1
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Lin X, Han X, Zhou W, Gong X, Zhou Y, Wang Q, Zhang C. RBM15 increase tumor-infiltrating CD4+ T cell in ESCC via modulating of PLOD3. Am J Cancer Res 2024; 14:5486-5503. [PMID: 39659928 PMCID: PMC11626265 DOI: 10.62347/idcp2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Collagen, a primary protein component of the extracellular matrix (ECM), undergoes a notable series of alterations concomitant with the growth of the tumor. Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 (PLOD3) is involved in the synthesis of collagen and has been associated with a variety of cancers. However, it is unclear how PLOD3 functions in esophageal squamous cell carcinoma (ESCC). METHODS Differentially expressed genes between ESCC and adjacent normal tissues were identified using proteomic and transcriptomic analyses. These genes were then subjected to survival analysis to identify prognostic markers. Immune cell infiltration in the two subgroups was evaluated. Spearman's correlation analysis was performed to examine the correlation between PLOD3 and RBM15 expression in TCGA-ESCC database. shRNA-mediated approach was used to knockdown RBM15 in ESCC cells. The effects of RBM15 knockdown on PLOD3 expression were assessed by real-time PCR and Western blot. Moreover, COX algorithm was employed to construct a prognostic signature. RESULTS PLOD3 was found to be highly expressed in ESCC patients and correlated with a favorable prognosis. Immune cell infiltration estimation indicated tumor-infiltrating CD4+ T cell was increased in PLOD3-high group. Correlation analysis revealed that PLOD3 was associated with RBM15 and was closely related to CD4+ T cell infiltration. Moreover, loss-of-function approaches showed that depletion of RBM15 attenuated PLOD3 expression in ESCC cells. Following univariate and multivariate Cox regression analyses, PLOD3 and RBM15 were identified as a two-gene prognostic signature for ESCC. CONCLUSION RBM15 enhances tumor-infiltrating CD4+ T Cell abundance in ESCC by regulating PLOD3. Two new independent prognostic factors, PLOD3 and RBM15, may be useful in predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Xuyang Lin
- Department of Stomatology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical UniversityNanjing 210000, Jiangsu, China
| | - Xiao Han
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Wubi Zhou
- Department of Pathology, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Xiaoxia Gong
- School of Life Science and Technology, MOE Key Laboratory of Developmental Genes and Human Diseases, Southeast UniversityNanjing 210000, Jiangsu, China
| | - Yu Zhou
- Department of Medical Oncology, Cancer Center, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Qilong Wang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| | - Chengwan Zhang
- Department of Central Laboratory, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223001, Jiangsu, China
| |
Collapse
|
3
|
VAGELI DIMITRAP, DOUKAS PANAGIOTISG, GOUPOU KERASIA, BENOS ANTONIOSD, ASTARA KYRIAKI, ZACHAROULI KONSTANTINA, SOTIRIOU SOTIRIS, IOANNOU MARIA. Hypoxia-inducible factor 1alpha and vascular endothelial growth factor in Glioblastoma Multiforme: a systematic review going beyond pathologic implications. Oncol Res 2024; 32:1239-1256. [PMID: 39055895 PMCID: PMC11267112 DOI: 10.32604/or.2024.052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation. Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression. Specifically, hypoxia is known to activate inducible factors, such as hypoxia-inducible factor 1alpha (HIF-1α), which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators, such as the vascular endothelial growth factor (VEGF). Here, we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data, as potential biomarkers of GBM prognosis and treatment efficacy. We performed a systematic review (Medline/Embase, and Pubmed database search was completed by 16th of April 2024 by two independent teams; PRISMA 2020). We evaluated methods of immunoassays, cell viability, or animal or patient survival methods of the retrieved studies to assess unbiased data. We used inclusion criteria, such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression, other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression, application of immunoassays for protein expression, and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression. We used exclusion criteria, such as data not reporting both HIF-1α and VEGF or prognosis. We included 50 studies investigating in total 1319 GBM human specimens, 18 different cell lines or GBM-derived stem cells, and 6 different animal models, to identify the association of HIF-1α/VEGF immunophenotypes, and with other prognostic factors, clinical and macroscopic data in GBM prognosis and therapeutic approaches. We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors, such as miR-210-3p, Oct4, AKT, COX-2, PDGF-C, PLDO3, M2 polarization, or ALK, leading to unfavorable survival. Reduced HIF-1α/VEGF expression correlates with FIH-1, ADNP, or STAT1 upregulation, as well as with clinical manifestations, like epileptogenicity, and a favorable prognosis of GBM. Based on our data, HIF-1α or VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression. Finally, HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy, including combined first-line treatment with histone deacetylase inhibitors, thimerosal, or an active metabolite of irinotecan, as well as STAT3 inhibitors alone, and resulting in a favorable tumor prognosis and patient survival. These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes. Data limitations may include the use of less sensitive detection methods in some cases. Overall, our data support HIF-1α/VEGF's role as biomarkers of GBM prognosis and treatment efficacy.
Collapse
Affiliation(s)
- DIMITRA P. VAGELI
- Department of Surgery, Yale University, New Haven, CT 06510, USA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - PANAGIOTIS G. DOUKAS
- Department of Medicine, Rutgers/Saint Peter’s University Hospital, New Brunswick, NJ08901, USA
| | - KERASIA GOUPOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - ANTONIOS D. BENOS
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - KYRIAKI ASTARA
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
- Department of Neurology, Army Share Fund Hospital (NIMTS), Athens, 11521, Greece
| | - KONSTANTINA ZACHAROULI
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - SOTIRIS SOTIRIOU
- Laboratory of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| | - MARIA IOANNOU
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
4
|
Ding M, Wang C, Hu J, She J, Shi R, Liu Y, Sun Q, Xu H, Zhou G, Wu W, Xia H. PLOD3 facilitated T cell activation in the colorectal tumor microenvironment and liver metastasis by the TNF-α/ NF-κB pathway. J Transl Med 2024; 22:30. [PMID: 38184566 PMCID: PMC10771005 DOI: 10.1186/s12967-023-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) has been the third most prevalent cancer worldwide. Liver metastasis is the critical factor for the poor prognosis of CRC. Here, we investigated the expression and role of PLOD3 in CRC. METHODS Different liver metastasis models were established by injecting PLOD3 stable knockdown or overexpression CT26 or MC38 mouse CRC cells into the spleen of mice to verify the tumorigenicity and metastasis ability in vivo. RESULTS We identified PLOD3 is significantly overexpressed in liver metastasis samples of CRC. High expression of PLOD3 was significantly associated with poor survival of CRC patients. The knockdown of PLOD3 exhibited remarkable inhibition of proliferation, migration, and invasion in CRC cells, while the opposite results could be found in different PLOD3-overexpressed CRC cells. Stable knockdown of PLOD3 also significantly inhibited liver metastasis of CRC cells in different xenografts models, while stable overexpression of PLOD3 promotes liver metastasis and tumor progression. Further studies showed that PLOD3 facilitated the T cell activation in the tumor microenvironment and affected the TNF-α/ NF-κB pathway. CONCLUSIONS This study revealed the essential biological functions of PLOD3 in colon cancer progression and metastasis, suggesting that PLOD3 is a promising translational medicine target and bioengineering targeting PLOD3 overcomes CRC liver metastasis.
Collapse
Affiliation(s)
- Min Ding
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Cheng Wang
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Junhong Hu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junjun She
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruoyu Shi
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, 169856, Singapore
| | - Yixuan Liu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Sun
- Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Haojun Xu
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Wenlan Wu
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, China.
| | - Hongping Xia
- Department of Pathology & Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission && Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, 211166, China.
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210009, China.
