1
|
Freitag T, Kaps P, Ramtke J, Bertels S, Zunke E, Schneider B, Becker AS, Koczan D, Dubinski D, Freiman TM, Wittig F, Hinz B, Westhoff MA, Strobel H, Meiners F, Wolter D, Engel N, Troschke-Meurer S, Bergmann-Ewert W, Staehlke S, Wolff A, Gessler F, Junghanss C, Maletzki C. Combined inhibition of EZH2 and CDK4/6 perturbs endoplasmic reticulum-mitochondrial homeostasis and increases antitumor activity against glioblastoma. NPJ Precis Oncol 2024; 8:156. [PMID: 39054369 PMCID: PMC11272933 DOI: 10.1038/s41698-024-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
He, we show that combined use of the EZH2 inhibitor GSK126 and the CDK4/6 inhibitor abemaciclib synergistically enhances antitumoral effects in preclinical GBM models. Dual blockade led to HIF1α upregulation and CalR translocation, accompanied by massive impairment of mitochondrial function. Basal oxygen consumption rate, ATP synthesis, and maximal mitochondrial respiration decreased, confirming disrupted endoplasmic reticulum-mitochondrial homeostasis. This was paralleled by mitochondrial depolarization and upregulation of the UPR sensors PERK, ATF6α, and IRE1α. Notably, dual EZH2/CDK4/6 blockade also reduced 3D-spheroid invasion, partially inhibited tumor growth in ovo, and led to impaired viability of patient-derived organoids. Mechanistically, this was due to transcriptional changes in genes involved in mitotic aberrations/spindle assembly (Rb, PLK1, RRM2, PRC1, CENPF, TPX2), histone modification (HIST1H1B, HIST1H3G), DNA damage/replication stress events (TOP2A, ATF4), immuno-oncology (DEPDC1), EMT-counterregulation (PCDH1) and a shift in the stemness profile towards a more differentiated state. We propose a dual EZH2/CDK4/6 blockade for further investigation.
Collapse
Affiliation(s)
- Thomas Freitag
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Justus Ramtke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sarah Bertels
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Emily Zunke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franziska Meiners
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Wolter
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Susanne Staehlke
- Institute for Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Florian Gessler
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Pecci V, Troisi F, Aiello A, De Martino S, Carlino A, Fiorentino V, Ripoli C, Rotili D, Pierconti F, Martini M, Porru M, Pinto F, Mai A, Bassi PF, Grassi C, Gaetano C, Pontecorvi A, Strigari L, Farsetti A, Nanni S. Targeting of H19/cell adhesion molecules circuitry by GSK-J4 epidrug inhibits metastatic progression in prostate cancer. Cancer Cell Int 2024; 24:56. [PMID: 38317193 PMCID: PMC10845766 DOI: 10.1186/s12935-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and β4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and β4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.
Collapse
Affiliation(s)
- Valeria Pecci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | - Fabiola Troisi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
| | | | - Sara De Martino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- National Research Council (CNR)-IASI, Rome, Italy
| | - Angela Carlino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Vincenzo Fiorentino
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cristian Ripoli
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Francesco Pierconti
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maurizio Martini
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Woman, Child and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS- Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pinto
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Pier Francesco Bassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Claudio Grassi
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, S. Orsola, Malpighi University Hospital, Bologna, Italy
| | | | - Simona Nanni
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Rome, 00168, Italy.
- Fondazione "Policlinico Universitario A. Gemelli IRCCS", Rome, Italy.
