1
|
Mull ML, Pratt SJP, Thompson KN, Annis DA, Gad AA, Lee RM, Chang KT, Stemberger MB, Ju JA, Gilchrist DE, Boyman L, Vitolo MI, Lederer WJ, Martin SS. Disruption of P2Y2 signaling promotes breast tumor cell dissemination by reducing ATP-dependent calcium elevation and actin localization to cell junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.31.533191. [PMID: 37034765 PMCID: PMC10081304 DOI: 10.1101/2023.03.31.533191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The tumor microenvironment and wound healing after injury both contain extremely high concentrations of the extracellular signaling molecule, adenosine triphosphate (ATP) compared to normal tissue. P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here we report its role and importance in breast epithelial cell signaling and how it is altered in metastatic breast cancer. In response to ATP activation, P2Y2 receptor signaling causes an increase of intracellular Ca 2+ in non-tumorigenic breast epithelial cells, while their tumorigenic and metastatic counterparts have significantly reduced Ca 2+ responses. The non-tumorigenic cells respond to increased Ca 2+ with actin polymerization and localization to cell edges, while the metastatic cells remained unaffected. The increase in intracellular Ca 2+ after ATP stimulation was blunted using a P2Y2 antagonist, which also prevented actin mobilization and caused cell dissemination from spheroids in non-tumorigenic breast epithelial cells. Furthermore, the lack of Ca 2+ concentration changes and actin mobilization in the metastatic breast cancer cells could be due to reduced P2Y2 expression, which correlates with poorer overall survival in breast cancer patients. This study elucidates rapid changes that occur after elevated intracellular Ca 2+ in breast epithelial cells and how metastatic cancer cells have adapted to evade this cellular response.
Collapse
|
2
|
Yang X, Ma X, Croucher DR, Nguyen EV, Clark KC, Hu C, Latham SL, Zhao T, Bayly-Jones C, Nguyen VCB, Shin SY, Nguyen LK, Cotton TR, Chüeh AC, Kam Sian TCCL, Stratton MM, Ellisdon AM, Daly RJ. Feed-forward stimulation of CAMK2 by the oncogenic pseudokinase PEAK1 generates a therapeutically 'actionable' signalling axis in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580406. [PMID: 38405732 PMCID: PMC10888886 DOI: 10.1101/2024.02.14.580406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCγ1/Ca 2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro . Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca 2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.
Collapse
|
3
|
Silva PMG, Pinheiro PF, Camões SP, Ribeiro APC, Martins LMDRS, Miranda JPG, Justino GC. Exploring the Mechanisms behind the Anti-Tumoral Effects of Model C-Scorpionate Complexes. Molecules 2023; 28:5451. [PMID: 37513324 PMCID: PMC10385556 DOI: 10.3390/molecules28145451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The growing worldwide cancer incidence, coupled to the increasing occurrence of multidrug cancer resistance, requires a continuous effort towards the identification of new leads for cancer management. In this work, two C-scorpionate complexes, [FeCl2(κ3-Tpm)] (1) and [Co(κ3-TpmOH)2](NO3)2 (2), (Tpm = hydrotris(pyrazol-1-yl)methane and TpmOH = 2,2,2-tris(pyrazol-1-yl)ethanol), were studied as potential scaffolds for future anticancer drug development. Their cytotoxicity and cell migration inhibitory activity were analyzed, and an untargeted metabolomics approach was employed to elucidate the biological processes significantly affected by these two complexes, using two tumoral cell lines (B16 and HCT116) and a non-tumoral cell line (HaCaT). While [FeCl2(κ3-Tpm)] did not display a significant cytotoxicity, [Co(κ3-TpmOH)2](NO3)2 was particularly cytotoxic against the HCT116 cell line. While [Co(κ3-TpmOH)2](NO3)2 significantly inhibited cell migration in all tested cell lines, [FeCl2(κ3-Tpm)] displayed a mixed activity. From a metabolomics perspective, exposure to [FeCl2(κ3-Tpm)] was associated with changes in various metabolic pathways involving tyrosine, where iron-dependent enzymes are particularly relevant. On the other hand, [Co(κ3-TpmOH)2](NO3)2 was associated with dysregulation of cell adhesion and membrane structural pathways, suggesting that its antiproliferative and anti-migration properties could be due to changes in the overall cellular adhesion mechanisms.
Collapse
Affiliation(s)
- Pedro M G Silva
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Pedro F Pinheiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana P C Ribeiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Luísa M D R S Martins
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Joana P G Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gonçalo C Justino
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Fnu G, Weber GF. Alterations of Ion Homeostasis in Cancer Metastasis: Implications for Treatment. Front Oncol 2022; 11:765329. [PMID: 34988012 PMCID: PMC8721045 DOI: 10.3389/fonc.2021.765329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that metastases from all malignancies are characterized by a core program of gene expression that suppresses extracellular matrix interactions, induces vascularization/tissue remodeling, activates the oxidative metabolism, and alters ion homeostasis. Among these features, the least elucidated component is ion homeostasis. Here we review the literature with the goal to infer a better mechanistic understanding of the progression-associated ionic alterations and identify the most promising drugs for treatment. Cancer metastasis is accompanied by skewing in calcium, zinc, copper, potassium, sodium and chloride homeostasis. Membrane potential changes and water uptake through Aquaporins may also play roles. Drug candidates to reverse these alterations are at various stages of testing, with some having entered clinical trials. Challenges to their utilization comprise differences among tumor types and the involvement of multiple ions in each case. Further, adverse effects may become a concern, as channel blockers, chelators, or supplemented ions will affect healthy and transformed cells alike.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Georg F Weber
- College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| |
Collapse
|
6
|
Pratt SJP, Hernández-Ochoa E, Martin SS. Calcium signaling: breast cancer's approach to manipulation of cellular circuitry. Biophys Rev 2020; 12:1343-1359. [PMID: 33569087 PMCID: PMC7755621 DOI: 10.1007/s12551-020-00771-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Stuart S Martin
- Program in Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD USA.,Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Bressler Research Building, Rm 10-020 D, Baltimore, MD 21201 USA
| |
Collapse
|
7
|
Pratt SJP, Lee RM, Chang KT, Hernández-Ochoa EO, Annis DA, Ory EC, Thompson KN, Bailey PC, Mathias TJ, Ju JA, Vitolo MI, Schneider MF, Stains JP, Ward CW, Martin SS. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca 2+ signals that are inhibited by oncogenic KRas. Proc Natl Acad Sci U S A 2020; 117:26008-26019. [PMID: 33020304 PMCID: PMC7584994 DOI: 10.1073/pnas.2009495117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Rachel M Lee
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Katarina T Chang
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David A Annis
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Eleanor C Ory
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Keyata N Thompson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Patrick C Bailey
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Trevor J Mathias
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Julia A Ju
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Michele I Vitolo
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher W Ward
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD 21201
- School of Nursing, University of Maryland, Baltimore, MD 21201
| | - Stuart S Martin
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201;
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum National Cancer Institute Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|