- Department of General Surgery & High Talent & Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Chang YL, Chou CH, Li YF, Huang LC, Kao Y, Hueng DY, Tsai CK. Antiproliferative and apoptotic effects of telmisartan in human glioma cells. Cancer Cell Int 2023; 23:111. [PMID: 37291545 DOI: 10.1186/s12935-023-02963-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma is the most common primary central nervous system tumor in adults. Angiotensin II receptor blockers (ARBs) are broadly applied to treat hypertension. Moreover, research has revealed that ARBs have the capacity to suppress the growth of several cancer types. In this study, we assessed the effects of three ARBs with the ability to cross the blood brain barrier (telmisartan, valsartan and fimasartan) on cell proliferation in three glioblastoma multiforme (GBM) cell lines. Telmisartan markedly suppressed the proliferation, migration, and invasion of these three GBM cell lines. Microarray data analysis revealed that telmisartan regulates DNA replication, mismatch repair, and the cell cycle pathway in GBM cells. Furthermore, telmisartan induced G0/G1 phase arrest and apoptosis. The bioinformatic analysis and western blotting results provide evidence that SOX9 is a downstream target of telmisartan. Telmisartan also suppressed tumor growth in vivo in an orthotopic transplant mouse model. Therefore, telmisartan is a potential treatment for human GBM.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Gong Road, Taipei, 11490, Taiwan
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ying Kao
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Cheng-Gong Road, Taipei, 11490, Taiwan.
| |
Collapse
|
6
|
Kao Y, Chou CH, Huang LC, Tsai CK. Momordicine I suppresses glioma growth by promoting apoptosis and impairing mitochondrial oxidative phosphorylation. EXCLI JOURNAL 2023; 22:482-498. [PMID: 37534227 PMCID: PMC10391611 DOI: 10.17179/excli2023-6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/04/2023]
Abstract
Glioblastoma (GBM) is the most common type of primary brain tumor. Patients with GBM have poor survival outcomes. Isolated components of Momordica charantia have anticancer effects. However, the bioactivity of M. charantia extracts against GBM remains unknown. We tested four major extracts of M. charantia and found that momordicine I reduced glioma cell viability without serious cytotoxic effects on astrocytes. Momordicine I suppressed glioma cell colony formation, proliferation, migration, and invasion. Momordicine I also induced apoptosis, intracellular reactive oxygen species (ROS) production, and senescence in glioma cells. Moreover, momordicine I decreased the oxidative phosphorylation capacity of glioma cells and inhibited tumor sphere formation in temozolomide (TMZ)-resistant GBM cells. We further explored whether the antiglioma effect of momordicine I may be related to cell cycle modulation and DLGPA5 expression. Our results indicate that the cytotoxic effect of momordicine I on glioma cells suggests its potential therapeutic application to GBM treatment. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Ying Kao
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
- Taipei City University, Taipei 100234, Taiwan
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
7
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
8
|
Chen R, Jiang M, Hu B, Fu B, Sun T. Comprehensive Analysis of the Expression, Prognosis, and Biological Significance of PLOD Family in Bladder Cancer. Int J Gen Med 2023; 16:707-722. [PMID: 36872941 PMCID: PMC9975538 DOI: 10.2147/ijgm.s399875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Background Large numbers of studies have identified that procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family members play important roles in tumorigenesis and tumor progression in various cancers. However, the expression pattern, clinical value and function of PLOD family have yet to be analyzed systematically and comprehensively in bladder urothelial carcinoma (BLCA). Methods We investigated the transcriptional levels, genetic alteration, biological function, immune cell infiltration, data on survival of PLODs in patients with BLCA based on UALCAN, the Cancer Genome Atlas (TCGA) database, Gene Expression Profiling Interactive Analysis (GEPIA), TIMER, STRING, cBioPortal and GSCALite databases. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed in R software using the Cluster Profiler Bioconductor package. Protein-protein interaction (PPI) network was established by STRING and visualized by using R version (3.6.3) software. Survival analysis was performed using the packages "survminer". Results The mRNA and protein expression patterns of PLOD family members were noticeably increased in BLC compared with normal tissue. The mRNA expression levels of PLOD1-2 genes were significantly correlated with histological subtypes and PLOD1 was significantly correlated with pathological stage. Furthermore, the high expression levels of PLOD1-2 were remarkably associated with poor overall survival (OS) in BLCA patients, meanwhile high expression levels of PLOD1 and PLOD3 were markedly associated with poor progression-free interval (PFI). In co-expression gene analysis, 50 genes were primarily associated with the differentially expressed PLODs in BLCA. Functional enrichment analysis revealed that protein hydroxylation, collagen fibril organization, and lysine degradation were key biological functions of PLODs in BLCA. Moreover, PLOD family genes were identified as being associated with the activities of tumor-infiltrating immune cells and closely associated with immune responses in BLCA. Conclusion PLOD family members might serve as potential therapeutic targets and prognostic markers for BLCA patients' survival.
Collapse
Affiliation(s)
- Ru Chen
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China.,Department of Urology, the First Hospital of Putian City, Putian City, People's Republic of China
| | - Ming Jiang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Bing Hu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| | - Ting Sun
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, People's Republic of China
| |
Collapse
|
9
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|
10
|
Scietti L, Moroni E, Mattoteia D, Fumagalli M, De Marco M, Negro L, Chiapparino A, Serapian SA, De Giorgi F, Faravelli S, Colombo G, Forneris F. A Fe2+-dependent self-inhibited state influences the druggability of human collagen lysyl hydroxylase (LH/PLOD) enzymes. Front Mol Biosci 2022; 9:876352. [PMID: 36090047 PMCID: PMC9453210 DOI: 10.3389/fmolb.2022.876352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2’-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2’-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.
Collapse
Affiliation(s)
- Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| | - Elisabetta Moroni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC-CNR), Milano, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| |
Collapse
|
11
|
Wu X, Li C, Wang Z, Zhang Y, Liu S, Chen S, Chen S, Liu W, Liu X. A bioinformatic analysis study of m 7G regulator-mediated methylation modification patterns and tumor microenvironment infiltration in glioblastoma. BMC Cancer 2022; 22:729. [PMID: 35788194 PMCID: PMC9251941 DOI: 10.1186/s12885-022-09791-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma is one of the most common brain cancers in adults, and is characterized by recurrence and little curative effect. An effective treatment for glioblastoma patients remains elusive worldwide. 7-methylguanosine (m7G) is a common RNA modification, and its role in tumors has become a research hotspot. METHODS By searching for differentially expressed genes related to m7G, we generated a prognostic signature via cluster analysis and established classification criteria of high and low risk scores. The effectiveness of classification was validated using the Non-negative matrix factorization (NMF) algorithm, and repeatedly verified using training and test groups. The dimension reduction method was used to clearly show the difference and clinical significance of the data. All analyses were performed via R (version 4.1.2). RESULTS According to the signature that included four genes (TMOD2, CACNG2, PLOD3, and TMSB10), glioblastoma patients were divided into high and low risk score groups. The survival rates between the two groups were significantly different, and the predictive abilities for 1-, 3-, and 5-year survivals were effective. We further established a Nomogram model to further examine the signature,as well as other clinical factors, with remaining significant results. Our signature can act as an independent prognostic factor related to immune-related processes in glioblastoma. CONCLUSIONS Our research addresses the gap in knowledge in the m7G and glioblastoma research fields. The establishment of a prognostic signature and the extended analysis of the tumor microenvironment, immune correlation, and tumor mutation burden further suggest the important role of m7G in the development and development of this disease. This work will provide support for future research.
Collapse
Affiliation(s)
- Xinrui Wu
- Department of oncology and chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhisu Wang
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Yundi Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifan Liu
- Department of Medical imaging, Medical School of Nantong University, Nantong, China
| | - Siqi Chen
- Department of Medical imaging, Medical School of Nantong University, Nantong, China
| | - Shuai Chen
- Department of measurement and control technology and instruments, School of mechanical engineering, Nantong University, Nantong, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoman Liu
- Department of oncology and chemotherapy, Affiliated Hospital of Nantong University, Nantong, China.