| |
Collapse
|
3
|
孙 江, 邢 家, 谭 茹, 钱 颖, 田 男. [Curcumol reverses temozolomide resistance in glioma cells by regulating the UTX/MGMT axis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1697-1705. [PMID: 37933645 PMCID: PMC10630207 DOI: 10.12122/j.issn.1673-4254.2023.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To explore the mechanism through which curcumol reverses primary drug resistance in glioma cells. METHODS The inhibitory effect of 10, 20, and 40 μg/mL curcumol were observed in human glioma cell lines A172 and U251. UTX-overexpressing glioma cells constructed by lentiviral transfection were treated with curcumol (40 μg/mL), temozolomide (TMZ; 10 μg/mL), or both, and the changes in cell viability, clone formation capacity and apoptosis were assessed using MTT assay, cell clone formation experiment, and flow cytometry; UTX activity in the cells was determined using a UTX detection kit, and the enrichment of UTX and H3K27me3 in the MGMT promoter region was detected with ChiP-qPCR. The protein expressions in glioma cells were detected using Western blotting and immunohistochemistry. In a nude mouse model bearing glioma xenografts, the effects of curcumol (20 mg/kg), TMZ (20 mg/kg) and their combination on tumor growth and expressions of UTX, H3K27me3 and MGMT were evaluated. RESULTS Curcumol significantly inhibited the proliferation (P<0.05) and promoted apoptosis of cultured glioma cells (P<0.01). Curcumol, but not TMZ, produced significant inhibitory effect on tumor growth in the tumor-bearing mice (P<0.01). Curcumol significantly inhibited UTX activity and increased the expression level of H3K27me3 protein in the glioma cells. UTX overexpression obviously decreased H3K27me3 protein expression and reversed the effects of curcumol on glioma cell proliferation and apoptosis (P<0.01). Curcumol reduced the enrichment of UTX and H3K27me3 in the MGMT promoter region (P<0.05) and decreased MGMT protein expression, which was reversed by UTX overexpression. In both the in vivo and in vitro experiments, curcumol combined with TMZ significantly increased H3K27me3 protein expression in the glioma cells, reduced the expression of its downstream target gene MGMT, and enhanced TMZ sensitivity of the glioma cells. CONCLUSION Curcumol can enhance glioma cell sensitivity to TMZ by regulating the UTX/MGMT axis.
Collapse
Affiliation(s)
- 江川 孙
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 家恒 邢
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 茹雪 谭
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 颖 钱
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - 男 田
- />浙江中医药大学生命科学学院,浙江 杭州 310053School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
5
|
Chen YH, Chen CH, Chien CY, Su YY, Luo SD, Li SH. JMJD3 suppresses tumor progression in oral tongue squamous cell carcinoma patients receiving surgical resection. PeerJ 2022; 10:e13759. [PMID: 35855897 PMCID: PMC9288160 DOI: 10.7717/peerj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Jumonji domain-containing-3 (JMJD3) is reported to be a histone H3 lysine 27 (H3K27) demethylase and a tumor suppressor gene. The present study designed to investigate the crucial role of JMJD3 in oral tongue squamous cell carcinoma (OTSCC) patients who received surgical resection. Methods We enrolled a total of 156 OTSCC patients receiving surgical resection, including 73 patients (47%) with high expression of JMJD3 and 83 patients (53%) harboring low expression of JMJD3. Two OTSCC cell lines, SAS and Cal 27, were used to explore the modulation of cancer. GSK-J4, a potent inhibitor of JMJD3, was used to treat the two OTSCC cell lines. The Chi-square test was performed to examine between-group differences in categorical variables; the Kaplan-Meier method was used to investigate survival outcome in univariate analysis, and the Cox regression model was used for multivariate analysis. Results The median follow-up period was 59.2 months and he five-year disease-free survival (DFS) and overall survival (OS) rates were 46.2% and 50.0%, respectively. Better five-year DFS (59% versus 35%) and five-year OS (63% versus 39%) were mentioned in patients with high expression of JMJD3 compared to those with low expression of JMJD3. High expression of JMJD3 was significantly associated with superior DFS and OS in the univariate and multivariate analyses. Following successful inhibition of JMJD3 by GSK-J4, western blotting analysis showed the decreased expression of Rb and p21. Conclusion Our study showed that high expression of JMJD3 is a good prognostic factor in OTSCC patients who underwent surgical resection.
Collapse
Affiliation(s)
- Yen-Hao Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Department of Nursing, School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yan-Ye Su
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
7
|
Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Effects of GSK-J4 on JMJD3 Histone Demethylase in Mouse Prostate Cancer Xenografts. Cancer Genomics Proteomics 2022; 19:339-349. [PMID: 35430567 DOI: 10.21873/cgp.20324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Histone methylation status is required to control gene expression. H3K27me3 is an epigenetic tri-methylation modification to histone H3 controlled by the demethylase JMJD3. JMJD3 is dysregulated in a wide range of cancers and has been shown to control the expression of a specific growth-modulatory gene signature, making it an interesting candidate to better understand prostate tumor progression in vivo. This study aimed to identify the impact of JMJD3 inhibition by its inhibitor, GSK4, on prostate tumor growth in vivo. MATERIALS AND METHODS Prostate cancer cell lines were implanted into Balb/c nude male mice. The effects of the selective JMJD3 inhibitor GSK-J4 on tumor growth were analyzed by bioluminescence assays and H3K27me3-regulated changes in gene expression were analyzed by ChIP-qPCR and RT-qPCR. RESULTS JMJD3 inhibition contributed to an increase in tumor growth in androgen-independent (AR-) xenografts and a decrease in androgen-dependent (AR+). GSK-J4 treatment modulated H3K27me3 enrichment on the gene panel in DU-145-luc xenografts while it had little effect on PC3-luc and no effect on LNCaP-luc. Effects of JMJD3 inhibition affected the panel gene expression. CONCLUSION JMJD3 has a differential effect in prostate tumor progression according to AR status. Our results suggest that JMJD3 is able to play a role independently of its demethylase function in androgen-independent prostate cancer. The effects of GSK-J4 on AR+ prostate xenografts led to a decrease in tumor growth.
Collapse
Affiliation(s)
- Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France.,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, Clermont-Ferrand, France; .,INSERM U 1240 Molecular Imagery and Theranostic Strategies (IMoST), Clermont-Ferrand, France
| |
Collapse
|
8
|
The promising role of new molecular biomarkers in prostate cancer: from coding and non-coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis 2022; 25:431-443. [PMID: 35422101 PMCID: PMC9385485 DOI: 10.1038/s41391-022-00537-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
Background Risk stratification or progression in prostate cancer is performed with the support of clinical-pathological data such as the sum of the Gleason score and serum levels PSA. For several decades, methods aimed at the early detection of prostate cancer have included the determination of PSA serum levels. The aim of this systematic review is to provide an overview about recent advances in the discovery of new molecular biomarkers through transcriptomics, genomics and artificial intelligence that are expected to improve clinical management of the prostate cancer patient. Methods An exhaustive search was conducted by Pubmed, Google Scholar and Connected Papers using keywords relating to the genetics, genomics and artificial intelligence in prostate cancer, it includes “biomarkers”, “non-coding RNAs”, “lncRNAs”, “microRNAs”, “repetitive sequence”, “prognosis”, “prediction”, “whole-genome sequencing”, “RNA-Seq”, “transcriptome”, “machine learning”, and “deep learning”. Results New advances, including the search for changes in novel biomarkers such as mRNAs, microRNAs, lncRNAs, and repetitive sequences, are expected to contribute to an earlier and accurate diagnosis for each patient in the context of precision medicine, thus improving the prognosis and quality of life of patients. We analyze several aspects that are relevant for prostate cancer including its new molecular markers associated with diagnosis, prognosis, and prediction to therapy and how bioinformatic approaches such as machine learning and deep learning can contribute to clinic. Furthermore, we also include current techniques that will allow an earlier diagnosis, such as Spatial Transcriptomics, Exome Sequencing, and Whole-Genome Sequencing. Conclusion Transcriptomic and genomic analysis have contributed to generate knowledge in the field of prostate carcinogenesis, new information about coding and non-coding genes as biomarkers has emerged. Synergies created by the implementation of artificial intelligence to analyze and understand sequencing data have allowed the development of clinical strategies that facilitate decision-making and improve personalized management in prostate cancer.
