1
|
Fenton CG, Ray MK, Paulssen RH. Challenges in Defining a Reference Set of Differentially Expressed lncRNAs in Ulcerative Colitis by Meta-Analysis. Curr Issues Mol Biol 2024; 46:3164-3174. [PMID: 38666928 PMCID: PMC11049510 DOI: 10.3390/cimb46040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The study aimed to identify common differentially expressed lncRNAs from manually curated ulcerative colitis (UC) gene expression omnibus (GEO) datasets. Nine UC transcriptomic datasets of clearly annotated human colonic biopsies were included in the study. The datasets were manually curated to select active UC samples and controls. R packages geneknitR, gprofiler, clusterProfiler were used for gene symbol annotation. The R EdgeR package was used to analyze differential expression. This resulted in a total of nineteen lncRNAs that were differentially expressed in at least three datasets of the nine GEO datasets. Several of the differentially expressed lncRNAs found in UC were associated with promoting colorectal cancer (CRC) through regulating gene expression, epithelial to mesenchymal transition (EMT), cell cycle progression, and by promoting tumor proliferation, invasion, and migration. The expression of several lncRNAs varied between disease states and tissue locations within the same disease state. The identified differentially expressed lncRNAs may function as general markers for active UC independent of biopsy location, age, gender, or treatment, thereby representing a comparative resource for future comparisons using available GEO UC datasets.
Collapse
Affiliation(s)
- Christopher G. Fenton
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mithlesh Kumar Ray
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
| | - Ruth H. Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Sáez-González E, Moret-Tatay I, Bastida G, Aguas M, Iborra M, Nos P, Beltrán B. MicroRNA and granulocyte-monocyte adsorption apheresis combotherapy after inadequate response to anti-TNF agents in ulcerative colitis. J Clin Apher 2024; 39:e22101. [PMID: 38054256 DOI: 10.1002/jca.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, affecting millions of individuals throughout the world, and producing an impaired health-related quality of life. Granulocyte and monocyte apheresis (GMA) is a therapeutic option for UC management to induce remission by selective removal of activated leukocytes from bloodstream. Despite the knowledge of the important role of epigenetics in UC pathogenesis, and in the response to different treatments, nothing is known about the role of microRNAs in GMA therapy in UC patients. METHODS Seven consecutively UC patients who started GMA in combo therapy with infliximab were recruited. Peripheral blood samples were taken before the apheresis session, at the start of the induction (S0) and at the end (S10). They were follow-up during the induction phase (10 sessions: 2 sessions for a week during 3 wk and 1 session for a week during 4 wk) of the treatment at a tertiary hospital (Hospital la Fe) and 6 mo after finishing the GMA induction therapy. MiRNA was extracted and analyzed by RT-PCR. R software and GraphPad were used. RESULTS Clinical disease activity significantly decreased after induction therapy with GMA (median partial Mayo score 2 (IQR, 1-6) (P < .05). Fecal calprotectin value and CRP value significantly decreased after induction therapy. Five microRNAs modified their expression during GMA (unsupervised analysis): miR-342-3p, miR-215-5p, miR-376c-3p, miR-139-5p, and miR-150-5p. When a sub-analysis was performed in those patients who showed good response to apheresis treatment (n = 5), two microRNAs showed to be implicated: miR-215-5p and miR-365a-3p. These are preliminary but promising and novel results, as it is the first time, to our knowledge that microRNA profiles have been studied in the context of GMA treatment for IBD.
Collapse
Affiliation(s)
- Esteban Sáez-González
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Inés Moret-Tatay
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Guillermo Bastida
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Mariam Aguas
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Marisa Iborra
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Pilar Nos
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Belén Beltrán
- Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
- Inflammatory Bowel Disease Research Group, IIS Hospital La Fe, Valencia, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| |
Collapse
|
3
|
Yan R, Liang X, Hu J. miR-141-3p alleviates ulcerative colitis by targeting SUGT1 to inhibit colonic epithelial cell pyroptosis. Autoimmunity 2023; 56:2220988. [PMID: 37317573 DOI: 10.1080/08916934.2023.2220988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease of the colon that result in the destruction and inflammation of the colonic mucosa. Current research has established a strong correlation between pyroptosis of colonic epithelial cells and the onset and progression of UC. In addition, miRNAs have been implicated in the development and progression of UC and pyroptosis. This aimed of this study was to identify specific miRNAs that could inhibit pyroptosis in colon epithelial cells and alleviate UC. Lipopolysaccharide (LPS) was used to induce inflammation in FHC normal colonic epithelial cells to construct an enteritis cell model and downregulated expression levels of miRNAs were detected in inflammatory bowel disease mucosal tissue model. Pyroptosis indicators were detected using Cell Counting Kit-8, flow cytometry, ELISA, qPCR, western blot, and immunofluorescence, and miRNA target genes were predicted by miRDB, TargetScan, pyroptosis pathway from KEGG, and double luciferase assay was used for verification. The effect of miR-141-3p on colitis was observed in the mouse DSS colitis model. The results showed that miR-141-3p was the most significantly downregulated miRNA in LPS-induced FHC cells, and promoted the proliferation of LPS-induced FHC cells and suppressed their apoptosis. In addition, miR-141-3p decreased the expression of pyroptosis-related proteins such as NLRP3, caspase-1, N-GSDMD, and the other proteins, as well as the release of IL-18 and IL-1β inflammatory factors. Conversely, the miR-141-3p inhibitor promoted LPS-induced FHC pyroptosis. Dual luciferase experiments confirmed that miR-141-3p could target the HSP90 molecular chaperone SUGT1. Further experiments demonstrated that SUGT1 overexpression could restore the inhibitory effect of miR-141-3p on pyroptosis, while SUGT1 knockdown could alleviate the promotion of pyroptosis induced by miR-141-3p inhibitor. Furthermore, miR-141-3p alleviated the inflammatory phenotype of mouse colonic mucosa in the mouse DSS colitis model. Therefore, miR-141-3p inhibits LPS-induced pyroptosis of colonic epithelial cells by targeting SUGT1. miR-141-3p could also alleviate DSS-induced colitis in mice, suggesting that miR-141-3p may become a nucleic acid drug for the treatment of UC.
