1
|
Yazdani F, Mottaghi-Dastjerdi N, Shahbazi B, Ahmadi K, Ghorbani A, Soltany-Rezaee-Rad M, Montazeri H, Khoshdel F, Guzzi PH. Identification of key genes and pathways involved in T-DM1-resistance in OE-19 esophageal cancer cells through bioinformatics analysis. Heliyon 2024; 10:e37451. [PMID: 39309859 PMCID: PMC11415672 DOI: 10.1016/j.heliyon.2024.e37451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Esophageal Cancer (EC) ranks among the most common malignancies worldwide. Most EC patients acquire drug resistance to chemotherapy either intrinsically or acquired after T-DM1 treatment, which shows that increasing or decreasing the expression of particular genes might influence chemotherapeutic sensitivity or resistance. Therefore, gaining a deeper understanding of the altered expression of genes involved in EC drug resistance and developing new therapeutic methods are essential targets for continued advancement in EC therapy. Methods The present study aimed to find critical regulatory genes/pathways in the progression of T-DM1 resistance in OE-19 EC cells. Expression datasets were extracted from GEO omnibus. Gene interactions were analyzed, and the protein-protein interaction network was drawn. Then, enrichment analysis of the hub genes and network cluster analysis of the hub genes was performed. Finally, the genes were screened in the DrugBank database as therapeutic targets and molecular docking analysis was done on the selected targets. Results In the current study, nine hub genes were identified in TDM-1-resistant EC cells (CTGF, CDH17, THBS1, CXCL8, NRP1, ITGB5, EDN1, FAT1, and PTGS2). The KEGG analysis highlighted the IL-17 signaling pathway and ECM-receptor interaction pathway as the most critical pathways; cluster analysis also showed the significance of these pathways. Therefore, the genes involved in these two pathways, including CXCL8, FSCN1, PTGS2, SERPINE2, LEF1, THBS1, CCN2, TAGLN, CDH11, and ITGA6, were searched in DrugBank as therapeutic targets. The DrugBank analysis suggests a potential role for Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in reducing T-DM1 drug resistance in EC. The docking results revealed that NSAIDs, including Diclofenac, Mefenamic acid, Celecoxib, Naproxen, and Etoricoxib, significantly suppress resistant cancer cells. Conclusion This comprehensive bioinformatics analysis deeply explains the molecular mechanisms governing TDM-1 resistance in EC. The identified hub genes and their associated pathways offer potential targets for therapeutic interventions. Moreover, the possible role of NSAIDs in mitigating T-DM1 resistance presents an intriguing avenue for further investigation. This research contributes significantly to the field and establishes a basis for further research to enhance treatment efficacy for EC patients.
Collapse
Affiliation(s)
- Fateme Yazdani
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | | | - Hamed Montazeri
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Khoshdel
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
3
|
Cree T, Gomez TR, Timpani CA, Rybalka E, Price JT, Goodman CA. FKBP25 regulates myoblast viability and migration and is differentially expressed in in vivo models of muscle adaptation. FEBS J 2023; 290:4660-4678. [PMID: 37345229 DOI: 10.1111/febs.16894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
FKBP25 (FKBP3 gene) is a dual-domain PPIase protein that consists of a C-terminal PPIase domain and an N-terminal basic tilted helix bundle (BTHB). The PPIase domain of FKBP25 has been shown to bind to microtubules, which has impacts upon microtubule polymerisation and cell cycle progression. Using quantitative proteomics, it was recently found that FKBP25 was expressed in the top 10% of the mouse skeletal muscle proteome. However, to date there have been few studies investigating the role of FKBP25 in non-transformed systems. As such, this study aimed to investigate potential roles for FKBP25 in myoblast viability, migration and differentiation and in adaptation of mature skeletal muscle. Doxycycline-inducible FKBP25 knockdown in C2C12 myoblasts revealed an increase in cell accumulation/viability and migration in vitro that was independent of alterations in tubulin dynamics; however, FKBP25 knockdown had no discernible impact on myoblast differentiation into myotubes. Finally, a series of in vivo models of muscle adaptation were assessed, where it was observed that FKBP25 protein expression was increased in hypertrophy and regeneration conditions (chronic mechanical overload and the mdx model of Duchenne muscular dystrophy) but decreased in an atrophy model (denervation). Overall, the findings of this study establish FKBP25 as a regulator of myoblast viability and migration, with possible implications for satellite cell proliferation and migration and muscle regeneration, and as a potential regulator of in vivo skeletal muscle adaptation.