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
12
|
Gao Y, Shen L, Dong T, Yang X, Cui H, Guo Y, Ma Y, Kong P, Cheng X, Zhang L, Cui Y. An N-glycoproteomic site-mapping analysis reveals glycoprotein alterations in esophageal squamous cell carcinoma. J Transl Med 2022; 20:285. [PMID: 35752862 PMCID: PMC9233802 DOI: 10.1186/s12967-022-03489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aberrant glycosylation has been recognized as a hallmark of cancer and N-glycosylation is one of the main types of glycosylation in eukaryotes. Although N-glycoproteomics has made contributions to the discovery of biomarkers in a variety of cancers, less is known about the abnormal glycosylation signatures in esophageal squamous cell carcinoma (ESCC). Methods In this study, we reported the proteomics and N-glycoproteomic site-mapping analysis of eight pairs of ESCC tissues and adjacent normal tissues. With zic-HILIC enrichment, TMT-based isobaric labeling, LC–MS/MS analysis, differentially expressed N-glycosylation was quantitatively characterized. Lectin affinity enrichment combined with western blot was used to validate the potential biomarkers in ESCC. Results A series of differentially expressed glycoproteins (e.g., LAMP2, PLOD2) and enriched signaling pathways (e.g., metabolism-related pathway, ECM-receptor interaction, focal adhesion) were identified. Besides that, seven significantly enriched motifs were found from the identified N-glycosylation sites. Three clusters were identified after conducting the dynamic profiling analysis of glycoprotein change during lymph node metastasis progression. Further validation found that the elevated fucosylation level of ITGB1, CD276 contributed to the occurrence and development of ESCC, which might be the potential biomarkers in ESCC. Conclusion In summary, we characterized the N-glycosylation and N-glycoprotein alterations associated with ESCC. The typical changes in glycoprotein expression and glycosylation occupancy identified in our study will not only be used as ESCC biomarkers but also improve the understanding of ESCC biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03489-2.
Collapse
Affiliation(s)
- Yingzhen Gao
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Liuyi Shen
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Tianyue Dong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xin Yang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Heyang Cui
- Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China
| | - Yanlin Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Yanchun Ma
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China. .,Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China.
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China. .,Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, People's Republic of China.
| |
Collapse
|
13
|
Therapeutic Effect and Prognosis of Biliary Tract Tumor Transformation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9489003. [PMID: 35547567 PMCID: PMC9085330 DOI: 10.1155/2022/9489003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
Abstract
Biliary tract tumor is a common malignant disease in clinical practice. Its incidence rate and mortality rate are high, which seriously endangers the health of the people. At present, gastrointestinal surgery is mainly used to treat patients at home and abroad. This paper discusses the main risk factors of biliary tract cancer transformation, analyzes its prognostic characteristics and clinical efficacy, and compares them by comprehensive evaluation methods such as observation group control method, blood routine examination and treatment. The results are as follows: the postoperative adverse reactions in the control group are more obvious than those in the experimental group. There were no obvious clinical manifestations or adverse reactions in the experimental group. The therapeutic effect of biliary tumor transformation can effectively help patients improve their quality of life. Through the prognosis recovery of biliary tract tumor transformation treatment, the health level of patients in the experimental group was higher than that in the control group.
Collapse
|
14
|
A Novel Risk Score Model Based on Eleven Extracellular Matrix-Related Genes for Predicting Overall Survival of Glioma Patients. JOURNAL OF ONCOLOGY 2022; 2022:4966820. [PMID: 35528238 PMCID: PMC9076298 DOI: 10.1155/2022/4966820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common lethal primary brain tumors with variable survival outcomes for patients. The extracellular matrix (ECM) is linked with clinical prognosis of glioma patients, but it is not commonly used as a clinical indicator. Herein, we investigated changes in ECM-related genes (ECMRGs) via analyzing the transcriptional data of 938 gliomas from TCGA and CGGA datasets. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, a 11-ECMRG signature that is strongly linked with overall survival (OS) in glioma patients was identified. This signature was characterized by high-risk and low-risk score patterns. We found that the patients in the high-risk group are significantly linked with malignant molecular features and worse outcomes. Univariate and multivariate Cox regression analyses suggested that the signature is an independent indicator for glioma prognosis. The prediction accuracy of the signature was verified through time-dependent receiver operating characteristic (ROC) curves and calibration plots. Further bioinformatics analyses implied that the ECMRG signature is strongly associated with the activation of multiple oncogenic and metabolic pathways and immunosuppressive tumor microenvironment in gliomas. In addition, we confirmed that the high-risk score is an indicator for a therapy-resistant phenotype. In addition to bioinformatics analyses, we functionally verified the oncogenic role of bone morphogenetic protein 1 (BMP1) in gliomas in vitro.
Collapse
|
15
|
Gong S, Schopow N, Duan Y, Wu C, Kallendrusch S, Osterhoff G. PLOD Family: A Novel Biomarker for Prognosis and Personalized Treatment in Soft Tissue Sarcoma. Genes (Basel) 2022; 13:genes13050787. [PMID: 35627171 PMCID: PMC9141206 DOI: 10.3390/genes13050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various treatment attempts, the heterogenous group of soft tissue sarcomata (STS) with more than 100 subtypes still shows poor outcomes. Therefore, effective biomarkers for prognosis prediction and personalized treatment are of high importance. The Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase (PLOD) gene family, which is related to multiple cancer entities, consists of three members which encode important enzymes for the formation of connective tissue. The relation to STS, however, has not yet been explored. In this study, data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the role of PLOD1–3 in STS. It was found that an overexpression of PLOD family members correlates with poor prognosis, which might be due to an increased infiltration of immune-related cells in the tumor microenvironment. In STS, the expression of PLOD genes could be a novel biomarker for prognosis and a personalized, more aggressive treatment in these patients.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Sarcoma Center, Department for Orthopedics, Trauma Surgery and Reconstructive Surgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany;
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany;
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Correspondence: or
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Department of Medicine, Health and Medical University Potsdam, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Georg Osterhoff
- Sarcoma Center, Department for Orthopedics, Trauma Surgery and Reconstructive Surgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany;
| |
Collapse
|
16
|
Kao Y, Huang LC, Hsu SY, Huang SM, Hueng DY. The Effect of Disulfiram and Copper on Cellular Viability, ER Stress and ALDH Expression of Human Meningioma Cells. Biomedicines 2022; 10:887. [PMID: 35453636 PMCID: PMC9025959 DOI: 10.3390/biomedicines10040887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Meningiomas are the most common intracranial tumors in adults; currently there is no effective chemotherapy for malignant meningiomas. The effect of disulfiram (DSF)/Copper (Cu) on meningiomas remains unclear; (2) Methods: The impact of DSF/Cu on cell viability of meningioma adhesion cells (MgACs) and sphere cells (MgSCs) was assessed via MTS assay. The effects of DSF/Cu on intracellular Cu levels, cell senescence, and apoptosis were analyzed using CopperGreen, C12FDG, and Annexin V assays. Intracellular ALDH isoform expression and canonical pathway expression after DSF/Cu treatment were analyzed using mRNA microarray and Ingenuity Pathway Analysis, with further verification through qRT-PCR and immunoblotting; (3) Results: The viability of MgACs and MgSCs were inhibited by DSF/Cu. DSF/Cu increased intracellular Cu levels and cellular senescence. DSF/Cu also induced ER stress in MgACs and activated the PERK/eIF2 pathway for further adaptive response, apoptosis, and autophagy. Finally, DSF/Cu inhibited the expression of different ALDH isoforms in MgACs and MgSCs; (4) Conclusions: DSF/Cu exerts cytotoxic effects against both meningioma cells and stem-like cells and has treatment potential for meningioma.
Collapse
Affiliation(s)
- Ying Kao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Shao-Yuan Hsu
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.H.); (S.-M.H.)
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
17
|
PLOD3 regulates the expression of YAP1 to affect the progression of non-small cell lung cancer via the PKCδ/CDK1/LIMD1 signaling pathway. J Transl Med 2022; 102:440-451. [PMID: 35039611 DOI: 10.1038/s41374-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3) is a crucial oncogene in human lung cancer, whereas protein kinase C δ (PKCδ) acts as a tumor suppressor. In this study, we aimed to explore the regulation by PLOD3 on the expression of YAP1 to affect the progression of non-small cell lung cancer (NSCLC) via the PKCδ/CDK1/LIMD1 signaling pathway. We found that PLOD3, CDK1, and YAP1 were highly expressed, while LIMD1 was poorly expressed in NSCLC tissues. Mechanistic investigation demonstrated that silencing PLOD3 promoted the cleavage of PKCδ in a caspase-dependent manner to generate a catalytically active fragment cleaved PKCδ, enhanced phosphorylation levels of CDK1, and LIMD1 but suppressed nuclear translocation of YAP1. Furthermore, functional experimental results suggested that loss of PLOD3 led to increased phosphorylation levels of CDK1 and LIMD1 and downregulated YAP1, thereby suppressing the proliferation, colony formation, cell cycle entry, and resistance to apoptosis of NSCLC cells in vitro and inhibiting tumor growth in vivo. Taken together, these results show that PLOD3 silencing activates the PKCδ/CDK1/LIMD1 signaling pathway to prevent the progression of NSCLC, thus providing novel insight into molecular targets for treating NSCLC.
Collapse
|
18
|
Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone Suppresses the Secretory Processes That Ensure the Invasion of Neutrophils into Tissues and Induce Inflammation. Biomedicines 2022; 10:biomedicines10020314. [PMID: 35203523 PMCID: PMC8869632 DOI: 10.3390/biomedicines10020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Integrin-dependent adhesion of neutrophils to tissue, accompanied by the development of neutrophil-induced inflammation, occurs both in the focus of infection and in the absence of infection in metabolic disorders such as reperfusion after ischemia, diabetes mellitus, or the development of pneumonia in patients with cystic fibrosis or viral diseases. Hyaluronic acid (HA) plays an important role in the recruitment of neutrophils to tissues. 4-methylumbilliferon (4-MU), an inhibitor of HA synthesis, is used to treat inflammation, but its mechanism of action is unknown. We studied the effect of 4-MU on neutrophil adhesion and concomitant secretion using adhesion to fibronectin as a model for integrin-dependent adhesion. 4-MU reduced the spreading of neutrophils on the substrate and the concomitant secretion of granule proteins, including pro-inflammatory components. 4-MU also selectively blocked adhesion-induced release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, which can influence cell invasion by modifying the extracellular matrix. Finally, 4-MU inhibited the formation of cytonemes, the extracellular membrane secretory structures containing the pro-inflammatory bactericides of the primary granules. The anti-inflammatory effect of 4-MU may be associated with the suppression of secretory processes that ensure the neutrophil invasion and initiate inflammation. We suggest that HA, due to the peculiarities of its synthesis, can promote the release of secretory carriers from the cell and 4-MU can block this process.
Collapse
|
19
|
Shi J, Bao M, Wang W, Wu X, Li Y, Zhao C, Liu W. Integrated Profiling Identifies PLOD3 as a Potential Prognostic and Immunotherapy Relevant Biomarker in Colorectal Cancer. Front Immunol 2021; 12:722807. [PMID: 34646265 PMCID: PMC8503557 DOI: 10.3389/fimmu.2021.722807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) is related to a variety of human diseases. However, its function in Colorectal cancer (CRC) remains uncertain. PLOD3 expression was analyzed using The Cancer Genome Atlas (TCGA) pan-cancer data. DAVID was used for enrichment analysis of PLOD3-related genes. The correlation between PLOD3 expression and immune cell infiltration was evaluated. Four expression profile datasets (GSE17536, GSE39582, GSE74602, and GSE113513) from Gene Expression Omnibus, and two proteomic datasets were used as validation cohorts for assessing the diagnostic and prognostic value of PLOD3 in CRC. What's more, we performed immunohistochemistry (IHC) staining for PLOD3 in 160 paired CRC specimens and corresponding adjacent non-tumor tissues. PLOD3 was highly expressed in many tumors including CRC. PLOD3 was upregulated in advanced stage CRCs, and high PLOD3 expression was associated with poor survival. High PLOD3 expression was associated with low levels of B cells, CD4+ T cells, M1 macrophages, CD8+ T cells, and multiple immunerelated characteristics. In addition, the high PLOD3 expression group had a higher TIDE score and a lower tumor mutation burden and microsatellite instability, indicating that patients with high PLOD3 expression may be resistant to immunotherapy. Additional datasets and IHC analysis were used to validate the diagnostic and prognostic value of PLOD3 at the mRNA and protein levels in CRC. Patients with non-response to immunotherapy showed increased PLOD3 expression in an immunotherapy treated dataset. PLOD3 is a potential biomarker for CRC diagnosis and prognosis prediction. CRCs with high PLOD3 expression may be resistant to immune checkpoint therapy.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyu Bao
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Weifeng Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueying Li
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changdong Zhao
- Department of Gastroenterology, Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Weiwei Liu
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Zhang Y, Pan M, Li CY, Li JY, Ge W, Xu L, Xiao Y. Exploration of the typical features of tubulovillous adenoma using in-depth quantitative proteomics analysis. Bioengineered 2021; 12:6831-6843. [PMID: 34585630 PMCID: PMC8806592 DOI: 10.1080/21655979.2021.1971036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This present study aimed to explore the typical protein features of tubulovillous adenoma (TVA) using proteomic and bioinformatic analyses. Tandem mass tag (TMT)-based quantitative proteomic analyses were conducted on normal mucosa, tubular adenoma, TVA and adenocarcinoma tissues. We identified 5,665 proteins categorized into seven clusters based on Pearson’s correlation analysis. The bioinfomatic analysis showed mitochondrial and metabolism-related events were typical characteristics of TVA and mitochondrial-, ribosome- and matrisome-related biological processes may contribute to carcinogenesis. PLOD3 was identified as a key protein associated with the malignant potential of TVA and promoted the viability of adenoma organoids. The Cancer Genome Atlas (TCGA) analysis revealed PLOD3 as a risk factor for disease-free and overall survival. Furthermore, the PLOD3 expression correlated negatively with the abundance of B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages and myeloid dendritic cells. In conclusion, enhanced metabolic and mitochondrial reprogramming are typical features of TVA, and PLOD3 might be related to the “immune desert” phenotype and contribute to TVA tumorigenesis and colorectal cancer development.
Collapse
Affiliation(s)
- Yin Zhang
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chun-Yuan Li
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jing-Ying Li
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lai Xu
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Division of Colorectal Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Chang YL, Li YF, Chou CH, Huang LC, Wu YP, Kao Y, Tsai CK. Diosmin Inhibits Glioblastoma Growth through Inhibition of Autophagic Flux. Int J Mol Sci 2021; 22:10453. [PMID: 34638796 PMCID: PMC8508850 DOI: 10.3390/ijms221910453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Diosmin, a natural flavone glycoside acquired through dehydrogenation of the analogous flavanone glycoside hesperidin, is plentiful in many citrus fruits. Glioblastoma multiforme (GBM) is the most malignant primary brain tumor; the average survival time of GBM patients is less than 18 months after standard treatment. The present study demonstrated that diosmin, which is able to cross the blood-brain barrier, inhibited GBM cell growth in vitro and in vivo. Diosmin also impeded migration and invasion by GBM8401and LN229 GBM cells by suppressing epithelial-mesenchymal transition, as indicated by increased expression of E-cadherin and decreased expression of Snail and Twist. Diosmin also suppressed autophagic flux, as indicated by increased expression of LC3-II and p62, and induced cell cycle arrest at G1 phase. Importantly, diosmin did not exert serious cytotoxic effects toward control SVG-p12 astrocytes, though it did reduce astrocyte viability at high concentrations. These findings provide potentially helpful support to the development of new therapies for the treatment of GBM.
Collapse
Affiliation(s)
- Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.C.); (L.-C.H.); (Y.-P.W.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.C.); (L.-C.H.); (Y.-P.W.)
| | - Yi-Ping Wu
- Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-L.C.); (L.-C.H.); (Y.-P.W.)
| | - Ying Kao
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Division of Neurosurgery, Department of Surgery, Taipei City Hospital Zhongxing Branch, Taipei 10341, Taiwan
- University of Taipei, Taipei 10608, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| |
Collapse
|
22
|
Zhang S, Fu F, Zhen L, Li R, Liao C. Alteration of long non-coding RNAs and mRNAs expression profiles by compound heterozygous ASXL3 mutations in the mouse brain. Bioengineered 2021; 12:6935-6951. [PMID: 34559584 PMCID: PMC8806560 DOI: 10.1080/21655979.2021.1974811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Compound mutations in the additional sex combs-like 3 (ASXL3) gene greatly impact the expression of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in mouse myocardial tissues. Little is known about ASXL3 mutation effects on lncRNAs and mRNAs expression in the cerebrum and cerebellum. This study aims to clarify this point using quantitative real-time polymerase chain reaction and Western blotting. Transcriptome analysis based on RNA-seq followed by bioinformatics analysis were used to compare lncRNA and mRNA expression profiles. Cell proliferation, cell cycle progression, and apoptosis were evaluated after silencing of ASXL3 expression using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2 H-tetrazolium method and flow cytometry. Results showed that ASXL3 gene expression was decreased in the cerebrum and cerebellum of mice with ASXL3 P723R*P1817A mutations. We identified 319 lncRNAs and 252 mRNAs differentially expressed in the cerebrum of ASXL3 P723R*P1817A mutant mice. In the cerebellum of ASXL3 P723R*P1817A mutant mice, 5330 lncRNAs and 2204 mRNAs were differentially expressed. Differentially expressed lncRNAs and mRNAs were widely distributed across the mouse genome and were associated with various biological processes and pathways. ASXL3 silencing by siRNA transfection affected the proliferation, cell cycle progression, and apoptosis of neural cells. Therefore, the ASXL3 P723R*P1817A mutations greatly modify the lncRNA and mRNA expression profiles in the mouse cerebrum and cerebellum.
Collapse
Affiliation(s)
- Songhui Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Obstetrics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang Fu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ru Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
23
|
Chen J, Lee H, Schmitt P, Choy CJ, Miller DM, Williams BJ, Bearer EL, Frieboes HB. Bioengineered Models to Study Microenvironmental Regulation of Glioblastoma Metabolism. J Neuropathol Exp Neurol 2021; 80:1012–1023. [PMID: 34524448 DOI: 10.1093/jnen/nlab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite extensive research and aggressive therapies, glioblastoma (GBM) remains a central nervous system malignancy with poor prognosis. The varied histopathology of GBM suggests a landscape of differing microenvironments and clonal expansions, which may influence metabolism, driving tumor progression. Indeed, GBM metabolic plasticity in response to differing nutrient supply within these microenvironments has emerged as a key driver of aggressiveness. Additionally, emergent biophysical and biochemical interactions in the tumor microenvironment (TME) are offering new perspectives on GBM metabolism. Perivascular and hypoxic niches exert crucial roles in tumor maintenance and progression, facilitating metabolic relationships between stromal and tumor cells. Alterations in extracellular matrix and its biophysical characteristics, such as rigidity and topography, regulate GBM metabolism through mechanotransductive mechanisms. This review highlights insights gained from deployment of bioengineering models, including engineered cell culture and mathematical models, to study the microenvironmental regulation of GBM metabolism. Bioengineered approaches building upon histopathology measurements may uncover potential therapeutic strategies that target both TME-dependent mechanotransductive and biomolecular drivers of metabolism to tackle this challenging disease. Longer term, a concerted effort integrating in vitro and in silico models predictive of patient therapy response may offer a powerful advance toward tailoring of treatment to patient-specific GBM characteristics.
Collapse
Affiliation(s)
- Joseph Chen
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Hyunchul Lee
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Philipp Schmitt
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Caleb J Choy
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Donald M Miller
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Brian J Williams
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Elaine L Bearer
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| | - Hermann B Frieboes
- From the Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA (JC, CJC, HBF); Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA (JC, DMM, HBF); Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA (HL, BJW); Department of Medicine, University of Louisville, Louisville, Kentucky, USA (PS, DMM); Department of Radiation Oncology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA (DMM, BJW, HBF); Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA (HBF); Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA (ELB)
| |
Collapse
|
24
|
Gong S, Duan Y, Wu C, Osterhoff G, Schopow N, Kallendrusch S. A Human Pan-Cancer System Analysis of Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3). Int J Mol Sci 2021; 22:ijms22189903. [PMID: 34576068 PMCID: PMC8467482 DOI: 10.3390/ijms22189903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/11/2023] Open
Abstract
The overexpression of the enzymes involved in the degradation of procollagen lysine is correlated with various tumor entities. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) expression was found to be correlated to the progression and migration of cancer cells in gastric, lung and prostate cancer. Here, we analyzed the gene expression, protein expression, and the clinical parameters of survival across 33 cancers based on the Clinical Proteomic Tumor Analysis Consortium (CPTAC), function annotation of the mammalian genome 5 (FANTOM5), Gene Expression Omnibus (GEO), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) databases. Genetic alteration, immune infiltration and relevant cellular pathways were analyzed in detail. PLOD3 expression negatively correlated with survival periods and the infiltration level of CD8+ T cells, but positively correlated to the infiltration of cancer associated fibroblasts in diverse cancers. Immunohistochemistry in colon carcinomas, glioblastomas, and soft tissue sarcomas further confirm PLOD 3 expression in human cancer tissue. Moreover, amplification and mutation accounted for the largest proportion in esophageal adenocarcinoma and uterine corpus endometrial carcinoma, respectively; the copy number alteration of PLOD3 appeared in all cancers from TCGA; and molecular mechanisms further proved the effect of PLOD3 on tumorigenesis. In particular, PLOD3 expression appears to have a tumor immunological effect, and is related to multiple immune cells. Furthermore, it is also associated with tumor mutation burden and microsatellite instability in various tumors. PLOD3 acts as an inducer of various cancers, and it could be a potential biomarker for prognosis and targeted treatment.
Collapse
Affiliation(s)
- Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Correspondence:
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (S.G.); (N.S.); (S.K.)
| |
Collapse
|
25
|
Galkina SI, Golenkina EA, Fedorova NV, Ksenofontov AL, Serebryakova MV, Arifulin EA, Stadnichuk VI, Baratova LA, Sud'ina GF. Inhibition of Neutrophil Secretion Upon Adhesion as a Basis for the Anti-Inflammatory Effect of the Tricyclic Antidepressant Imipramine. Front Pharmacol 2021; 12:709719. [PMID: 34421605 PMCID: PMC8375473 DOI: 10.3389/fphar.2021.709719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies demonstrate the involvement of inflammatory processes in the development of depression and the anti-inflammatory effects of antidepressants. Infiltration and adhesion of neutrophils to nerve tissues and their aggressive secretion are considered as possible causes of inflammatory processes in depression. We studied the effect of the antidepressant imipramine on the adhesion and accompanied secretion of neutrophils under control conditions and in the presence of lipopolysaccharides (LPS). As a model of integrin-dependent neutrophil infiltration into tissues, we used integrin-dependent adhesion of neutrophils to the fibronectin-coated substrate. Imipramine inhibited neutrophil adhesion and concomitant secretion of proteins, including matrix metalloproteinase 9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL), which modify the extracellular matrix and basement membranes required for cell migration. Imipramine also significantly and selectively blocked the release of the free amino acid hydroxylysine, a product of lysyl hydroxylase, an enzyme that affects the organization of the extracellular matrix by modifying collagen lysine residues. In contrast, imipramine enhanced the release of ROS by neutrophils during adhesion to fibronectin and stimulated apoptosis. The anti-inflammatory effect of imipramine may be associated with the suppression of neutrophil infiltration and their adhesion to nerve tissues by inhibiting the secretion of neutrophils, which provides these processes.
Collapse
Affiliation(s)
- Svetlana I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina A Golenkina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Fedorova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander L Ksenofontov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii A Arifulin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Ludmila A Baratova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Galina F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
26
|
PLOD3 Is Associated with Immune Cell Infiltration and Genomic Instability in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4714526. [PMID: 34239923 PMCID: PMC8235962 DOI: 10.1155/2021/4714526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a family of enzymes. However, the clinical and functional roles of PLOD3 in colon adenocarcinoma (COAD) have not been investigated. The present study found that PLOD3 was highly upregulated in COAD, which may be resulted from its aberrant DNA methylation. The upregulation of both PLOD3 mRNA and protein was confirmed in our tissue samples. Moreover, high PLOD3 was identified to be associated with unfavorable prognosis in COAD. As genome instability is a hallmark of cancer, PLOD3 was expressed higher in COAD samples with high chromosomal instability (CIN-high) than those with low CIN (CIN-low) and higher in those with low MSI than high MSI, indicating that PLOD3 expression was associated with tumor genomic instability. Furthermore, immune cells showed significantly different infiltrating levels between the high and low PLOD3 expression groups, and the immune score was negatively correlated with PLOD3 expression and higher in samples with low PLOD3 expression, suggesting that high PLOD3 expression was associated with reduced immune cell infiltrating levels in COAD. To further uncover the underlying mechanism of PLOD3 in PLOD3, we compared the COAD samples of high PLOD3 expression with those of low PLOD3 expression and found that high expression of PLOD3 was associated with reduced expression of immune regulators and enhanced activities of two tumor-promoting pathways, including gluconeogenesis and TGF-beta signaling in epithelial-mesenchymal transition (EMT), suggesting that high expression of PLOD3 causes poor prognosis in COAD by weakening the immune cell infiltration and enhancing activities of tumor-promoting pathways. In summary, the present study highlights the importance of PLOD3 and provides the evidence about the functional role of PLOD3 in COAD.
Collapse
|
27
|
Tian L, Zhou H, Wang G, Wang WY, Li Y, Xue X. The relationship between PLOD1 expression level and glioma prognosis investigated using public databases. PeerJ 2021; 9:e11422. [PMID: 34040895 PMCID: PMC8127981 DOI: 10.7717/peerj.11422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background Glioma is the most common type of intracranial tumor with high malignancy and poor prognosis despite the use of various aggressive treatments. Targeted therapy and immunotherapy are not effective and new biomarkers need to be explored. Some Procollagen-lysine 2-oxyglutarate 5-dioxygenase (PLOD) family members have been found to be involved in the metastasis and progression of tumors. Both PLOD2 and PLOD3 had been reported to be highly expressed in gliomas, while the prognostic value of PLOD1 remains to be further illustrated, so we want to investigate the PLOD1 expression in glioma and its clinical implication. Methods We collected gene expression and corresponding clinical data of glioma from the Chinese Glioma Genome Atlas (CGGA) database, The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. First, we analyzed the expression and mutation of PLOD1 in gliomas and its relationship with clinicopathologic characteristics. Then, we conducted survival analysis, prognostic analysis and nomogram construction of the PLOD1 gene. Finally, we conducted gene ontology (GO) enrichment analysis and gene set enrichment analysis (GSEA) to explore possible mechanisms and gene co-expression analysis was also be performed. Results The results showed that the expression level of PLOD1 was higher in gliomas than normal tissues, and high expression of PLOD1 was related to poor survival which can serve as an oncogenic factor and an independent prognostic indicator for glioma patients. Both the GO and GSEA analysis showed high expression of PLOD1 were enriched in Extracellular matrix (ECM) related pathways, the co-expression analysis revealed that PLOD1 was positively related to HSPG2, COL6A2, COL4A2, FN1, COL1A1, COL4A1, CD44, COL3A1, COL1A2 and SPP1, and high expression of these genes were also correlated to poor prognosis of glioma. Conclusions The results showed that high expression of PLOD1 leads to poor prognosis, and PLOD1 is an independent prognostic factor and a novel biomarker for the treatment of glioma. Furthermore, targeting PLOD1 is most likely a potential therapeutic strategy for glioma patients.
Collapse
Affiliation(s)
- Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen Yan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
28
|
Collagen synthesis and gap junctions: the highway for metastasis of ovarian cancer. J Transl Med 2021; 101:540-542. [PMID: 36775376 DOI: 10.1038/s41374-021-00546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
|
29
|
Ahluwalia P, Ahluwalia M, Mondal AK, Sahajpal N, Kota V, Rojiani MV, Rojiani AM, Kolhe R. Prognostic and therapeutic implications of extracellular matrix associated gene signature in renal clear cell carcinoma. Sci Rep 2021; 11:7561. [PMID: 33828127 PMCID: PMC8026590 DOI: 10.1038/s41598-021-86888-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Complex interactions in tumor microenvironment between ECM (extra-cellular matrix) and cancer cell plays a central role in the generation of tumor supportive microenvironment. In this study, the expression of ECM-related genes was explored for prognostic and immunological implication in clear cell renal clear cell carcinoma (ccRCC). Out of 964 ECM genes, higher expression (z-score > 2) of 35 genes showed significant association with overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS). On comparison to normal tissue, 12 genes (NUDT1, SIGLEC1, LRP1, LOXL2, SERPINE1, PLOD3, ZP3, RARRES2, TGM2, COL3A1, ANXA4, and POSTN) showed elevated expression in kidney tumor (n = 523) compared to normal (n = 100). Further, Cox proportional hazard model was utilized to develop 12 genes ECM signature that showed significant association with overall survival in TCGA dataset (HR = 2.45; 95% CI [1.78-3.38]; p < 0.01). This gene signature was further validated in 3 independent datasets from GEO database. Kaplan-Meier log-rank test significantly associated patients with elevated expression of this gene signature with a higher risk of mortality. Further, differential gene expression analysis using DESeq2 and principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters between ECM-rich high-risk and ECM-poor low-risk patients. Geneset enrichment analysis (GSEA) identified significant perturbations in homeostatic kidney functions in the high-risk group. Further, higher infiltration of immunosuppressive T-reg and M2 macrophages was observed in high-risk group patients. The present study has identified a prognostic signature with associated tumor-promoting immune niche with clinical utility in ccRCC. Further exploration of ECM dynamics and validation of this gene signature can assist in design and application of novel therapeutic approaches.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mumtaz V Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amyn M Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
30
|
Overexpression of microRNA-939-5p Contributes to Cell Proliferation and Associates Poor Prognosis in Glioma. Neuromolecular Med 2021; 23:531-539. [PMID: 33786745 DOI: 10.1007/s12017-021-08655-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Glioma is the main brain tumor worldwide and has a worse prognosis. MicroRNAs (miRNAs) are proved to involve in massive malignant tumors including glioma. In this study, we tried to detect the microRNA-939-5p (miR-939-5p) expression pattern and explore its prognostic significance in glioma. We performed the quantitative real-time PCR to examine the relative expression of miR-939-5p in glioma. The Kaplan-Meier method and Cox regression analysis were used to reveal the prognostic importance of miR-939-5p. The influence of miR-939-5p on cell proliferation, migration, and invasion was investigated by the Cell Counting kit-8 (CCK-8), colony formation assay, and Transwell assay. Besides, the target gene of miR-939-5p was provided by luciferase reporter assay. Our data substantiated the expression of miR-939-5p was obviously increased in glioma tissues and cell lines. The upregulation of miR-939-5p predicted a poor survival rate and might act as an alternative prognostic indicator in glioma. The elevated expression of miR-939-5p boosted proliferation, migration, and invasion in glioma cell lines. The alternation of miR-939-5p changed the protein expression of TIMP metallopeptidase inhibitor 2 (TIMP2). These findings indicated the overexpression of miR-939-5p was associated with the poor prognosis of glioma patients. MiR-939-5p may function as an oncogene by targeting TIMP2.
Collapse
|
31
|
Neutrophil Adhesion and the Release of the Free Amino Acid Hydroxylysine. Cells 2021; 10:cells10030563. [PMID: 33807594 PMCID: PMC7999338 DOI: 10.3390/cells10030563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
During infection or certain metabolic disorders, neutrophils can escape from blood vessels, invade and attach to other tissues. The invasion and adhesion of neutrophils is accompanied and maintained by their own secretion. We have previously found that adhesion of neutrophils to fibronectin dramatically and selectively stimulates the release of the free amino acid hydroxylysine. The role of hydroxylysine and lysyl hydroxylase in neutrophil adhesion has not been studied, nor have the processes that control them. Using amino acid analysis, mass spectrometry and electron microscopy, we found that the lysyl hydroxylase inhibitor minoxidil, the matrix metalloproteinase inhibitor doxycycline, the PI3K/Akt pathway inhibitors wortmannin and the Akt1/2 inhibitor and drugs that affect the actin cytoskeleton significantly and selectively block the release of hydroxylysine and partially or completely suppress spreading of neutrophils. The actin cytoskeleton effectors and the Akt 1/2 inhibitor also increase the phenylalanine release. We hypothesize that hydroxylysine release upon adhesion is the result of the activation of lysyl hydroxylase in interaction with matrix metalloproteinase, the PI3K/Akt pathway and intact actin cytoskeleton, which play important roles in the recruitment of neutrophils into tissue through extracellular matrix remodeling.
