1
|
Labropoulou VT, Manou D, Ravazoula P, Alzahrani FM, Kalofonos HP, Theocharis AD. Expression of CD44 is associated with aggressiveness in seminomas. Mol Biol Rep 2024; 51:693. [PMID: 38796656 PMCID: PMC11127849 DOI: 10.1007/s11033-024-09638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) exhibit diverse biological and pathological features and are divided in two main types, seminomas and nonseminomatous germ cell tumors (NSGCTs). CD44 is a cell surface receptor, which is highly expressed in malignancies and is implicated in tumorigenesis affecting cell-matrix interactions and cell signaling. METHODS AND RESULTS Here, we examined the expression of CD44 in tumor cell lines and in patients' material. We found that CD44 is over-expressed in TGCTs compared to normal tissues. Immunohistochemical staining in 71 tissue specimens demonstrated increased expression of CD44 in some patients, whereas CD44 was absent in normal tissue. In seminomas, a high percentage of tumor and stromal cells showed cytoplasmic and/or cell surface staining for CD44 as well as increased staining for CD44 in the tumor stroma was found in some cases. The increased expression of CD44 either in tumor cells or in stromal components was associated with tumor size, nodal metastasis, vascular/lymphatic invasion, and disease stage only in seminomas. The increased stromal expression of CD44 in TGCTs was positively associated with angiogenesis. CONCLUSIONS CD44 may exhibit diverse biological functions in seminomas and NSGCTs. The expression of CD44 in tumor cells as well as in tumor stroma fosters an aggressive phenotype in seminomas and should be considered in disease treatment.
Collapse
Affiliation(s)
- Vasiliki T Labropoulou
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece.
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Panagiota Ravazoula
- Department of Pathology, University Hospital of Patras, Patras, 26504, Greece
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Haralabos P Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, 26504, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
2
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
3
|
Silva A, Cerqueira MC, Rosa B, Sobral C, Pinto-Ribeiro F, Costa MF, Baltazar F, Afonso J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065141. [PMID: 36982217 PMCID: PMC10049181 DOI: 10.3390/ijms24065141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Energy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype. The aim of this systematic review was to assess the prognostic value of MCT1 immunoexpression in different malignancies. Study collection was performed by searching nine different databases (PubMed, EMBASE, ScienceDirect, Scopus, Cochrane Library, Web of Science, OVID, TRIP and PsycINFO), using the keywords "cancer", "Monocarboxylate transporter 1", "SLC16A1" and "prognosis". Results showed that MCT1 is an indicator of poor prognosis and decreased survival for cancer patients in sixteen types of malignancies; associations between the transporter's overexpression and larger tumour sizes, higher disease stage/grade and metastasis occurrence were also frequently observed. Yet, MCT1 overexpression correlated with better outcomes in colorectal cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer patients. These results support the applicability of MCT1 as a biomarker of prognosis, although larger cohorts would be necessary to validate the overall role of MCT1 as an outcome predictor.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Sobral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Duan Q, Zhang S, Wang Y, Lu D, Sun Y, Wu Y. Proton-coupled monocarboxylate transporters in cancer: From metabolic crosstalk, immunosuppression and anti-apoptosis to clinical applications. Front Cell Dev Biol 2022; 10:1069555. [PMID: 36506099 PMCID: PMC9727313 DOI: 10.3389/fcell.2022.1069555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Warburg effect is known as the hyperactive glycolysis that provides the energy needed for rapid growth and proliferation in most tumor cells even under the condition of sufficient oxygen. This metabolic pattern can lead to a large accumulation of lactic acid and intracellular acidification, which can affect the growth of tumor cells and lead to cell death. Proton-coupled monocarboxylate transporters (MCTs) belong to the SLC16A gene family, which consists of 14 members. MCT1-4 promotes the passive transport of monocarboxylate (e.g., lactate, pyruvate, and ketone bodies) and proton transport across membranes. MCT1-4-mediated lactate shuttling between glycolytic tumor cells or cancer-associated fibroblasts and oxidative tumor cells plays an important role in the metabolic reprogramming of energy, lipids, and amino acids and maintains the survival of tumor cells. In addition, MCT-mediated lactate signaling can promote tumor angiogenesis, immune suppression and multidrug resistance, migration and metastasis, and ferroptosis resistance and autophagy, which is conducive to the development of tumor cells and avoid death. Although there are certain challenges, the study of targeted drugs against these transporters shows great promise and may form new anticancer treatment options.