Collapse
Affiliation(s)
- Tabitha Cree
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - Tania Ruz Gomez
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
| | - Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
| | - John T Price
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Monash Biomedicine Discovery Institute, Clayton, Australia
| | - Craig A Goodman
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, Australia
- Department of Physiology, Centre for Muscle Research (CMR), The University of Melbourne, Parkville, Australia
| |
Collapse
|
4
|
Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S. HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment. Cancers (Basel) 2022; 14:2424. [PMID: 35626028 PMCID: PMC9139811 DOI: 10.3390/cancers14102424] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years. However, despite the initial enthusiasm, a major issue emerged limiting HER-2 targeted therapy efficacy, i.e., the evolution of drug resistance, which could be tackled by nanotechnology. The aim of this review is to provide a first critical update on the different types of HER-2-targeted nanoparticles that have been proposed in the literature in the last decade for therapeutic purposes. We focus on the different targeting strategies that have been explored, their relative outcomes and current limitations that still need to be improved. Then, we review the nanotools developed as diagnostic kits, focusing on the most recent techniques, which allow accurate quantification of HER-2 levels in tissues, with the aim of promoting more personalized medicinal approaches in patients.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Chesi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
- IRCCS Istituti Clinici Scientifici Salvatore Maugeri, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| |
Collapse
|
5
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
6
|
Mohamed Amar IA, Huvelle S, Douez E, Letast S, Henrion S, Viaud-Massuard MC, Aubrey N, Allard-Vannier E, Joubert N, Denevault-Sabourin C. Dual intra- and extracellular release of monomethyl auristatin E from a neutrophil elastase-sensitive antibody-drug conjugate. Eur J Med Chem 2022; 229:114063. [PMID: 34974337 DOI: 10.1016/j.ejmech.2021.114063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/04/2022]
Abstract
Antibody-drug conjugates (ADCs) are targeted therapies, mainly used in oncology, consisting in a three-component molecular architecture combining a highly potent drug conjugated via a linker onto a monoclonal antibody (mAb), designed for the selective delivery of the drug to the tumor site. The linker is a key component, defining the ADC stability and mechanism of action, and particularly the drug release strategy. In this study, we have developed and synthesized a cleavable linker, which possesses an Asn-Pro-Val (NPV) sequence sensitive to the human neutrophil elastase (HNE), overexpressed in the tumor microenvironment. This linker permitted the site-specific conjugation of the cell-permeable drug, monomethyl auristatin E (MMAE), onto trastuzumab, using a disulfide re-bridging technology. The resulting ADC was then evaluated in vitro. This conjugate demonstrated retained antigen (Ag) binding affinity and exhibited high subnanomolar potency against Ag-positive tumor cells after internalization, suggesting an intracellular mechanism of linker cleavage. While no internalization and cytotoxic activity of this ADC was observed on Ag-negative cells in classical conditions, the supplementation of exogenous HNE permitted to restore a nanomolar activity on these cells, suggesting an extracellular mechanism of drug release in these conditions. This in vitro proof of concept tends to prove that the NPV sequence could allow a dual intra- and extracellular mechanism of drug release. This work represents a first step in the design of original ADCs with a new dual intra- and extracellular drug delivery system and opens the way to further experimentations to evaluate their full potential in vivo.
Collapse
Affiliation(s)
| | - Steve Huvelle
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Emmanuel Douez
- EA 6295 NMNS, University of Tours, F-37200, Tours, France
| | - Stéphanie Letast
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | - Sylvain Henrion
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France
| | | | - Nicolas Aubrey
- UMR 1282 ISP, Team BioMAP, University of Tours-INRAE, F-37200, Tours, France
| | | | - Nicolas Joubert
- EA 7501 GICC, Team IMT, University of Tours, F-37032, Tours, France.
| | | |
Collapse
|
7
|
Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and Strategies to Overcome Resistance to Anti-HER2 ADCs. Cancers (Basel) 2021; 14:154. [PMID: 35008318 PMCID: PMC8750930 DOI: 10.3390/cancers14010154] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
During recent years, a number of new compounds against HER2 have reached clinics, improving the prognosis and quality of life of HER2-positive breast cancer patients. Nonetheless, resistance to standard-of-care drugs has motivated the development of novel agents, such as new antibody-drug conjugates (ADCs). The latter are a group of drugs that benefit from the potency of cytotoxic agents whose action is specifically guided to the tumor by the target-specific antibody. Two anti-HER2 ADCs have reached the clinic: trastuzumab-emtansine and, more recently, trastuzumab-deruxtecan. In addition, several other HER2-targeted ADCs are in preclinical or clinical development, some of them with promising signs of activity. In the present review, the structure, mechanism of action, and potential resistance to all these ADCs will be described. Specific attention will be given to discussing novel strategies to circumvent resistance to ADCs.
Collapse
Affiliation(s)
- Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
- Departamento de Bioquímica y Biología Molecular, University of Salamanca, 37007 Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| | - Alberto Ocaña
- Hospital Clínico San Carlos, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), 28040 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain; (E.D.-R.); (L.G.-S.)
| |
Collapse
|
8
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. Generation of Antibody-Drug Conjugate Resistant Models. Cancers (Basel) 2021; 13:cancers13184631. [PMID: 34572858 PMCID: PMC8466899 DOI: 10.3390/cancers13184631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Antibody-drug conjugates (ADCs) constitute new and effective therapies in cancer. However, resistance is frequently observed in treated patients after a given period of time. That resistance may be present from the beginning of the treatment (primary or de novo resistance) or raise after an initial response to the ADC (secondary resistance). Knowing the causes of those resistances is a necessity in the field as it may help in designing strategies to overcome them. Because of that, it is necessary to develop models that allow the identification of mechanisms of resistance. In this review, we present different approaches that have been used to model ADC resistance in the preclinical setting, and that include the use of established cell lines, patient-derived ex vivo cultures and xenografts primarily or secondarily resistant to the ADC. Abstract In the last 20 years, antibody-drug conjugates (ADCs) have been incorporated into the oncology clinic as treatments for several types of cancer. So far, the Food and Drug Administration (FDA) has approved 11 ADCs and other ADCs are in the late stages of clinical development. Despite the efficacy of this type of drug, the tumors of some patients may result in resistance to ADCs. Due to this, it is essential not only to comprehend resistance mechanisms but also to develop strategies to overcome resistance to ADCs. To reach these goals, the generation and use of preclinical models to study those mechanisms of resistance are critical. Some cells or patient tumors may result in primary resistance to the action of an ADC, even if they express the antigen against which the ADC is directed. Isolated primary tumoral cells, cell lines, or patient explants (patient-derived xenografts) with these characteristics can be used to study primary resistance. The most common method to generate models of secondary resistance is to treat cancer cell lines or tumors with an ADC. Two strategies, either continuous treatment with the ADC or intermittent treatment, have successfully been used to develop those resistance models.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Hospital Clínico San Carlos, 28040 Madrid, Spain;
- Symphogen, DK-2750 Ballerup, Denmark
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923-294-815
