262-020-02660-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
In our previous genome-wide association study, we demonstrated the association between MHC class I-related chain A (MICA) and hepatocellular carcinoma (HCC) development in patients with chronic hepatitis C. Increasing membrane-bound MICA (mMICA) in cancer cells by reducing MICA sheddases facilitates natural killer (NK) cell-mediated cytotoxicity. Our recent study clarified that A disintegrin and metalloproteases (ADAM), including ADAM9, are MICA sheddases in HCC, and that the suppression of ADAMs increases mMICA, demonstrating the rationality of mMICA-NK targeted therapy. Furthermore, we showed that regorafenib suppresses ADAM9 transcriptionally and translationally. A library of FDA-approved drugs was screened for more efficient inhibitors of ADAM9. Flow cytometry evaluation of the expression of mMICA after treatment with various candidate drugs identified leukotriene receptor antagonists as potential ADAM9 inhibitors. Furthermore, leukotriene receptor antagonists alone or in combination with regorafenib upregulated mMICA, which was in turn downregulated by leukotriene C4 and D4 via ADAM9 function. Our study demonstrates that leukotriene receptor antagonists could be developed as novel drugs for immunological control and suppression of ADAM9 in HCC. Further, leukotriene receptor antagonists should be explored as combination therapy partners with conventional multi-kinase inhibitors for developing therapeutic strategies with enhanced efficacies for HCC management and treatment.
Collapse
|
16
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|
17
|
Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Front Immunol 2020; 11:447. [PMID: 32269567 PMCID: PMC7109295 DOI: 10.3389/fimmu.2020.00447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
NKG2D is an activating receptor expressed by NK cells and some subsets of T cells and represents a major recognition receptor for detection and elimination of cancer cells. The ligands of NKG2D are stress-induced self-proteins that can be secreted as soluble molecules by protease-mediated cleavage. The release of NKG2D ligands in the extracellular milieu is considered a mode of finely controlling their surface expression levels and represents a relevant immune evasion mechanism employed by cancer cells to elude NKG2D-mediated immune surveillance. A disintegrin and metalloproteinase 10 (ADAM10), a catalytically active member of the ADAM family of proteases, is involved in the cleavage of some NKG2D ligands in various types of cancer cells either in steady state conditions and in response to an ample variety of stress stimuli. Appealing immunotherapeutic strategies devoted to promoting NK cell-mediated recognition and elimination of cancer cells are based on the upregulation of NK cell activating ligands. In particular, activation of DNA damage response (DDR) and the induction of cellular senescence by chemotherapeutic agents are associated with increased expression of NKG2D ligands on cancer cell surface. Herein, we will review advances on the protease-mediated cleavage of NKG2D ligands in response to chemotherapy-induced stress focusing on: (i) the role played by ADAM10 in this process and (ii) the implications of NKG2D ligand shedding in the course of cancer therapy and in senescent cells.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
A Disintegrin and Metalloproteinase 9 (ADAM9) in Advanced Hepatocellular Carcinoma and Their Role as a Biomarker During Hepatocellular Carcinoma Immunotherapy. Cancers (Basel) 2020; 12:cancers12030745. [PMID: 32245188 PMCID: PMC7140088 DOI: 10.3390/cancers12030745] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The chemotherapeutics sorafenib and regorafenib inhibit shedding of MHC class I-related chain A (MICA) from hepatocellular carcinoma (HCC) cells by suppressing a disintegrin and metalloprotease 9 (ADAM9). MICA is a ligand for natural killer (NK) group 2 member D (NKG2D) and is expressed on tumor cells to elicit attack by NK cells. This study measured ADAM9 mRNA levels in blood samples of advanced HCC patients (n = 10). In newly diagnosed patients (n = 5), the plasma ADAM9 mRNA level was significantly higher than that in healthy controls (3.001 versus 1.00, p < 0.05). Among four patients treated with nivolumab therapy, two patients with clinical response to nivolumab showed significant decreases in fold changes of serum ADAM9 mRNA level from 573.98 to 262.58 and from 323.88 to 85.52 (p < 0.05); however, two patients with no response to nivolumab did not. Using the Cancer Genome Atlas database, we found that higher expression of ADAM9 in tumor tissues was associated with poorer survival of HCC patients (log-rank p = 0.00039), while ADAM10 and ADAM17 exhibited no such association. In addition, ADAM9 expression showed a positive correlation with the expression of inhibitory checkpoint molecules. This study, though small in sample size, clearly suggested that ADAM9 mRNA might serve as biomarker predicting clinical response and that the ADAM9-MICA-NKG2D system can be a good therapeutic target for HCC immunotherapy. Future studies are warranted to validate these findings.