Collapse
Affiliation(s)
- Qixin Duan
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Shuang Zhang
- Department of Nursing, Nanyang Central Hospital, Nanyang, China
| | - Yang Wang
- Department of Urology, Nanyang Central Hospital, Nanyang, China
| | - Dongming Lu
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,*Correspondence: Yongyang Wu, ; Yingming Sun,
| | - Yongyang Wu
- Department of Urology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China,*Correspondence: Yongyang Wu, ; Yingming Sun,
| |
Collapse
|
5
|
Different Expression Patterns of Metabolic Reprogramming Proteins in Testicular Germ Cell Cancer. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metabolic reprogramming is an emerging hallmark of cancer, involving the overexpression of metabolism-related proteins, such as glucose and monocarboxylate transporters and intracellular glycolytic enzymes. The biology of testicular germ cell tumors (TGCTs) is very complex, and although their metabolic profile has been scantily explored, some authors have recently reported that the metabolic rewiring of cancer cells resulted in an association with aggressive clinicopathological characteristics. In this study we have investigated, by immunohistochemical analysis, the expression of key proteins sustaining the hyperglycolytic phenotype in pure seminoma (SE, nr. 35), pure embryonal carcinoma (EC, nr. 17) tissues samples, and normal testes (nr. 5). GLUT1, CD44, PFK-1, MCT1, MCT4, LDH-A, and PDH resulted in more expression in EC cells compared to SE cells. TOM20 was more expressed in SE than in EC. GLUT1, MCT1, and MCT4 expression showed a statistically significant association with SE histology, while for EC, the association resulted in being significant only for GLUT1 and MCT4. Finally, we observed that EC resulted as negative for p53, suggesting that the GLUT1 and MTC overexpression observed in EC could be also attributed to p53 downregulation. In conclusion, our findings evidenced that EC exhibits a higher expression of markers of active aerobic glycolysis compared to SE, suggesting that the aggressive phenotype is associated with a higher glycolytic rate. These data corroborate the emerging evidence on the involvement of metabolic reprogramming in testicular malignancies as well, highlighting that the metabolic players should be explored in the future as promising therapeutic targets.
Collapse
|
6
|
Bonatelli M, Fornari IF, Bernécule PN, Pinheiro LE, Costa RFA, Longatto-Filho A, Junior JNA, Silva ECA, Cárcano FM, Pinheiro C. Expression of Glycolysis-Related Proteins in Cancer of Unknown Primary Origin. Front Oncol 2021; 11:682665. [PMID: 34249728 PMCID: PMC8264765 DOI: 10.3389/fonc.2021.682665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Cancer of unknown primary origin (CUP) is defined as metastatic cancer without identification of the primary site. Considering that only 15–20% of patients with CUP show a favorable outcome, identifying biomarkers may help improve the clinical management of patients who do not respond well to conventional therapies. In this context, the study of the metabolic profile of CUP may pave the way to establish new biomarkers and/or therapeutic targets; therefore, this study aimed to characterize the expression of metabolism-related proteins in CUP. Materials and Methods The expression of monocarboxylate transporters MCT1, MCT2 and MCT4, their chaperone CD147, the glucose transporter GLUT1 and the pH regulator CAIX was evaluated by immunohistochemistry in a series of 118 CUP patients, and the results were associated with the available clinicopathological information. Results The metabolism-related proteins MCT1, MCT4, CD147, GLUT1 and CAIX were expressed in a critical portion of the CUP (approximately 20 to 70%). MCT1 and CD147 were both more frequently expressed in cases with lymph nodes as metastasis dominant sites (p = 0.001) as well as in samples from lymph nodes (p <0.001 and p = 0.002, respectively), while MCT1 expression was more frequently expressed in squamous cell carcinomas (p = 0.045). A higher overall survival was observed in patients with tumors positive for GLUT1 and CAIX expression (p = 0.011 and p = 0.041, respectively), but none of the proteins was an independent prognostic factor for overall survival in multivariable analysis. Conclusion The results suggest that a portion of CUPs present a hyperglycolytic phenotype, which is associated with higher overall survival.
