1
|
Paphussaro W, Roytrakul S, Phaonakrop N, Buthasane W, Rungsipipat A, Tharasanit T, Suriyaphol G. Analysis of serum peptidome profiles of non-metastatic and metastatic feline mammary carcinoma using liquid chromatography-tandem mass spectrometry. BMC Vet Res 2024; 20:280. [PMID: 38951817 PMCID: PMC11218297 DOI: 10.1186/s12917-024-04148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is a common aggressive and highly metastatic cancer affecting female cats. Early detection is essential for preventing local and distant metastasis, thereby improving overall survival rates. While acquiring molecular data before surgery offers significant potential benefits, the current protein biomarkers for monitoring disease progression in non-metastatic FMC (NmFMC) and metastatic FMC (mFMC) are limited. The objective of this study was to investigate the serum peptidome profiles of NmFMC and mFMC using liquid chromatography-tandem mass spectrometry. A cross-sectional study was conducted to compare serum peptidome profiles in 13 NmFMC, 23 mFMC and 18 healthy cats. The liquid chromatography-tandem mass spectrometry analysis was performed on non-trypsinized samples. RESULTS Out of a total of 8284 expressed proteins observed, several proteins were found to be associated with human breast cancer. In NmFMC, distinctive protein expressions encompassed double-stranded RNA-binding protein Staufen homolog 2 (STAU2), associated with cell proliferation, along with bromodomain adjacent to zinc finger domain 2A (BAZ2A) and gamma-aminobutyric acid type A receptor subunit epsilon (GABRE), identified as potential treatment targets. Paradoxically, positive prognostic markers emerged, such as complement C1q like 3 (C1QL3) and erythrocyte membrane protein band 4.1 (EPB41 or 4.1R). Within the mFMC group, overexpressed proteins associated with poor prognosis were exhibited, including B-cell lymphoma 6 transcription repressor (BCL6), thioredoxin reductase 3 (TXNRD3) and ceruloplasmin (CP). Meanwhile, the presence of POU class 5 homeobox (POU5F1 or OCT4) and laminin subunit alpha 1 (LAMA1), reported as metastatic biomarkers, was noted. CONCLUSION The presence of both pro- and anti-proliferative proteins was observed, potentially indicating a distinctive characteristic of NmFMC. Conversely, proteins associated with poor prognosis and metastasis were noted in the mFMC group.
Collapse
Affiliation(s)
- Weejarin Paphussaro
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Zhang H, Ouyang C. BTB protein family and human breast cancer: signaling pathways and clinical progress. J Cancer Res Clin Oncol 2023; 149:16213-16229. [PMID: 37682360 DOI: 10.1007/s00432-023-05314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Breast cancer is considered the number one killer of women both in China and abroad, and the leading cause of cancer death. It severely affects female health-related quality of life. Broad-complex, tramtrack, bric à brac (BTB) protein family was first discovered in drosophila as early as in 1993 by Godt D and peers, since then, more family members and their critical biological functions were uncovered. Moreover, researchers around the world have recently demonstrated that numerous signaling pathways connect BTB family members and human breast cancer. PURPOSE In this review, we critically discuss these findings regarding the essential mechanisms and functions of the BTB protein family in mediating the organic processes of human breast cancer. Meanwhile, we summarize the signaling pathways the BTB protein family participates in. And we address that BTB proteins regulate the growth, apoptosis, and other behaviors of breast cancer cells. We also point out the future directions for further studies in this field. METHODS The relevant online literatures have been reviewed for this article. CONCLUSION This review could offer an update on novel molecular targets for treating human breast cancer and new insights into BTB protein family research.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xi Cheng District, Beijing, 100037, China.
| |
Collapse
|
3
|
Tamma R, Ingravallo G, Annese T, d’Amati A, Lorusso L, Ribatti D. Tumor Microenvironment and Microvascular Density in Human Glioblastoma. Cells 2022; 12:cells12010011. [PMID: 36611806 PMCID: PMC9818990 DOI: 10.3390/cells12010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive form of cancer affecting the central nervous system. Although it occurs almost exclusively in the brain, glioblastoma can also appear in the brainstem, cerebellum, and spinal cord. It is characterized by high rates of proliferation, invasion, and necrosis. Moreover, GBM is a highly vascularized tumor and presents resistance to therapy. Recent data indicate that GBM cells are surrounded by a microenvironment (TME) which includes a complex network constituted of cellular/extracellular components and vessels able to influence both tumor growth and angiogenesis. In this retrospective study, we evaluated 30 bioptic specimens of adult patients diagnosed with IDH1 wild type GBM taken at the time of the first diagnosis. Each section has been divided into two experimental zones: the tumor side and the healthy surrounding tissue. We performed a series of immunohistochemical stainings with the purpose of evaluating the presence of total and M2 macrophages, CD4+-, CD8+-lymphocytes, and CD34+ microvessels. In addition, we have also evaluated the percentage of cells expressing bcl6 and p53 to determine any possible correlations with TME. Our data showed a significant increase in the total and M2 type macrophages, of CD4+ and CD8+ lymphocytes, and of CD34+ microvessels in the tumoral area respective to the healthy zone. We also confirmed our previous data showing the higher number of p53 and BCL6+ cells in the tumor area with a positive correlation between BCL6 and CD34+ microvessels. In conclusion, the data that came from this work support the important role played by microenvironment components in GBM progression. These results could contribute to the generation of new specific therapies useful in preventing GBM progression.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (R.T.); (D.R.); Tel.: +39-0805478323 (D.R.); Fax: +39-0805478310 (D.R.)