Collapse
|
9
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Yildirim-Buharalioglu G. KDM6B Regulates Prostate Cancer Cell Proliferation by Controlling c-MYC Expression. Mol Pharmacol 2021; 101:106-119. [PMID: 34862309 DOI: 10.1124/molpharm.121.000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Elevated expression of lysine demethylase 6A (KDM6A) and 6B (KDM6B) has been reported in prostate cancer (PCa). However, the mechanism underlying the specific role of KDM6A/B in PCa is still fragmentary. Here, we report novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. KDM6A and KDM6B mRNAs were higher in LNCaP but not in PC3 and DU145 cells. Higher KDM6A mRNA was confirmed at the protein level. A metastasis associated gene focussed oligonucleotide array was performed to identify KDM6A/B dependent genes in LNCaP cells treated with a KDM6 family selective inhibitor, GSK-J4. This identified 5 genes (c-MYC, NF2, CTBP1, EPHB2, PLAUR) that were decreased more than 50 % by GSK-J4 and c-MYC was the most downregulated gene. Array data was validated by quantitative RT-PCR, which detected a reduction in c-MYC steady state mRNA and pre-spliced mRNA, indicative of transcriptional repression of c-MYC gene expression. Furthermore, c-MYC protein was also decreased by GSK-J4. Importantly, GSK-J4 reduced mRNA and protein levels of c-MYC target gene, CyclinD1 (CCND1). Silencing of KDM6A/B with siRNA confirmed that expression of both c-MYC and CCND1 are dependent on KDM6B. Phosphorylated Retinoblastoma (pRb), a marker of G1 to S-phase transition, was decreased by GSK-J4 and KDM6B silencing. GSK-J4 treatment resulted decrease in cell proliferation and cell number, detected by MTS assay and conventional cell counting, respectively. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa cell proliferation, which represents KDM6B as a promising epigenetic target for the treatment of advanced PCa. Significance Statement Lysine demethylase 6A (KDM6A) and 6B (KDM6B) were upregulated in prostate cancer (PCa). Here, we reported novel KDM6A/B downstream targets involved in controlling PCa cell proliferation. Amongst 84 metastasis associated genes, c-MYC was the most inhibited gene by KDM6 family inhibitor, GSK-J4. This was accompanied by decreased c-MYC target gene, CCND1 and pRb, which were selectively dependent on KDM6B. GSK-J4 decreased proliferation and cell counting. Consequently, we conclude that KDM6B controlling c-MYC, CCND1 and pRb contribute regulation of PCa proliferation.
Collapse
|
11
|
Idrissou M, Boisnier T, Sanchez A, Khoufaf FZH, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. TIP60/P400/H4K12ac Plays a Role as a Heterochromatin Back-up Skeleton in Breast Cancer. Cancer Genomics Proteomics 2021; 17:687-694. [PMID: 33099470 DOI: 10.21873/cgp.20223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/AIM In breast cancer, initiation of carcinogenesis leads to epigenetic dysregulation, which can lead for example to the loss of the heterochromatin skeleton SUV39H1/H3K9me3/HP1 or the supposed secondary skeleton TIP60/P400/H4K12ac/BRD (2/4), which allows the maintenance of chromatin integrity and plasticity. This study investigated the relationship between TIP60, P400 and H4K12ac and their implications in breast tumors. MATERIALS AND METHODS Seventy-seven patients diagnosed with breast cancer were included in this study. Chromatin immunoprecipitation (ChIP) assay was used to identify chromatin modifications. Western blot and reverse transcription and quantitative real-time PCR were used to determine protein and gene expression, respectively. RESULTS We verified the variation in H4K12ac enrichment and the co-localization of H4K12ac and TIP60 on the euchromatin and heterochromatin genes, respectively, by ChIP-qPCR and ChIP-reChIP, which showed an enrichment of H4K12ac on specific genes in tumors compared to the adjacent healthy tissue and a co-localization of H4K12ac with TIP60 in different breast tumor types. Furthermore, RNA and protein expression of TIP60 and P400 was investigated and overexpression of TIP60 and P400 mRNA was associated with tumor aggressiveness. CONCLUSION There is a potential interaction between H4K12ac and TIP60 in heterochromatin or euchromatin in breast tumors.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Frederique Penault-Llorca
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France .,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| |
Collapse
|
12
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
13
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
14
|
Houfaf Khoufaf FZ, Sanchez A, Idrissou M, Boisnier T, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Role of UTX Histone Demethylase in Regulation of MGMT, TRA2A, U2AF1, and RPS6KA2 Genes in Prostate Cancer Cell Lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 25:129-131. [PMID: 33337267 DOI: 10.1089/omi.2020.0183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| |
Collapse
|
15
|
Xu X, Wang J, Yan C, Men Y, Jiang H, Fang H, Xu X, Yang J. [Association of JMJD3, MMP-2 and VEGF expressions with clinicopathological features of invasive ductal breast carcinoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1593-1600. [PMID: 33243732 DOI: 10.12122/j.issn.1673-4254.2020.11.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To examine the expressions of JMJD3, matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in invasive ductal breast carcinoma, their association with the clinicopathological features of the patients and the effect of JMJD3 overexpression on proliferation and MMP-2 and VEGF expressions in breast cancer cells. METHODS The protein and mRNA expressions of JMJD3, MMP-2, and VEGF in invasive ductal breast carcinoma and paired adjacent tissues were detected by immunohistochemistry and RT-PCR, respectively, and their correlation with the clinicopathological characteristics of the patients was analyzed. Kaplan-Meier survival analysis was used to evaluate the correlation of JMJD3, MMP-2 and VEGF expression levels with the survival of the patients. In breast cancer MDA-MB-231 cells transfected with a JMJD3-expression plasmid, the expression of Ki67 was examined immunohistochemically, the cell proliferation was assessed with CCK8 assay, and the mRNA expressions of MMP-2 and VEGF were detected with RT-PCR. RESULTS Breast cancer tissues had significantly lower JMJD3 expression and higher MMP-2 and VEGF expressions at both the mRNA and protein levels than the adjacent tissue (P < 0.05). The positivity rates of JMJD3, MMP-2 and VEGF in breast cancer tissues were significantly correlated with tumor diameter, differentiation, TNM stage, lymph node metastasis, and molecular subtypes (P < 0.05). KaplanMeier analysis showed that JMJD3 expression level was positively while MMP-2 and VEGF were inversely correlated with the disease-free survival time of the patients (P < 0.05). Cox regression analysis identified JMJD3, MMP-2, VEGF and tumor differentiation as independent prognostic factors of breast cancer. Spearman correlation analysis suggested a negative correlation of JMJD3 with MMP2 (r=-0.569, P < 0.05) and VEGF (r=-0.533, P < 0.05) and a positive correlation between MMP2 and VEGF (r=0.923, P < 0.05). In MDA-MB-231 cells, overexpression of JMJD3 inhibited the proliferation of MDA-MB-231 cells and the expression of MMP-2 and VEGF. CONCLUSIONS The expressions of JMJD3, MMP-2 and VEGF in invasive ductal breast carcinoma are closely correlated to tumor proliferation, invasion, metastasis and prognosis and can be used for prognostic evaluation of breast cancer.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Jianjun Wang
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Chen Yan
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Yingli Men
- Academician Workstation, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Huang Jiang
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Huijuan Fang
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Xianwei Xu
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Jinhua Yang
- Department of Pathology, People's Hospital of Zhengzhou, Zhengzhou 450000, China
| |
Collapse
|
16
|
Sapio L, Salzillo A, Ragone A, Illiano M, Spina A, Naviglio S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers (Basel) 2020; 12:cancers12113166. [PMID: 33126560 PMCID: PMC7693618 DOI: 10.3390/cancers12113166] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Only 5% of all drug-related targets currently move from preclinical to clinical in cancer, and just some of them achieve patient’s bedside. Among others, intratumor heterogeneity and preclinical cancer model limitations actually represent the main reasons for this failure. Cyclic-AMP response element-binding protein (CREB) has been defined as a proto-oncogene in different tumor types, being involved in maintenance and progression. Due to its relevance in tumor pathophysiology, many CREB inhibitor compounds have been developed and tested over the years. Herein, we examine the current state-of-the-art of both CREB and CREB inhibitors in cancer, retracing some of the most significant findings of the last years. While the scientific statement confers on CREB a proactive role in cancer, its therapeutic potential is still stuck at laboratory bench. Therefore, pursuing every concrete result to achieve CREB inhibition in clinical might give chance and future to cancer patients worldwide. Abstract Intratumor heterogeneity (ITH) is considered the major disorienting factor in cancer treatment. As a result of stochastic genetic and epigenetic alterations, the appearance of a branched evolutionary shape confers tumor plasticity, causing relapse and unfavorable clinical prognosis. The growing evidence in cancer discovery presents to us “the great paradox” consisting of countless potential targets constantly discovered and a small number of candidates being effective in human patients. Among these, cyclic-AMP response element-binding protein (CREB) has been proposed as proto-oncogene supporting tumor initiation, progression and metastasis. Overexpression and hyperactivation of CREB are frequently observed in cancer, whereas genetic and pharmacological CREB downregulation affects proliferation and apoptosis. Notably, the present review is designed to investigate the feasibility of targeting CREB in cancer therapy. In particular, starting with the latest CREB evidence in cancer pathophysiology, we evaluate the advancement state of CREB inhibitor design, including the histone lysine demethylases JMJD3/UTX inhibitor GSKJ4 that we newly identified as a promising CREB modulator in leukemia cells. Moreover, an accurate analysis of strengths and weaknesses is also conducted to figure out whether CREB can actually represent a therapeutic candidate or just one of the innumerable preclinical cancer targets.