Collapse
|
32
|
Zhao Y, Zhang X, Yao J. Comprehensive analysis of PLOD family members in low-grade gliomas using bioinformatics methods. PLoS One 2021; 16:e0246097. [PMID: 33503035 PMCID: PMC7840023 DOI: 10.1371/journal.pone.0246097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Low-grade gliomas (LGGs) is a primary invasive brain tumor that grows slowly but is incurable and eventually develops into high malignant glioma. Novel biomarkers for the tumorigenesis and lifetime of LGG are critically demanded to be investigated. In this study, the expression levels of procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) were analyzed by ONCOMINE, HPA and GEPIA. The GEPIA online platform was applied to evaluate the interrelation between PLODs and survival index in LGG. Furthermore, functions of PLODs and co-expression genes were inspected by the DAVID. Moreover, we used TIMER, cBioportal, GeneMINIA and NetworkAnalyst analysis to reveal the mechanism of PLODs in LGG. We found that expression levels of each PLOD family members were up-regulated in patients with LGG. Higher expression of PLODs was closely related to shorter disease-free survival (DFS) and overall survival (OS). The findings showed that LGG cases with or without alterations were significantly correlated with the OS and DFS. The mechanism of PLODs in LGG may be involved in response to hypoxia, oxidoreductase activity, Lysine degradation and immune cell infiltration. In general, this research has investigated the values of PLODs in LGG, which could serve as biomarkers for diagnosis, prognosis and potential therapeutic targets of LGG patients.
Collapse
Affiliation(s)
- Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
- * E-mail:
| | - Xiang Zhang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Junchao Yao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, People’s Republic of China
| |
Collapse
|
33
|
Wang H, Luo W, Dai L. Expression and Prognostic Role of PLOD1 in Malignant Glioma. Onco Targets Ther 2021; 13:13285-13297. [PMID: 33402837 PMCID: PMC7778385 DOI: 10.2147/ott.s265866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Malignant glioma is rarely curable, and factors that influence the prognosis of glioma patients are not fully understood. Lysyl hydroxylases such as PLOD1 promote the cross-linking in extracellular matrix (ECM) molecules, which contribute to ECM structural stability and maturation. However, the expression and prognostic role of PLOD1 in malignant glioma remained to be determined. Methods The expression of PLOD1 was evaluated by immunohistochemistry in 72 malignant glioma patients from Shenzhen People's hospital. The mRNA expression profiles and clinical information of malignant glioma patients were obtained from public databases, including TCGA, CGGA, Rembrandt, and Gravendeel. The correlation between gene expression and tumor grade, and IDH1/2 status and 1p19q status were evaluated. The association between gene expression and overall survival of malignant glioma patients was examined using Kaplan-Meier survival analysis. GO and KEGG pathways were analyzed by Metascape. Transwell invasion assays were performed to determine the effect of PLOD1 on migration and invasion of glioma cells in vitro. Results PLOD1 expression was significantly elevated in malignant glioma tissues compared with non-tumor brain tissues. Besides, elevated levels of PLOD1 were significantly correlated with high tumor grade, wildtype IDH1/2 status, and 1p19q non-codel in all the four public datasets and in-house cohort. Malignant glioma patients with high PLOD1 expression had better overall survival compared to those with low PLOD1 expression. More importantly, patients with IDH1/2 mutations, 1p19q codeletions, and PLOD1 overexpression had the best overall survival. GO enrichment pathway analysis indicated that PLOD1 participates in regulating the extracellular matrix. Transwell invasion assay, which revealed that inhibiting PLOD1 reduced cell invasion in both U87 and U251 cells. Conclusion PLOD1 serves as a potential prognostic marker and therapeutic target for malignant glioma.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital (Second Clinical Medical College), Ji'nan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Weijian Luo
- Department of Neurosurgery, Shenzhen People's Hospital (Second Clinical Medical College), Ji'nan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Limeng Dai
- Department of Neurosurgery, Shenzhen People's Hospital (Second Clinical Medical College), Ji'nan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
34
|
PLOD1 Is a Prognostic Biomarker and Mediator of Proliferation and Invasion in Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3418398. [PMID: 33134376 PMCID: PMC7593720 DOI: 10.1155/2020/3418398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022]
Abstract
Objective Osteosarcoma is the most common primary bone tumor and most frequently develops during adolescence. PLOD family was mainly involved in lysyl hydroxylation and rarely investigated in cancers, especially in osteosarcoma. The aim of this study was to investigate the expression pattern and oncogenic role of PLODs in osteosarcoma. Methods GEO datasets (GSE16088, GSE33382, and GSE16091) and validation cohort were used to analyze the expression pattern of PLODs in osteosarcoma. Kaplan-Meier survival analysis was used to explore the prognostic role of PLODs in patients with osteosarcoma. RNA interference of KRT19 was performed using small interfering RNA (siRNA) in MG-63 and U-2OS cells. The proliferation was detected using CCK8, clone formation assay, and EdU staining. Migration and invasion were determined using the transwell assay. Western blots and luciferase assays for β-catenin-T-cell factor protein/β-catenin-lymphoid enhancer factor- (β-catenin-TCF/LEF-) driven transcriptional activity. Results PLOD1 was upregulated in osteosarcoma tissues compared with control tissues both in public datasets and in in-house cohort. The expression of PLOD1 in osteosarcoma tissues was significantly associated with the status of distance metastasis and Enneking stage, while PLOD2 and PLOD3 expressed no difference between osteosarcoma and benign tissues and showed no correlation with tumor malignancy. Furthermore, Kaplan-Meier survival analysis revealed that patients with a higher level of PLOD1 had worse prognosis than those with a lower level of PLOD1. Downregulation of PLOD1 dramatically inhibited proliferation, migration, and invasion of MG-63 cells and U-2OS cells in vitro. Mechanistically, PLOD1 regulated β-catenin signaling pathway in osteosarcoma. Conclusion Our results indicated that PLOD1 promoted proliferation, migration, and invasion of osteosarcoma cells. PLOD1 was a novel prognostic marker, as well as a therapeutic target in osteosarcoma.
Collapse
|
35
|
Xie D, Li J, Wei S, Qi P, Ji H, Su J, Du N, Zhang X. Knockdown of PLOD3 suppresses the malignant progression of renal cell carcinoma via reducing TWIST1 expression. Mol Cell Probes 2020; 53:101608. [PMID: 32585183 DOI: 10.1016/j.mcp.2020.101608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), also known as lysyl hydroxylase 3 (LH3) has been demonstrated to be overexpressed in several kinds of cancers and facilitate cell migration. Currently, we aimed to reveal the role of PLOD3 in renal cell carcinoma (RCC) progression, and explore whether TWIST1 (Twist family bHLH transcription factor 1) is involved in this process. Fifty-eight paired RCC tissues and normal tissues were collected and subjected to qPCR and immunohistochemistry (IHC) technology to detect the expression levels of PLOD3. The clinical value of PLOD3 in predicting RCC progression was then explored. Cell-Counting Kit-8 (CCK-8), wound healing, transwell chambers and tumor-bearing experiments were applied to monitor cell proliferation, migration, invasion and tumorigenesis. Protein levels were determined by using western blotting technology to assess cell apoptosis and epithelial to mesenchymal transition (EMT). PLOD3 expression was enhanced in RCC tissues and cells, which predicted higher T (tumor), N (lymph node) and M (metastasis) stages, histological grade and TNM (tumor, lymph node, metastasis) stage. PLOD3 downregulation in RCC A498 cells obviously inhibited cell proliferation, migration, invasion, EMT and tumorigenesis and increased cell apoptosis. PLOD3 overexpression led to opposite results in RCC A704 cells. PLOD3 downregulation reduced the expression levels of TWIST1, β-catenin and p-AKT. In addition, TWIST1 overexpression rescued the repressions of cell proliferation, migration, invasion, EMT and the activation of β-catenin and AKT signaling in addition to apoptosis promotion induced by PLOD3 downregulation. Collectively, this study illustrated that PLOD3 knockdown suppressed RCC malignance via inhibiting TWIST1-mediated activation of β-catenin and AKT signaling.