| | - Giuseppe Ingravallo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy
| | - Tiziana Annese
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) Giuseppe Degennaro University, 70010 Bari, Italy
| | - Antonio d’Amati
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Medical School, 70124 Bari, Italy
| | - Loredana Lorusso
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (R.T.); (D.R.); Tel.: +39-0805478323 (D.R.); Fax: +39-0805478310 (D.R.)
| |
Collapse
|
4
|
Patterns of immune infiltration and survival in endocrine therapy-treated ER-positive breast cancer: A computational study of 1900 patients. Biomed Pharmacother 2022; 155:113787. [DOI: 10.1016/j.biopha.2022.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
|
5
|
In Vitro Evaluation of Antitumor and Immunomodulatory Potential of Curcumin Nano-emulsion on Breast Cancer. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
7
|
Macrophage Infiltration Correlates with Genomic Instability in Classic Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10030579. [PMID: 35327381 PMCID: PMC8945507 DOI: 10.3390/biomedicines10030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 12/10/2022] Open
Abstract
Hodgkin lymphoma (HL) is a biologically diverse group of lymphoid tumors, which accounts for 1% of all de novo neoplasms in the world’s population. It is divided into two main groups: the more common classic Hodgkin lymphoma (cHL) and the less common nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL). cHL is further divided into four subtypes, which differ in morphology and the contents of tumor microenvironment. Macrophages are one of the components of tumor microenvironment known to contribute to creating an immunosuppressive microenvironment, which inhibits the activity of cells expressing granzyme B against tumor cells, even when tumor cells are infected with Epstein–Barr virus (EBV). Our research aimed to explore the association between the specific contents of tumor microenvironment and the genetic anomalies in tumor cells. The presence and the relative percentage of cytotoxic T lymphocytes and macrophages was detected by immunohistochemical staining of the antigens specific for certain cell populations. Fluorescent in situ hybridization was used to detect anomalies in the genome of tumor cells and in situ hybridization was used to detect the presence of EBV. Our results show an association between the number of CD163+ macrophages and the number of TP53 copies or BCL6 gene translocation. Patients who had a higher number of CD163+ macrophages infiltrating tumor tissue and three or higher number of copies of TP53 showed poorer survival. We conclude that the presence of macrophages may contribute to genetic instability in cHL, which drives the progression of cHL and decreases survival of the patients.
Collapse
|
8
|
Ribatti D, Annese T, Tamma R. Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clin Breast Cancer 2021; 21:486-491. [PMID: 34580034 DOI: 10.1016/j.clbc.2021.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer is a neoplastic disease and is a cause of cancer-related mortality for women. Among cellular and molecular regulators of the microenvironment, mast cells and vascular endothelial growth factor (VEGF), are correlated with tumor progression and prognosis in breast cancer. Clinical and experimental studies on breast cancer have revealed a marked correlation between increased angiogenesis, metastasization, and poorer prognosis. After a brief introduction on angiogenesis evidence and angiogenic factors role in different breast cancer subtypes, in this article, we have discerned the relationship between mast cell infiltration, angiogenesis, and tumor progression in human breast cancer with particular reference to the dual role of mast cells, in terms of both pro- or anti-tumoral activity and poor or good biomarker.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
9
|
Liu J, Kuang S, Zheng Y, Liu M, Wang L. Prognostic and predictive significance of the tumor microenvironment in hepatocellular carcinoma. Cancer Biomark 2021; 32:99-110. [PMID: 34092607 DOI: 10.3233/cbm-203003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Identification of molecular markers that reflect the characteristics of the tumor microenvironment (TME) may be beneficial to predict the prognosis of post-operative hepatocellular carcinoma (HCC) patients. OBJECTIVE AND METHODS A total of 100 tissue samples from HCC patients were separately stained by immunohistochemistry to examine the expression levels of CD56, CD8α, CD68, FoxP3, CD31 and pan-Keratin. The prognostic values were analyzed by Cox regression and the Kaplan-Meier method. RESULTS Univariate and multivariate logistic analysis showed that FoxP3 was the independent factor associated with microvascular invasion (MVI), tumor size and envelop invasion; CD68 was associated with envelope invasion and AFP. Kaplan-Meier survival curves revealed that CD68 and FoxP3 expression were significantly associated with relapse free survival (RFS) of HCC patients (P< 0.05). The ROC curve indicated that the combination of tumor number, MVI present and CD68 expression yielded a ROC curve area of 82.3% (86.36% specificity, 68.75% sensitivity) to evaluate the prognosis of HCC patients, which was higher than the classifier established by the combination of tumor number and MVI (78.8% probability, 63.64% specificity and 85.42% sensitivity). CONCLUSIONS Our study indicated that CD68 and FoxP3 are associated with prognosis of HCC patients, and CD68 can be considered as a potential prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Jibing Liu
- Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Interventional Surgical Oncology, Cancer Hospital of Shandong Province, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yiling Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Wang S, