1
|
Radwańska P, Gałdyszyńska M, Piera L, Drobnik J. Kisspeptin-10 increases collagen content in the myocardium by focal adhesion kinase activity. Sci Rep 2023; 13:19977. [PMID: 37968564 PMCID: PMC10651918 DOI: 10.1038/s41598-023-47224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
The aim of the study was to evaluate the role of kisspeptin-10 (KiSS-10) in the regulation of collagen content in cardiac fibroblasts. An attempt was also made to describe the mechanism of the effect of KiSS-10 on collagen metabolism. The studies indicate that kisspeptin-10 significantly increases the content of intracellular collagen in the myocardium. KiSS-10 also elevates the level of phosphorylated focal adhesion kinase (FAK) in human cardiac fibroblasts. The inhibition of FAK negates the stimulatory effect of KiSS-10 on collagen deposition in vitro. These changes correlate with an increase in the level of propeptides of procollagen type I (PICP) and III (PIIICP) in fibroblast culture medium and mouse PIIICP in serum. Moreover, this hormone inhibits the release of metalloproteinases (MMP-1,-2,-9) and elevates the secretion of their tissue inhibitors (TIMP-1,-2,-4). KiSS-10 also enhances the expression of α1 chains of procollagen type I and III in vitro. Thus, KiSS-10 is involved in the regulation of collagen metabolism and cardiac fibrosis. Augmentation of collagen deposition by KiSS-10 is dependent on the protein synthesis elevation, inhibition of MMPs activity (increase of TIMPs release) or decrease of MMPs concentration. The profibrotic activity of KiSS-10 is mediated by FAK and is not dependent on TGF-β1.
Collapse
Affiliation(s)
- Paulina Radwańska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Małgorzata Gałdyszyńska
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Lucyna Piera
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| | - Jacek Drobnik
- Department of Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752, Lodz, Poland
| |
Collapse
|
2
|
Duan H, Ding X, Luo H. KISS-1, Mediated by Promoter Methylation, Suppresses Esophageal Squamous Cell Carcinoma Metastasis via MMP2/9/MAPK Axis. Dig Dis Sci 2022; 67:4780-4796. [PMID: 34993679 DOI: 10.1007/s10620-021-07335-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS KISS-1 is an established tumor suppressor that inhibits metastases in various malignancies. However, little is known regarding its role in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to identify the possible mechanisms of KISS-1 in ESCC metastasis. METHODS The expression levels of KISS-1 mRNA and protein in ESCC samples and cell lines were analyzed by qRT-PCR, IHC, and western blotting. Bisulfite sequencing PCR (BSP) and methylation-specific PCR (MSP) were used to analyze the methylation pattern of KISS-1 promoter in ESCC cells with or without 5-Aza-dC treatment. The role of KISS-1 in the progression and metastasis of ESCC was analyzed through in vitro functional assays. RESULTS KISS-1 mRNA and protein were markedly downregulated in ESCC tissues and cell lines compared to the respective controls. Hypermethylation of KISS-1 promoter correlated to its lower expression levels in ESCC, and KISS-1 demethylation inhibited tumor progression. Ectopic KISS-1 overexpression inhibited tumor cell metastasis in vitro. In addition, KISS-1 overexpression downregulated the matrix metalloproteinase 2 and 9 (MMP2 and 9) and inhibited epithelial-mesenchymal transition (EMT). Finally, KISS-1 downregulated phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) and phosphorylated p38 mitogen-activated protein kinase (MAPK) without affecting their total expression levels in the ESCC cells. MAPK/ERK and p38 MAPK agonists reversed the suppressive effects of KISS-1. CONCLUSIONS The hypermethylation of KISS-1 promoter partly contributed to its downregulation in ESCC. KISS-1 inhibits the metastasis of ESCC cells by targeting the MMP2/9/ERK/p38 MAPK axis.
Collapse
Affiliation(s)
- Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xiang Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Singh N, Hutson R, Milton NGN, Javid FA. Ovarian cancer and KiSS-1 gene expression: A consideration of the use of Kisspeptin plus Kisspeptin aptamers in diagnostics and therapy. Eur J Pharmacol 2022; 917:174752. [PMID: 35026192 DOI: 10.1016/j.ejphar.2022.174752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Gynaecological cancers continue to present a significant health burden upon the health of the global female population. This deficit is most prominent with ovarian cancer which possesses the lowest survival rate compared to all other cancers occurring within this anatomical region, with an annual UK-mortality of 7,300. The poor tolerability and selectively of the treatment options that are currently available is likely to have contributed to this high mortality rate thus, demonstrating the need for the development of enhanced therapeutic approaches. Aptamer technology would involve the engineering of specifically sequenced oligonucleotide chains, which bind to macromolecular targets with a high degree of affinity and selectively. Recent in-vitro studies conducted upon the clinical utility of this technique have supported its superiority in targeting individual therapeutic drug targets compared to various other targeting moieties currently within therapeutic use such as, monoclonal antibodies. For this reason, the employment of this technique is likely to be favourable in reducing the incidence of non-specific, chemotherapy-associated adverse effects. Kisspeptin is a naturally expressed polypeptide with an established role in the development of the reproductive system and other proposed roles in influencing the ability of ovarian cancer growths to exhibit the metastasis hallmark. This distinctive feature would indicate the potential for the manipulation of this pathway through the application of aptamer structures in developing a novel prophylactic strategy and improve the long-term outcome for ovarian cancer patients.
Collapse
Affiliation(s)
- Navinder Singh
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Richard Hutson
- St James's Leeds University Teaching Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Nathaniel G N Milton
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, City Campus, Leeds, LS1 3HE, United Kingdom
| | - Farideh A Javid
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| |
Collapse
|
4
|
Li Z, Liu J, Inuzuka H, Wei W. Functional analysis of the emerging roles for the KISS1/KISS1R signaling pathway in cancer metastasis. J Genet Genomics 2021; 49:181-184. [PMID: 34767970 DOI: 10.1016/j.jgg.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Cancer metastasis, a process that primary tumor cells disseminate to secondary organs, is the most lethal and least effectively treated characteristic of human cancers. Kisspeptins are proteins encoded by the KISS1 gene that was originally described as a melanoma metastasis suppressor gene. Then, Kisspeptins were discovered as the natural ligands of the G-protein-coupled receptor 54 (GPR54) that is also called KISS1R. The KISS1/KISS1R signaling is essential to control GnRH secretion during puberty and to establish mammalian reproductive function through the hypothalamic-pituitary-gonadal (HPG) axis. Although KISS1 primarily plays a suppressive role in the metastasis progression in several cancer types, emerging evidence indicates that the physiological effect of KISS1/KISS1R in cancer metastasis is tissue context-dependent and still controversial. Here, we will discuss the epigenetic mechanism regulation of KISS1 gene expression, the context-dependent role of KISS1/KISS1R, pro-/anti-metastasis signaling pathways of KISS1/KISS1R, and the perspective anti-cancer therapeutics via targeting KISS1/KISS1R.
Collapse
Affiliation(s)
- Zhenxi Li
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Štrbac D, Dolžan V. Matrix Metalloproteinases as Biomarkers and Treatment Targets in Mesothelioma: A Systematic Review. Biomolecules 2021; 11:1272. [PMID: 34572485 PMCID: PMC8469122 DOI: 10.3390/biom11091272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Metalloproteinases (MMPs) have an important role in tissue remodeling and have been shown to have an effect on tumor progression, invasion, metastasis formation, and apoptosis in several tumors, including mesothelioma. Mesothelioma is a rare tumor arising from pleura and peritoneum and is frequently associated with asbestos exposure. We have performed a systematic search of PubMed.gov and ClinicalTrials.gov databases to retrieve and review three groups of studies: studies of MMPs expression in tumor tissue or body fluids in patients with mesothelioma, studies of MMPs genetic variability, and studies of MMPs as potential novel drug targets in mesothelioma. Several studies of MMPs in mesothelioma tissues reported a link between higher expression levels of commonly studied MMPs and clinical parameters, such as overall survival. Fewer studies have investigated genetic variability of MMP genes. Nevertheless, these studies suggested that certain genetic variants in MMP genes can have either protective or tumor-promoting effects on mesothelioma patients. MMPs have been also reported as novel drug targets, but so far no clinical trials of MMP inhibitors are registered in mesothelioma. In conclusion, MMPs play an important role in mesothelioma, but further studies are needed to elucidate the potentials of MMPs as biomarkers and drug targets in mesothelioma.