| |
Collapse
|
9
|
Exatecan Antibody Drug Conjugates Based on a Hydrophilic Polysarcosine Drug-Linker Platform. Pharmaceuticals (Basel) 2021; 14:ph14030247. [PMID: 33803327 PMCID: PMC8000490 DOI: 10.3390/ph14030247] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
We herein report the development and evaluation of a novel HER2-targeting antibody-drug conjugate (ADC) based on the topoisomerase I inhibitor payload exatecan, using our hydrophilic monodisperse polysarcosine (PSAR) drug-linker platform (PSARlink). In vitro and in vivo experiments were conducted in breast and gastric cancer models to characterize this original ADC and gain insight about the drug-linker structure-activity relationship. The inclusion of the PSAR hydrophobicity masking entity efficiently reduced the overall hydrophobicity of the conjugate and yielded an ADC sharing the same pharmacokinetic profile as the unconjugated antibody despite the high drug-load of the camptothecin-derived payload (drug-antibody ratio of 8). Tra-Exa-PSAR10 demonstrated strong anti-tumor activity at 1 mg/kg in an NCI-N87 xenograft model, outperforming the FDA-approved ADC DS-8201a (Enhertu), while being well tolerated in mice at a dose of 100 mg/kg. In vitro experiments showed that this exatecan-based ADC demonstrated higher bystander killing effect than DS-8201a and overcame resistance to T-DM1 (Kadcyla) in preclinical HER2+ breast and esophageal models, suggesting potential activity in heterogeneous and resistant tumors. In summary, the polysarcosine-based hydrophobicity masking approach allowsfor the generation of highly conjugated exatecan-based ADCs having excellent physicochemical properties, an improved pharmacokinetic profile, and potent in vivo anti-tumor activity.
Collapse
|
10
|
Yamashita-Kashima Y, Shu S, Osada M, Fujimura T, Yoshiura S, Harada N, Yoshimura Y. Combination efficacy of pertuzumab and trastuzumab for trastuzumab emtansine-resistant cells exhibiting attenuated lysosomal trafficking or efflux pumps upregulation. Cancer Chemother Pharmacol 2020; 86:641-654. [PMID: 32997196 PMCID: PMC7561595 DOI: 10.1007/s00280-020-04138-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
Purpose Trastuzumab emtansine (T-DM1) is the standard treatment in the current second-line therapy of human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. However, a useful therapy after T-DM1 resistance has not been established. In this study, we established two different HER2-positive T-DM1-resistant cancer cells and evaluated the antitumor effect of trastuzumab in combination with pertuzumab (TRAS + PER). Methods Single-cell-cloned OE19 and BT-474 cells were cultured with increasing concentrations of T-DM1 to generate T-DM1-resistant OE19bTDR and BT-474bTDR cells, respectively. HER2 expression was assessed by immunohistochemistry. Multidrug resistance proteins (MDR1 and MRP1) were evaluated by real-time polymerase chain reaction and western blotting. Intracellular trafficking of T-DM1 was examined by flow cytometry and immunofluorescence staining. Efficacy of TRAS + PER was evaluated by cell proliferation assay, HER3 and AKT phosphorylation, caspase 3/7 activity, and antitumor activity. Results HER2 expression of both resistant cells was equivalent to that of the parent cells. Overexpression of MDR1 and MRP1 was observed and affected the T-DM1 sensitivity in the OE19bTDR cells. Abnormal localization of T-DM1 into the lysosomes was observed in the BT-474bTDR cells. In BT-474bTDR cells, TRAS + PER inhibited the phosphorylation of AKT involved in HER2–HER3 signaling, and apoptosis induction and cell proliferation inhibition were significantly higher with TRAS + PER than with the individual drugs. TRAS + PER significantly suppressed tumor growth in the OE19bTDR xenograft model compared with each single agent. Conclusions The results suggest that the TRAS + PER combination may be effective in T-DM1-resistant cancer cells where HER2 overexpression is maintained. Electronic supplementary material The online version of this article (10.1007/s00280-020-04138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yoriko Yamashita-Kashima
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Sei Shu
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Masahiro Osada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoki Harada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
11
|
Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel) 2020; 13:ph13090245. [PMID: 32937862 PMCID: PMC7558467 DOI: 10.3390/ph13090245] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 01/01/2023] Open
Abstract
An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of.