Collapse
Affiliation(s)
- Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Isabella Fernandes Fornari
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Priscila Neves Bernécule
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Lara Esquiapatti Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| | - Ricardo Filipe Alves Costa
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil.,Research and Teaching Institute, Barretos Cancer Hospital, Barretos, Brazil
| | - Adhemar Longatto-Filho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Laboratory of Medical Investigation (LIM-14), School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | - Flávio Mavignier Cárcano
- Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil.,Medical Oncology Department, Barretos Cancer Hospital, Barretos, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos, Brazil
| |
Collapse
|
7
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Baltazar F, Jerónimo C. The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Lett 2020; 477:76-87. [PMID: 32142920 DOI: 10.1016/j.canlet.2020.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
Deregulation of cell metabolism is an established cancer hallmark that contributes to tumor initiation and progression, as well as tumor heterogeneity. In solid tumors, alterations in different metabolic pathways, including glycolysis, pentose phosphate pathway, glutaminolysis and fatty acid metabolism, support the high proliferative rates and macromolecule biosynthesis of cancer cells. Despite advances in therapy, urothelial tumors still exhibit high recurrence and mortality rates, especially in advanced stages of disease. These tumors harbor gene mutations and expression patterns which play an important role in metabolic reprogramming. Taking into account the unique metabolic features underlying carcinogenesis in these cancers, new and promising therapeutic targets based on metabolic alterations must be considered. Furthermore, the combination of metabolic inhibitors with conventional targeted therapies may improve effectiveness of treatments. This review will summarize the metabolic alterations present in urological tumors and the results with metabolic inhibitors currently available.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
9
|
Bonatelli M, Silva ECA, Cárcano FM, Zaia MG, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The Warburg Effect Is Associated With Tumor Aggressiveness in Testicular Germ Cell Tumors. Front Endocrinol (Lausanne) 2019; 10:417. [PMID: 31316469 PMCID: PMC6610306 DOI: 10.3389/fendo.2019.00417] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023] Open
Abstract
Testicular Germ Cell Tumors (TGCTs) are a rare group of neoplasms and the most common solid malignancy arising in young male adults. Despite the good response of these tumors to platinum-based chemotherapy, some patients are refractory to treatment and present poor clinical outcomes. During carcinogenesis and tumor development, cancer cells reprogram energy metabolism toward a hyper-glycolytic phenotype, an emerging hallmark of cancer. This phenomenon, known as the Warburg effect or aerobic glycolysis, involves overexpression of metabolism-related proteins, like glucose and monocarboxylate transporters, pH regulators and intracellular glycolytic enzymes. The metabolic profile of TGCTs is very little explored and, recently, this metabolic rewiring of cancer cells has been associated with aggressive clinicopathological characteristics of these tumors. The overexpression of monocarboxylate transporter 4 (MCT4) in TGCTs has been pointed out as a poor prognostic factor, as well as a promising therapeutic target. As a result, the main aim of the present study was to evaluate the prognostic value of key metabolism-related proteins in TGCTs. The immunohistochemical expressions of CD44 (as a monocarboxylate transporter chaperone), glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), hexokinase II (HKII) and lactate dehydrogenase V (LDHV) were evaluated in a series of 148 adult male patients with TGCTs and associated with clinicopathological parameters. In addition, paired normal tissues were also evaluated. The sample included 75 seminoma and 73 non-seminoma tumors. GLUT1 and CD44 expression was significantly increased in malignant samples when compared to paired normal samples. Conversely, HKII and LDHV expressions were significantly decreased in malignant samples. Concerning the clinicopathological values, CAIX expression was significantly associated with disease recurrence, while HKII expression was significantly associated with aggressive characteristics of TGCTs, including higher staging and non-seminoma histology. In conclusion, this study brings new insights on the metabolic characteristics of TGCTs, showing alterations in the expression of proteins related with the Warburg effect, as well as associations of the hyper-glycolytic and acid-resistant phenotype with aggressive clinicopathological parameters.
Collapse
Affiliation(s)
- Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Flavio M. Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
| | - Maurício G. Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luiz F. Lopes
- Barretos Children's Cancer Hospital, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
- *Correspondence: Céline Pinheiro
| |
Collapse
|