Collapse
Affiliation(s)
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Laterza MM, Ciaramella V, Facchini BA, Franzese E, Liguori C, De Falco S, Coppola P, Pompella L, Tirino G, Berretta M, Montella L, Facchini G, Ciardiello F, de Vita F. Enhanced Antitumor Effect of Trastuzumab and Duligotuzumab or Ipatasertib Combination in HER-2 Positive Gastric Cancer Cells. Cancers (Basel) 2021; 13:cancers13102339. [PMID: 34066144 PMCID: PMC8150287 DOI: 10.3390/cancers13102339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The ToGA trial has demonstrated, in HER2-expressing patients, that unresectable and advanced gastric cancer, chemotherapy and trastuzumab in combination increase overall survival, even if it is still unclear why after one year the same patients are non-responsive to trastuzumab treatment. Here, we have demonstrated that in HER2-positive gastric cancer cell lines, the addition of duligotuzumab, targeting HER3 receptor, or ipatasertib, targeting AKT protein, enhances the antitumor effect of trastuzumab in vitro through a full inhibition of the membrane signals, on HER2 and HER3, and of downstream signaling, including AKT, and MAPK pathways. Hence, this study suggests a novel and biomarker-driven therapeutic strategy supporting further evaluation of the anti-tumor efficacy of these combinations in HER2 human gastric cancer patients. Abstract The anti-HER2 monoclonal antibody trastuzumab is a key drug for the treatment of HER2-positive gastric cancer (GC); however, its activity is often limited by the onset of resistance and mechanisms of resistance are still poorly understood. Several targeted agents showed synergistic activity by concomitant use with trastuzumab in vitro and are under clinical investigation. The aim of this study was to assess the antitumor activity of duligotuzumab, an anti HER3/EGFR antibody or ipatasertib, an AKT inhibitor, combined with trastuzumab in a panel of HER2-positive human gastric cancer cells (GCC), and the efficacy of such combinations in HER2-resistant cells. We have assessed the efficacy of duligotuzumab or ipatasertib and trastuzumab in combination, analyzing proliferation, migration and apoptosis and downstream intracellular signaling in vitro on human HER2-positive GCC (NCI-N87, OE33, OE19) and in negative HER2 GCC (MKN28). We observed a reduction of proliferation, migration and apoptotic rate in HER2-positive OE33, OE19 and N87 cell lines with the combination of duligotuzumab or ipatasertib plus trastuzumab. In particular, in OE33 and OE19 cell lines, the same combined treatment inhibited the activation of proteins downstream of HER2, HER3, AKT and MAPK pathways. Targeting both HER2 and HER3, or HER2 and AKT, results in an improved antitumor effect on HER2-positive GCC.
Collapse
Affiliation(s)
- Maria Maddalena Laterza
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
- Correspondence:
| | - Vincenza Ciaramella
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Elisena Franzese
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Carmela Liguori
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Stefano De Falco
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Paola Coppola
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Luca Pompella
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Giuseppe Tirino
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Liliana Montella
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Gaetano Facchini
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Ferdinando de Vita
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| |
Collapse
|
7
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
8
|
Chen C, Shan H. Keratin 6A gene silencing suppresses cell invasion and metastasis of nasopharyngeal carcinoma via the β‑catenin cascade. Mol Med Rep 2019; 19:3477-3484. [PMID: 30896882 PMCID: PMC6471251 DOI: 10.3892/mmr.2019.10055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/01/2019] [Indexed: 01/16/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of head and neck cancer. This study aimed to study the mechanisms of ectopic keratin 6A (KRT6A) in NPC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were performed to detect KRT6A levels in NPC cell lines (C666-1, 5-8F and SUNE-1) and a nasopharyngeal epithelial cell line (NP69, as a control). After SUNE-1 NPC cells had been silenced by KRT6A, cell viability, metastasis and invasion were determined using Cell Counting Kit-8, wound healing and Transwell assays, respectively. KRT6A levels, metastasis-associated factors and the Wnt/β-catenin pathway were measured using RT-qPCR and western blotting. It was demonstrated that KRT6A was upregulated in all detected NPC cells, among which KRT6A was the highest in SUNE-1 cells. In SUNE-1 cells, cell viability was inhibited at 24 and 48 h, and that cell metastasis and invasion were demonstrated to be suppressed by KRT6A silencing. Both the mRNA and protein levels of KRT6A, matrix metalloproteinase (MMP)-2, MMP-9, β-catenin, lymphoid enhancer binding factor 1 and T-cell specific factor 4 were reduced in the small interfering (si)KRT6A group. However, the results demonstrated that the levels of epithelial-cadherin and tissue inhibitor of metalloproteinase-2 (TIMP-2) were promoted in the siKRT6A group. The activation of the Wnt/β-catenin pathway by lithium chloride reversed the effect of si-KRT6A by modulating the expression of MMP-2/9 and TIMP2. It was observed that KRT6A silencing suppressed cell invasion and metastasis of NPC via the β-catenin cascade. Together these results provide important insights into a novel approach for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Chuanjun Chen
- Oncology Department, Xinchang People's Hospital, Shaoxing, Zhejiang 312500, P.R. China
| | - Huiguo Shan
- Oncology Department, The Affiliated Dongtai Hospital of Nantong University, Dongtai, Jiangsu 224200, P.R. China
| |
Collapse
|
9
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|