Collapse
Affiliation(s)
- Nicolas Joubert
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
- Correspondence:
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France;
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France;
- Hospices Civils de Lyon, 69000 Lyon, France
| | - Caroline Denevault-Sabourin
- GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France;
| |
Collapse
|
12
|
Leyton JV. Improving Receptor-Mediated Intracellular Access and Accumulation of Antibody Therapeutics-The Tale of HER2. Antibodies (Basel) 2020; 9:E32. [PMID: 32668710 PMCID: PMC7551051 DOI: 10.3390/antib9030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic anti-HER2 antibodies and antibody-drug conjugates (ADCs) have undoubtedly benefitted patients. Nonetheless, patients ultimately relapse-some sooner than others. Currently approved anti-HER2 drugs are expensive and their cost-effectiveness is debated. There is increased awareness that internalization and lysosomal processing including subsequent payload intracellular accumulation and retention for ADCs are critical therapeutic attributes. Although HER2 preferential overexpression on the surface of tumor cells is attractive, its poor internalization and trafficking to lysosomes has been linked to poor therapeutic outcomes. To help address such issues, this review will comprehensively detail the most relevant findings on internalization and cellular accumulation for approved and investigational anti-HER2 antibodies and ADCs. The improved clarity of the HER2 system could improve antibody and ADC designs and approaches for next-generation anti-HER2 and other receptor targeting agents.
Collapse
Affiliation(s)
- Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| |
Collapse
|
13
|
Identification of candidate aberrantly methylated and differentially expressed genes in Esophageal squamous cell carcinoma. Sci Rep 2020; 10:9735. [PMID: 32546690 PMCID: PMC7297810 DOI: 10.1038/s41598-020-66847-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Aberrant methylated genes (DMGs) play an important role in the etiology and pathogenesis of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to integrate three cohorts profile datasets to ascertain aberrant methylated-differentially expressed genes and pathways associated with ESCC by comprehensive bioinformatics analysis. We downloaded data of gene expression microarrays (GSE20347, GSE38129) and gene methylation microarrays (GSE52826) from the Gene Expression Omnibus (GEO) database. Aberrantly differentially expressed genes (DEGs) were obtained by GEO2R tool. The David database was then used to perform Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome pathway enrichment analyses on selected genes. STRING and Cytoscape software were used to construct a protein-protein interaction (PPI) network, then the modules in the PPI networks were analyzed with MCODE and the hub genes chose from the PPI networks were verified by Oncomine and TCGA database. In total, 291 hypomethylation-high expression genes and 168 hypermethylation-low expression genes were identified at the screening step, and finally found six mostly changed hub genes including KIF14, CDK1, AURKA, LCN2, TGM1, and DSG1. Pathway analysis indicated that aberrantly methylated DEGs mainly associated with the P13K-AKT signaling, cAMP signaling and cell cycle process. After validation in multiple databases, most hub genes remained significant. Patients with high expression of AURKA were associated with shorter overall survival. To summarize, we have identified six feasible aberrant methylated-differentially expressed genes and pathways in ESCC by bioinformatics analysis, potentially providing valuable information for the molecular mechanisms of ESCC. Our data combined the analysis of gene expression profiling microarrays and gene methylation profiling microarrays, simultaneously, and in this way, it can shed a light for screening and diagnosis of ESCC in future.