Collapse
|
17
|
Idrissou M, Lebert A, Boisnier T, Sanchez A, Houfaf Khoufaf FZ, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Digging Deeper into Breast Cancer Epigenetics: Insights from Chemical Inhibition of Histone Acetyltransferase TIP60 In Vitro. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:581-591. [PMID: 32960142 DOI: 10.1089/omi.2020.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is often sporadic due to several factors. Among them, the deregulation of epigenetic proteins may be involved. TIP60 or KAT5 is an acetyltransferase that regulates gene transcription through the chromatin structure. This pleiotropic protein acts in several cellular pathways by acetylating proteins. RNA and protein expressions of TIP60 were shown to decrease in some breast cancer subtypes, particularly in triple-negative breast cancer (TNBC), where a low expression of TIP60 was exhibited compared with luminal subtypes. In this study, the inhibition of the residual activity of TIP60 in breast cancer cell lines was investigated by using two chemical inhibitors, TH1834 and NU9056, first on the acetylation of the specific target, lysine 4 of histone 3 (H3K4) by immunoblotting, and second, by chromatin immunoprecipitation (ChIP)-qPCR (-quantitative Polymerase Chain Reaction). Subsequently, significant decreases or a trend toward decrease of H3K4ac in the different chromatin compartments were observed. In addition, the expression of 48 human nuclear receptors was studied with TaqMan Low-Density Array in these breast cancer cell lines treated with TIP60 inhibitors. The statistical analysis allowed us to comprehensively characterize the androgen receptor and NR3C2 receptors in TNBC cell lines after TH1834 or NU9056 treatment. The understanding of the residual activity of TIP60 in the evolution of breast cancer might be a major asset in the fight against this disease, and could allow TIP60 to be used as a biomarker or therapeutic target for breast cancer progression in the future.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Andre Lebert
- University Blaise Pascal, Institut Pascal UMR 6602 CNRS/UBP, Aubière, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), Clermont-Ferrand, France
| |
Collapse
|
18
|
Sanchez A, El Ouardi D, Houfaf Khoufaf FZ, Idrissou M, Boisnier T, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. Role of JMJD3 Demethylase and Its Inhibitor GSK-J4 in Regulation of MGMT, TRA2A, RPS6KA2, and U2AF1 Genes in Prostate Cancer Cell Lines. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:505-507. [PMID: 32525734 DOI: 10.1089/omi.2020.0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Driss El Ouardi
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Fatma Zohra Houfaf Khoufaf
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Tiphanie Boisnier
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| |
Collapse
|
19
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
20
|
El Ouardi D, Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Guy L, Bernard-Gallon D. The Inhibition of the Histone Methyltransferase EZH2 by DZNEP or SiRNA Demonstrates Its Involvement in MGMT, TRA2A, RPS6KA2, and U2AF1 Gene Regulation in Prostate Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 24:116-118. [PMID: 31895624 DOI: 10.1089/omi.2019.0162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Driss El Ouardi
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| | - Laurent Guy
- INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France.,Department of Urology, Gabriel Montpied Hospital, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand, France.,INSERM-U1240-Molecular Imaging and Theranostic Strategies (IMOST), Clermont-Ferrand, France
| |
Collapse
|
21
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential Pathobiological Implications. Cancers (Basel) 2019; 11:cancers11111729. [PMID: 31694235 PMCID: PMC6895793 DOI: 10.3390/cancers11111729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
