1
|
Efe G, Dunbar KJ, Sugiura K, Cunningham K, Carcamo S, Karaiskos S, Tang Q, Cruz-Acuña R, Resnick-Silverman L, Peura J, Lu C, Hasson D, Klein-Szanto AJ, Taylor AM, Manfredi JJ, Prives C, Rustgi AK. p53 Gain-of-Function Mutation Induces Metastasis via BRD4-Dependent CSF-1 Expression. Cancer Discov 2023; 13:2632-2651. [PMID: 37676642 PMCID: PMC10841313 DOI: 10.1158/2159-8290.cd-23-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
TP53 mutations are frequent in esophageal squamous cell carcinoma (ESCC) and other SCCs and are associated with a proclivity for metastasis. Here, we report that colony-stimulating factor-1 (CSF-1) expression is upregulated significantly in a p53-R172H-dependent manner in metastatic lung lesions of ESCC. The p53-R172H-dependent CSF-1 signaling, through its cognate receptor CSF-1R, increases tumor cell invasion and lung metastasis, which in turn is mediated in part through Stat3 phosphorylation and epithelial-to-mesenchymal transition (EMT). In Trp53R172H tumor cells, p53 occupies the Csf-1 promoter. The Csf-1 locus is enriched with histone 3 lysine 27 acetylation (H3K27ac), which is likely permissive for fostering an interaction between bromodomain-containing domain 4 (BRD4) and p53-R172H to regulate Csf-1 transcription. Inhibition of BRD4 not only reduces tumor invasion and lung metastasis but also reduces circulating CSF-1 levels. Overall, our results establish a novel p53-R172H-dependent BRD4-CSF-1 axis that promotes ESCC lung metastasis and suggest avenues for therapeutic strategies for this difficult-to-treat disease. SIGNIFICANCE The invasion-metastasis cascade is a recalcitrant barrier to effective cancer therapy. We establish that the p53-R172H-dependent BRD4-CSF-1 axis is a mediator of prometastatic properties, correlates with patient survival and tumor stages, and its inhibition significantly reduces tumor cell invasion and lung metastasis. This axis can be exploited for therapeutic advantage. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Karen J. Dunbar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Katherine Cunningham
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Saul Carcamo
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Spyros Karaiskos
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Qiaosi Tang
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Ricardo Cruz-Acuña
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| | - Lois Resnick-Silverman
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Peura
- Division of Hematology-Oncology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Dan Hasson
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Alison M. Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - James J. Manfredi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Department of Biological Sciences, Columbia University, Columbia University, New York, NY, 10032, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
2
|
Dakir EH, Gajate C, Mollinedo F. Antitumor activity of alkylphospholipid edelfosine in prostate cancer models and endoplasmic reticulum targeting. Biomed Pharmacother 2023; 167:115436. [PMID: 37683591 DOI: 10.1016/j.biopha.2023.115436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Prostate cancer is the second most frequent cancer and the fifth leading cause of cancer death among men worldwide. While the five-year survival in local and regional prostate cancer is higher than 99%, it falls to about 28% in advanced metastatic prostate cancer. The ether lipid edelfosine is considered the prototype of a family of promising antitumor drugs collectively named as alkylphospholipid analogs. Here, we found that edelfosine was the most potent alkylphospholipid analog in inducing apoptosis in three different human prostate cancer cell lines (LNCaP, PC3, and DU145) with distinct androgen dependency, and differing in tumor suppressor phosphatase and tensin homolog (PTEN) and p53 status. Edelfosine accumulated in the endoplasmic reticulum of prostate cancer cells, leading to endoplasmic reticulum stress and cell death in the three prostate cancer cells. Inhibition of autophagy potentiated the pro-apoptotic activity of edelfosine in LNCaP and PC3 cells, where autophagy was induced as a survival response. Edelfosine induced a slight and transient inhibition of AKT in PTEN-negative LNCaP and PC3 cells, but not in PTEN-positive DU145 cells. Daily oral administration of edelfosine in murine prostate restricted AKT kinase transgenic mice, expressing active AKT in a prostate-specific manner, and in a DU145 xenograft mouse model resulted in significant tumor regression and apoptosis in tumor cells. Taken together, these results show a significant in vitro and in vivo antitumor activity of edelfosine against prostate cancer, and highlight the endoplasmic reticulum as a novel and promising therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- El-Habib Dakir
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Faculty of Biology, University of Latvia, Riga, Latvia.
| | - Consuelo Gajate
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain; Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas - Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
3
|
Marayati R, Stafman LL, Williams AP, Bownes LV, Quinn CH, Markert HR, Easlick JL, Stewart JE, Crossman DK, Mroczek-Musulman E, Beierle EA. CRISPR/Cas9-mediated knockout of PIM3 suppresses tumorigenesis and cancer cell stemness in human hepatoblastoma cells. Cancer Gene Ther 2022; 29:558-572. [PMID: 33864024 PMCID: PMC8521561 DOI: 10.1038/s41417-021-00334-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
Hepatoblastoma remains one of the most difficult childhood tumors to treat and is alarmingly understudied. We previously demonstrated that Proviral Insertion site in Maloney murine leukemia virus (PIM) kinases, specifically PIM3, are overexpressed in human hepatoblastoma cells and function to promote tumorigenesis. We aimed to use CRISPR/Cas9 gene editing with dual gRNAs to introduce large inactivating deletions in the PIM3 gene and achieve stable PIM3 knockout in the human hepatoblastoma cell line, HuH6. PIM3 knockout of hepatoblastoma cells led to significantly decreased proliferation, viability, and motility, inhibited cell-cycle progression, decreased tumor growth in a xenograft murine model, and increased animal survival. Analysis of RNA sequencing data revealed that PIM3 knockout downregulated expression of pro-migratory and pro-invasive genes and upregulated expression of genes involved in apoptosis and differentiation. Furthermore, PIM3 knockout decreased hepatoblastoma cancer cell stemness as evidenced by decreased tumorsphere formation, decreased mRNA abundance of stemness markers, and decreased cell surface expression of CD133, a marker of hepatoblastoma stem cell-like cancer cells. Reintroduction of PIM3 into PIM3 knockout cells rescued the malignant phenotype. Successful CRISPR/Cas9 knockout of PIM3 kinase in human hepatoblastoma cells confirmed the role of PIM3 in promoting hepatoblastoma tumorigenesis and cancer cell stemness.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Juliet L. Easlick
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|