Collapse
|
14
|
Beck A, Dumontet C, Joubert N. [Antibody-drug conjugates in oncology. Recent success of an ancient concept]. Med Sci (Paris) 2020; 35:1034-1042. [PMID: 31903915 DOI: 10.1051/medsci/2019227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An Antibody-Drug Conjugate (armed antibody) is a vectorized chemotherapy that results from the grafting of a cytotoxic agent on a monoclonal antibody thanks to a judiciously designed spacer arm. ADCs have made considerable progress in 10 years. In 2009, only gemtuzumab ozogamicin (Mylotarg®) was used clinically. In 2019, 4 other ADCs have been approved and more than 80 others are in active clinical trials. The first part of this review will focus on Food and Drug Administration-approved Antibody-Drug Conjugates, their limitations as well as their associated toxicity and resistance mechanisms.
Collapse
Affiliation(s)
- Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), Inserm 1052/CNRS, 69000 Lyon, France - Université de Lyon, 69000 Lyon, France - Hospices Civils de Lyon, 69000 Lyon, France
| | - Nicolas Joubert
- GICC EA7501, Université de Tours, équipe IMT, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
15
|
Hunter FW, Barker HR, Lipert B, Rothé F, Gebhart G, Piccart-Gebhart MJ, Sotiriou C, Jamieson SMF. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2019; 122:603-612. [PMID: 31839676 PMCID: PMC7054312 DOI: 10.1038/s41416-019-0635-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The HER2-targeted antibody-drug conjugate trastuzumab emtansine (T-DM1) is approved for the treatment of metastatic, HER2-positive breast cancer after prior trastuzumab and taxane therapy, and has also demonstrated efficacy in the adjuvant setting in incomplete responders to neoadjuvant therapy. Despite its objective activity, intrinsic and acquired resistance to T-DM1 remains a major clinical challenge. T-DM1 mediates its activity in a number of ways, encompassing HER2 signalling blockade, Fc-mediated immune response and payload-mediated microtubule poisoning. Resistance mechanisms relating to each of these features have been demonstrated, and we outline the findings of these studies in this review. In our overview of the substantial literature on T-DM1 activity and resistance, we conclude that the T-DM1 resistance mechanisms most strongly supported by the experimental data relate to dysfunctional intracellular metabolism of the construct and subversion of DM1-mediated cell killing. Loss of dependence on signalling initiated by HER2-HER2 homodimers is not substantiated as a resistance mechanism by clinical or experimental studies, and the impact of EGFR expression and tumour immunological status requires further investigation. These findings are instructive with respect to strategies that might overcome T-DM1 resistance, including the use of second-generation anti-HER2 antibody-drug conjugates that deploy alternative linker-payload chemistries.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Hilary R Barker
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Barbara Lipert
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Françoise Rothé
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Géraldine Gebhart
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | | | - Christos Sotiriou
- Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Cruz da Silva E, Dontenwill M, Choulier L, Lehmann M. Role of Integrins in Resistance to Therapies Targeting Growth Factor Receptors in Cancer. Cancers (Basel) 2019; 11:cancers11050692. [PMID: 31109009 PMCID: PMC6562376 DOI: 10.3390/cancers11050692] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Integrins contribute to cancer progression and aggressiveness by activating intracellular signal transduction pathways and transducing mechanical tension forces. Remarkably, these adhesion receptors share common signaling networks with receptor tyrosine kinases (RTKs) and support their oncogenic activity, thereby promoting cancer cell proliferation, survival and invasion. During the last decade, preclinical studies have revealed that integrins play an important role in resistance to therapies targeting RTKs and their downstream pathways. A remarkable feature of integrins is their wide-ranging interconnection with RTKs, which helps cancer cells to adapt and better survive therapeutic treatments. In this context, we should consider not only the integrins expressed in cancer cells but also those expressed in stromal cells, since these can mechanically increase the rigidity of the tumor microenvironment and confer resistance to treatment. This review presents some of these mechanisms and outlines new treatment options for improving the efficacy of therapies targeting RTK signaling.
Collapse
Affiliation(s)
- Elisabete Cruz da Silva
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Monique Dontenwill
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Laurence Choulier
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| | - Maxime Lehmann
- UMR 7021 CNRS, Laboratoire de Bioimagerie et Pathologies, Tumoral Signaling and Therapeutic Targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
17
|
|