Collapse
Affiliation(s)
- Da Xie
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jin Li
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Shufei Wei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Pan Qi
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Hongxia Ji
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Jianzhi Su
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| | - Nan Du
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Jiangsu Province, Huai'an City, 223300, China
| | - Xiaoyu Zhang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China.
| |
Collapse
|
36
|
He C, Zhang Y, Jiang H, Niu X, Qi R, Gao X. Identification of differentially expressed methylated genes in melanoma versus nevi using bioinformatics methods. PeerJ 2020; 8:e9273. [PMID: 32547879 PMCID: PMC7275674 DOI: 10.7717/peerj.9273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Melanoma is a highly invasive malignant skin tumor. While melanoma may share some similarities with that of melanocytic nevi, there also exist a number of distinct differences between these conditions. An analysis of these differences may provide a means to more effectively evaluate the etiology and pathogenesis of melanoma. In particular, differences in aberrant methylation expression may prove to represent a critical distinction. Methods Data from gene expression datasets (GSE3189 and GSE46517) and gene methylation datasets (GSE86355 and GSE120878) were downloaded from the GEO database. GEO2R was used to obtain differentially expressed genes (DEGs) and differentially methylation genes (DMGs). Function and pathway enrichment of selected genes were performed using the DAVID database. A protein-protein interaction (PPI) network was constructed by STRING while its visualization was achieved with use of cytoscape. Primary melanoma samples from TCGA were used to identify significant survival genes. Results There was a total of 199 genes in the hypermethylation-low expression group, while 136 genes in the hypomethylation-high expression group were identified. The former were enriched in the biological processes of transcription regulation, RNA metabolism and regulation of cell proliferation. The later were highly involved in cell cycle regulation. 13 genes were screened out after survival analysis and included: ISG20, DTL, TRPV2, PLOD3, KIF3C, DLGAP4, PI4K2A, WIPI1, SHANK2, SLC16A10, GSTA4O, LFML2A and TMEM47. Conclusion These findings reveal some of the methylated differentially expressed genes and pathways that exist between melonoma and melanocytic nevi. Moreover, we have identified some critical genes that may help to improve the diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Congcong He
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning, China
| | - Yujing Zhang
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning, China
| | - Hanghang Jiang
- Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueli Niu
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning, China
| | - Xinghua Gao
- Department of Dermatology, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Li SS, Lian YF, Huang YL, Huang YH, Xiao J. Overexpressing PLOD family genes predict poor prognosis in gastric cancer. J Cancer 2020; 11:121-131. [PMID: 31892979 PMCID: PMC6930397 DOI: 10.7150/jca.35763] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) are a set of enzymes involved in the hydroxylation of lysine and stabilization of collagen by crosslinks. Previous studies have highlighted that overexpressing PLOD genes were related to the progression, migration and progression of different human cancers. However, the diverse expression patterns and prognostic values of PLOD genes remain to be elucidated in gastric cancer (GC). In this study, we mined the expression and survival data in GC patients through ONCOMINE, UALCAN and Kaplan-Meier Plotter database. STRING portal couple with DAVID was used to establish a functional protein interaction network of PLOD family genes and analyze the GO and KEGG enriched pathways. Differential gene expression correlated with PLOD family genes was identified with LinkedOmics. We found that PLOD1, 2 and 3 were up-regulated in GC patients compared with normal tissues. High expression levels of PLOD1 and PLOD3 were associated with shorter overall survival (OS), first progression (FP) and post progression survival (PPS) while high expression level of PLOD2 was only associated with shorter FP in all GC patients. Specifically, only high PLOD2 expression had significant correlation with shorter OS, FP and PPS in the diffuse type GC patients. Furthermore, combinatorial use of expressions of all PLOD genes was a superior prognostic indicator for GC patients. Pathway analysis confirmed that PLOD family genes mainly participate in regulating the collagen metabolism and extracellular matrix constitution, and the cellular adaptor protein SHC1, which helps to transduce an extracellular signal into an intracellular signal, could be the regulatory module mediating PLOD's effect on GC. Therefore, we propose that individual PLOD genes or PLOD family genes as a whole could be potential prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan-Lin Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Xiao
- Department of Medical Oncology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Tsai CK, Huang LC, Wu YP, Kan IY, Hueng DY. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT. FASEB J 2019; 33:14171-14184. [PMID: 31725331 DOI: 10.1096/fj.201901021rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring and gravest primary tumor of the CNS in adults. The development of chemoresistance to temozolomide (TMZ), the first-line chemotherapy for GBM, is an important factor contributing to poor treatment outcomes. Down-regulation of O-6-methylguanine-DNA methyltransferase (MGMT) expression in GBM cells is an attractive strategy for overcoming TMZ resistance and improving outcomes. This study revealed that the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine (SNAP) exerts antitumorigenic effects on TMZ-sensitive and TMZ-resistant (TMZ-R) glioma cells. Pretreatment with SNAP not only induced apoptosis, mitochondrial dysfunction, and hypoxia-inducing factor 1, but also resensitized TMZ-R GBM cells to TMZ through down-regulation of MGMT expression. SNAP acted principally through post-translational modification of p53, phosphorylated N-myc downstream regulated gene 1, and MGMT protein stability in TMZ-R GBM cells. Additionally, when applied together, SNAP and TMZ enhanced the inhibition of tumor growth in vitro and in vivo. This study sheds new light on a potential strategy to overcome TMZ resistance in GBM and thus possesses the potential for prolonging survival of patients with GBM.-Tsai, C.-K., Huang, L.-C., Wu, Y.-P., Kan, I.-Y., Hueng, D.-Y. SNAP reverses temozolomide resistance in human glioblastoma multiforme cells through down-regulation of MGMT.
Collapse
Affiliation(s)
- Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ping Wu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - I-Ying Kan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
39
|
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol 2019; 62:192-200. [PMID: 31518697 DOI: 10.1016/j.semcancer.2019.09.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) plays a central and dynamic role in the creation of tumor microenvironment. Herein we discuss the emerging biophysical and biochemical aspects of ECM buildup and proteolysis in cancer niche formation. Dysregulated ECM remodeling by cancer cells facilitate irreversible proteolysis and crosslinking, which in turn influence cell signaling, micro environmental cues, angiogenesis and tissue biomechanics. Further, we introduce the emerging roles of cancer microbiome in aberrant tumor ECM remodeling and membrane bound nano-sized vesicles called exosomes in creation of distant pre-metastatic niches. A detailed molecular and biophysical understanding of the ECM morphologies and its components such as key enzymes, structural and signaling molecules are critical in identifying the next generation of therapeutic and diagnostic targets in cancer.
Collapse
Affiliation(s)
- Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alakesh Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Baek JH, Yun HS, Kwon GT, Kim JY, Lee CW, Song JY, Um HD, Kang CM, Park JK, Kim JS, Kim EH, Hwang SG. PLOD3 promotes lung metastasis via regulation of STAT3. Cell Death Dis 2018; 9:1138. [PMID: 30442941 PMCID: PMC6237925 DOI: 10.1038/s41419-018-1186-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023]
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3), a membrane-bound homodimeric enzyme, hydroxylates lysyl residues in collagen-like peptides; however, its role in lung cancer is unknown. This study aimed to investigate the role of PLOD3 as a pro-metastatic factor and to elucidate the underlying mechanism. First, we experimentally confirmed the release of PLOD3 in circulation in animal models, rendering it a potential serum biomarker for lung cancer in humans. Thereafter, we investigated the effects of PLOD3 overexpression and downregulation on cancer cell invasion and migration in vitro and in vivo, using human lung cancer cell lines and a mouse tumor xenograft model, respectively. Further, PLOD3 levels were determined in lung tissue samples from lung cancer patients. Functional analyses revealed that PLOD3 interacts with STAT3, thereby expressing matrix metalloproteinases (MMP-2 and MMP-9) and with urokinase plasminogen activator (uPA) to enhance tumor metastasis. PLOD3 and the STAT3 pathway were significantly correlated in the metastatic foci of lung cancer patients; PLOD3–STAT3 levels were highly correlated with a poor prognosis. These results indicate that PLOD3 promotes lung cancer metastasis in a RAS-MAP kinase pathway-independent manner. Therefore, secreted PLOD3 serves as a potent inducer of lung cancer metastasis and a potential therapeutic target to enhance survival in lung cancer.
Collapse
Affiliation(s)
- Jeong-Hwa Baek
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Hong Shik Yun
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Gyoo Taik Kwon
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Ju-Young Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Hong-Duck Um
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Chang-Mo Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jong Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea
| | - Eun Ho Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Korea.
| |
Collapse
|