High mobility group box B (HMGB) proteins are pivotal in the development of cancer. Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB proteins and their interactome in PCa is an unexplored field of considerable interest. We describe herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast 2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa HMGB interactome has been validated through expression and prognosis data available on public databases. Copy number alterations (CNA) affecting these newly described HMGB interactome components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes are also associated with the worse prognosis. These findings open the way to their potential use as discriminatory biomarkers between high and low risk patients. Gene expression of a selected set of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing. The data show that HMGB1 and HMGB2 control the expression of several of their interactome partners, which might contribute to the orchestrated action of these proteins in PCa
Collapse
|
23
|
Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother 2019; 118:109384. [PMID: 31545292 DOI: 10.1016/j.biopha.2019.109384] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, stem cells are reported to be involved in tumor formation, drug resistance and recurrence. Inhibiting the proliferation of tumor cells, promoting their senescence and apoptosis has been the most important anti-tumor therapy. Epigenetics is involved in the regulation of gene expression and is closely related to cancer and stem cells. It mainly includes DNA methylation, histone modification, and chromatin remodeling. Histone methylation and demethylation play an important role in histone modification. Histone 3 lysine 27 trimethylation (H3K27me3) induces transcriptional inhibition and plays an important role in gene expression. Jumonji domain-containing protein-3 (JMJD3), one of the demethyases of histone H3K27me3, has been reported to be associated with the prognosis of many cancers and stem cells differentiation. Inhibition of JMJD3 can reduce proliferation and promote apoptosis in tumor cells, as well as suppress differentiation in stem cells. GSK-J4 is an inhibitor of demethylase JMJD3 and UTX, which has been shown to possess anti-cancer and inhibition of embryonic stem cells differentiation effects. In this review, we examine how JMJD3 regulates cellular fates of stem cells and cancer cells and references were identified through searches of PubMed, Medline, Web of Science.
Collapse
Affiliation(s)
- Xiaojiao Yin
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Siyu Yang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
24
|
Hong BJ, Park WY, Kim HR, Moon JW, Lee HY, Park JH, Kim SK, Oh Y, Roe JS, Kim MY. Oncogenic KRAS Sensitizes Lung Adenocarcinoma to GSK-J4-Induced Metabolic and Oxidative Stress. Cancer Res 2019; 79:5849-5859. [PMID: 31506334 DOI: 10.1158/0008-5472.can-18-3511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
Genetic and epigenetic changes (e.g., histone methylation) contribute to cancer development and progression, but our understanding of whether and how specific mutations affect a cancer's sensitivity to histone demethylase (KDM) inhibitors is limited. Here, we evaluated the effects of a panel of KDM inhibitors on lung adenocarcinomas (LuAC) with various mutations. Notably, LuAC lines harboring KRAS mutations showed hypersensitivity to the histone H3K27 demethylase inhibitor GSK-J4. Specifically, GSK-J4 treatment of KRAS mutant-containing LuAC downregulated cell-cycle progression genes with increased H3K27me3. In addition, GSK-J4 upregulated expression of genes involved in glutamine/glutamate transport and metabolism. In line with this, GSK-J4 reduced cellular levels of glutamate, a key source of the TCA cycle intermediate α-ketoglutarate (αKG) and of the antioxidant glutathione, leading to reduced cell viability. Supplementation with an αKG analogue or glutathione protected KRAS-mutant LuAC cells from GSK-J4-mediated reductions in viability, suggesting GSK-J4 exerts its anticancer effects by inducing metabolic and oxidative stress. Importantly, KRAS knockdown in mutant LuAC lines prevented GSK-J4-induced decrease in glutamate levels and reduced their susceptibility to GSK-J4, whereas overexpression of oncogenic KRAS in wild-type LuAC lines sensitized them to GSK-J4. Collectively, our study uncovers a novel association between a genetic mutation and KDM inhibitor sensitivity and identifies the underlying mechanisms. This suggests GSK-J4 as a potential treatment option for cancer patients with KRAS mutations. SIGNIFICANCE: This study not only provides a novel association between KRAS mutation and GSK-J4 sensitivity but also demonstrates the underlying mechanisms, suggesting a potential use of GSK-J4 in cancer patients with KRAS mutations.