Collapse
Affiliation(s)
- Rong Yan
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| | - Xinghua Liang
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| | - Juan Hu
- The Fourth Affiliated Hospital of Guangzhou Medical University (Zengcheng District people's Hospital of Guangzhou)
| |
Collapse
|
4
|
Shang Y, Zhai Z, Huang J, Li L, Zuo X. Specific alterations in mucosa-associated bacterial composition in ulcerative colitis (UC) patients with different degrees of inflammation. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Yansheng Shang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhenzhen Zhai
- Department of Gastroenterology, Dezhou People’s Hospital, Dezhou, Shandong, PR China
| | - Jiaguo Huang
- Department of Gastroenterology, Jinan City People’s Hospital, Jinan, Shandong, PR China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
5
|
Pareek S, Sanchenkova X, Sakaguchi T, Murakami M, Okumura R, Kayama H, Kawauchi S, Motooka D, Nakamura S, Okuzaki D, Kishimoto T, Takeda K. Epithelial miR‐215 negatively modulates Th17‐dominant inflammation by inhibiting CXCL12 production in the small intestine. Genes Cells 2022; 27:243-253. [DOI: 10.1111/gtc.12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Siddhika Pareek
- Regenerative Medicine Institute Cedars‐Sinai Medical Center Los Angeles CA 90048 USA
| | - Xenia Sanchenkova
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
| | - Taiki Sakaguchi
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Mari Murakami
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Ryu Okumura
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Hisako Kayama
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
- Institute for Advanced Co‐Creation Studies Osaka University Osaka 5650871 Japan
| | - Saya Kawauchi
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Genome Information Research Center Research Institute for Microbial Diseases Osaka University Osaka 5650871 Japan
| | - Tadamitsu Kishimoto
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center Osaka University Osaka 5650871 Japan
- Laboratory of Immune Regulation Department of Microbiology and Immunology Graduate School of Medicine Osaka University Osaka 5650871 Japan
| |
Collapse
|
6
|
Sun B, Xing K, Qi C, Yan K, Xu Y. Down-regulation of miR-215 attenuates lipopolysaccharide-induced inflammatory injury in CCD-18co cells by targeting GDF11 through the TLR4/NF-kB and JNK/p38 signaling pathways. Histol Histopathol 2020; 35:1473-1481. [PMID: 33146403 DOI: 10.14670/hh-18-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ulcerative colitis (UC) is a risk factor for carcinogenesis of colorectal cancer, which is associated with disruption of the epithelial barrier and disorder of the inflammatory response. It has been reported that the expression of microRNA (miR)-215 is upregulated in patients with long-term UC. The present study aimed to investigate the effects of miR-215 on lipopolysaccharide (LPS)-induced inflammatory injury in CCD-18Co cells, as well as to identify the underlying possible molecular mechanisms. CCD-18Co cells were treated with 1 µg/ml LPS to induce inflammatory injury. Reverse transcription-quantitative PCR was performed to determine the expression of miR-215 in LPS-treated CCD-18Co cells. Moreover, a dual luciferase reporter system assay was used to evaluate the interaction of miR-215 and growth differentiation factor 11 (GDF11) in CCD-18Co cells. The expression of miR-215 was significantly upregulated in LPS-treated CCD-18Co cells. Knockdown of miR-215 significantly alleviated the inflammatory response and oxidative stress in LPS-treated CCD-18Co cells. In addition, GDF11 was identified as a direct binding target of miR-215 in CCD-18Co cells. Knockdown of miR-215 significantly increased the expression of GDF11, but decreased the expression levels of Toll-like receptor (TLR)4, phosphorylated (p)-p65, iNOS, p-p38 and p-JNK in LPS-treated CCD-18Co cells. Collectively, the present findings indicated that knockdown of miR-215 alleviated oxidative stress and inflammatory response in LPS-treated CCD-18Co cells by upregulating GDF11 expression and inactivating the TLR4/NF-κB and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Boyang Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Xing
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
8
|
Vychytilova-Faltejskova P, Slaby O. MicroRNA-215: From biology to theranostic applications. Mol Aspects Med 2019; 70:72-89. [DOI: 10.1016/j.mam.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
|