Collapse
|
19
|
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Pat Anticancer Drug Discov 2020; 14:113-132. [PMID: 31084595 DOI: 10.2174/1574892814666190514104035] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite years of success of most anti-cancer drugs, one of the major clinical problems is inherent and acquired resistance to these drugs. Overcoming the drug resistance or developing new drugs would offer promising strategies in cancer treatment. Disulfiram, a drug currently used in the treatment of chronic alcoholism, has been found to have anti-cancer activity. OBJECTIVE To summarize the anti-cancer effects of Disulfiram through a thorough patent review. METHODS This article reviews molecular mechanisms and recent patents of Disulfiram in cancer therapy. RESULTS Several anti-cancer mechanisms of Disulfiram have been proposed, including triggering oxidative stress by the generation of reactive oxygen species, inhibition of the superoxide dismutase activity, suppression of the ubiquitin-proteasome system, and activation of the mitogen-activated protein kinase pathway. In addition, Disulfiram can reverse the resistance to chemotherapeutic drugs by inhibiting the P-glycoprotein multidrug efflux pump and suppressing the activation of NF-kB, both of which play an important role in the development of drug resistance. Furthermore, Disulfiram has been found to reduce angiogenesis because of its metal chelating properties as well as its ability to inactivate Cu/Zn superoxide dismutase and matrix metalloproteinases. Disulfiram has also been shown to inhibit the proteasomes, DNA topoisomerases, DNA methyltransferase, glutathione S-transferase P1, and O6- methylguanine DNA methyltransferase, a DNA repair protein highly expressed in brain tumors. The patents described in this review demonstrate that Disulfiram is useful as an anti-cancer drug. CONCLUSION For years the FDA-approved, well-tolerated, inexpensive, orally-administered drug Disulfiram was used in the treatment of chronic alcoholism, but it has recently demonstrated anti-cancer effects in a range of solid and hematological malignancies. Its combination with copper at clinically relevant concentrations might overcome the resistance of many anti-cancer drugs in vitro, in vivo, and in patients.
Collapse
Affiliation(s)
- Elmira Ekinci
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Sagar Rohondia
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Raheel Khan
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Qingping P Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
20
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|
21
|
Lekka K, Tzitzi E, Giakoustidis A, Papadopoulos V, Giakoustidis D. Contemporary management of borderline resectable pancreatic ductal adenocarcinoma. Ann Hepatobiliary Pancreat Surg 2019; 23:97-108. [PMID: 31225409 PMCID: PMC6558121 DOI: 10.14701/ahbps.2019.23.2.97] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/03/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive tumors, with a low rate of survival, likely due to the tendency of the tumor for early local and distant spread. Pancreatic cancer accounts for about 3% of all cancers in the US and about 7% of all cancer deaths. Surgical resection still represents the best curative treatment for PDAC, although only 10–20% of patients are upfront resectable at diagnosis, 50% has metastatic disease and 35% locally advanced cancer. The 5-year overall survival (OS) after curative resection is limited to 20%. Moreover among patients who undergo surgery, 30% develop early recurrence while most of them will eventually relapse. The risk of early failure after surgery could be associated with inadequate preoperative radiological staging, lack of radical surgery and differences in tumor aggressiveness. In recent years, more accurate patient categorization due to sophisticated imaging tools and techniques increase the survival rate while neoadjuvant treatment can help surgeons select patients who will benefit most from surgery. Neoadjuvant therapy includes chemotherapy alone, chemoradiotherapy, chemotherapy with chemoradiation and targeted therapies. The aim of this review is to present the available data concerning the management of patients with borderline PDAC.
Collapse
Affiliation(s)
- Kyriaki Lekka
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Evanthia Tzitzi
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | | | - Vassilios Papadopoulos
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| | - Dimitrios Giakoustidis
- First Department of Surgery, Medical School, Aristotle University of Thessaloniki, General Hospital Papageorgiou, Thessaloniki, Greece
| |
Collapse
|
22
|
Cui C, Fu K, Yang L, Wu S, Cen Z, Meng X, Huang Q, Xie Z. Hypoxia-inducible gene 2 promotes the immune escape of hepatocellular carcinoma from nature killer cells through the interleukin-10-STAT3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:229. [PMID: 31142329 PMCID: PMC6542136 DOI: 10.1186/s13046-019-1233-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
Abstract
Background The study examines the expression and function of hypoxia-inducible gene 2 (HIG2) in hepatocellular carcinoma (HCC) tissues and cells. Methods Forty patients with HCC were included in the study. Bioinformatic analysis was used to analyze the clinical relevance of HIG2 expression in HCC tissue samples. Immunohistochemistry was employed to determine the expression of target proteins in tumor tissues. Hepatic HepG2 and SMMC-7721 cells were transfected with HIG2-targeting siRNA with Lipofectamine 2000. qRT-PCR was carried out to determine gene expression levels, while Western blotting was used to determine protein expression. A CCK-8 assay was performed to detect proliferation of cells, while migration and invasion of cells were studied by Transwell assay. Flow cytometry was carried out to detect surface markers and effector molecules in Nature killercells, as well as the killing effect of NK cells. Results HIG2 expression was upregulated in HCC. Silencing of HIG2 suppressed HCC cell migration and invasion. The killing effect of NK cells on HCC cells was enhanced after HIG2 was silenced in HCC cells. Conditioned media from HIG2-silenced SMMC-7721 cells inhibited the phenotype and function of NK cells. HCC cells with silenced expression of HIG2 modulated the activity of NK cells via STAT3. HIG2 promoted the evasion of HCC cells from killing by NK cells through upregulation of IL-10 expression. Conclusion The study demonstrates that HIG2 activates the STAT3 signaling pathway in NK cells by promoting IL-10 release by HCC cells, thereby inhibiting the killing activity of NK cells, and subsequently promoting the recurrence and metastasis of HCC.