Collapse
Affiliation(s)
- Beom-Jin Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Woo-Yong Park
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Jin Woo Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | | | - Jun Hyung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Youngbin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea. .,KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Daejeon, South Korea
| |
Collapse
|
25
|
McCann TS, Sobral LM, Self C, Hsieh J, Sechler M, Jedlicka P. Biology and targeting of the Jumonji-domain histone demethylase family in childhood neoplasia: a preclinical overview. Expert Opin Ther Targets 2019; 23:267-280. [PMID: 30759030 DOI: 10.1080/14728222.2019.1580692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Epigenetic mechanisms of gene regulatory control play fundamental roles in developmental morphogenesis, and, as more recently appreciated, are heavily implicated in the onset and progression of neoplastic disease, including cancer. Many epigenetic mechanisms are therapeutically targetable, providing additional incentive for understanding of their contribution to cancer and other types of neoplasia. Areas covered: The Jumonji-domain histone demethylase (JHDM) family exemplifies many of the above traits. This review summarizes the current state of knowledge of the functions and pharmacologic targeting of JHDMs in cancer and other neoplastic processes, with an emphasis on diseases affecting the pediatric population. Expert opinion: To date, the JHDM family has largely been studied in the context of normal development and adult cancers. In contrast, comparatively few studies have addressed JHDM biology in cancer and other neoplastic diseases of childhood, especially solid (non-hematopoietic) neoplasms. Encouragingly, the few available examples support important roles for JHDMs in pediatric neoplasia, as well as potential roles for JHDM pharmacologic inhibition in disease management. Further investigations of JHDMs in cancer and other types of neoplasia of childhood can be expected to both enlighten disease biology and inform new approaches to improve disease outcomes.
Collapse
Affiliation(s)
- Tyler S McCann
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Lays M Sobral
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Chelsea Self
- b Department of Pediatrics , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Joseph Hsieh
- c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Marybeth Sechler
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| | - Paul Jedlicka
- a Department of Pathology , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,c Medical Scientist Training Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA.,d Cancer Biology Program , University of Colorado Denver, Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
26
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
27
|
Chen Y, Gu M, Liu C, Wan X, Shi Q, Chen Q, Wang Z. Long noncoding RNA FOXC2-AS1 facilitates the proliferation and progression of prostate cancer via targeting miR-1253/EZH2. Gene 2018; 686:37-42. [PMID: 30389560 DOI: 10.1016/j.gene.2018.10.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
The vital roles of long noncoding RNAs (lncRNAs) in the cancers have been evidenced. However, there are still numerous unsolved queries for the molecular mechanism. This study tries to investigate the role of lncRNA FOXC2-AS1 in the human prostate cancer tumorigenesis. Results stated that lncRNA FOXC2-AS1 was ectopically up-regulated in prostate cancer tissue and cells. The over-expression of FOXC2-AS1 indicates the poor prognosis of prostate cancer patients. Functionally, the gain- and loss-of-functional experiments revealed that FOXC2-AS1 promoted the proliferation and tumor growth of prostate cancer cells in vitro and in vivo. Mechanically, we found that miR-1253 targeted FOXC2-AS1 at the 3'‑untranslated regions (UTR), which in turn bind the EZH2 mRNA 3-UTR. Luciferase reporter assay and rescue experiment confirmed the FOXC2-AS1/miR-1253/EZH2 pathway. In conclusion, we confirmed that lncRNA FOXC2-AS1 accelerated the tumor progression of prostate cancer cells by regulating the proliferation and tumor growth through miR-1253/EZH2 axis.
Collapse
Affiliation(s)
- Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiling Shi
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|