Collapse
Affiliation(s)
- Chuanbao Cui
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kaiwen Fu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Lu Yang
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuzhi Wu
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zuojie Cen
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xingxing Meng
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiongguang Huang
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhichun Xie
- Department of Epidemiology, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
23
|
Nakamura A, Hiraoka M, Itasaka S, Nakamura M, Akimoto M, Ishihara Y, Mukumoto N, Goto Y, Kishi T, Yoshimura M, Matsuo Y, Yano S, Mizowaki T. Evaluation of Dynamic Tumor-tracking Intensity-modulated Radiotherapy for Locally Advanced Pancreatic Cancer. Sci Rep 2018; 8:17096. [PMID: 30459454 PMCID: PMC6244273 DOI: 10.1038/s41598-018-35402-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/05/2018] [Indexed: 12/25/2022] Open
Abstract
Intensity-modulated radiotherapy (IMRT) is now regarded as an important treatment option for patients with locally advanced pancreatic cancer (LAPC). To reduce the underlying tumor motions and dosimetric errors during IMRT as well as the burden of respiratory management for patients, we started to apply a new treatment platform of the dynamic tumor dynamic tumor-tracking intensity-modulated radiotherapy (DTT-IMRT) using the gimbaled linac, which can swing IMRT toward the real-time tumor position under patients' voluntary breathing. Between June 2013 and March 2015, ten patients were treated, and the tumor-tracking accuracy and the practical benefits were evaluated. The mean PTV size in DTT-IMRT was 18% smaller than a conventional ITV-based PTV. The root-mean-squared errors between the predicted and the detected tumor positions were 1.3, 1.2, and 1.5 mm in left-right, anterior-posterior, and cranio-caudal directions, respectively. The mean in-room time was 24.5 min. This high-accuracy of tumor-tracking with reasonable treatment time are promising and beneficial to patients with LAPC.
Collapse
Affiliation(s)
- Akira Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Satoshi Itasaka
- Department of Radiation Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mami Akimoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitomo Ishihara
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Goto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinsuke Yano
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Arai J, Goto K, Tanoue Y, Ito S, Muroyama R, Matsubara Y, Nakagawa R, Kaise Y, Lim LA, Yoshida H, Kato N. Enzymatic inhibition of MICA sheddase ADAM17 by lomofungin in hepatocellular carcinoma cells. Int J Cancer 2018; 143:2575-2583. [PMID: 29873070 DOI: 10.1002/ijc.31615] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
In our previous study on hepatocellular carcinoma (HCC) susceptibility genes in chronic hepatitis patients, we identified the MHC class I polypeptide-related sequence A (MICA). Natural killer cells eliminate various cancer cells, including HCC, by suppressing MICA shedding. Therefore, we investigated MICA sheddases and inhibitors for HCC immunotherapy. In this study, HepG2, PLC/PRF/5, and Hep3B were treated with the siRNA of a disintegrin and metalloproteases (ADAMs) and matrix metalloproteases to measure the concentration of soluble MICA (sMICA) by ELISA to detect the therapeutic target. Furthermore, an FDA-approved drug library was tested for the enzymatic inhibition of the targeted enzyme in an in vitro drug screening assay system. ADAM17 knockdown reduced sMICA levels and increased membrane-bound MICA (mMICA) expression in HCC cells. In an in vitro drug screen using an FDA-approved drug library, lomofungin, an antifungal drug, was found to strongly decrease ADAM17 activity. In HCC cells, mMICA expression was induced and sMICA production was inhibited in a dose-dependent manner. These effects were cancelled upon ADAM17 knockdown, suggesting that lomofungin targeted ADAM17. Analysis of lomofungin analogs revealed the responsible functional groups. In summary, we suggest lomofungin to be an attractive agent for the immunological control of HCC, via the suppression of ADAM17.
Collapse
Affiliation(s)
- Jun Arai
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Kaku Goto
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Tanoue
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayaka Ito
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Muroyama
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuo Matsubara
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagawa
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Kaise
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Lay Ahyoung Lim
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, Showa University School of Medicine, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|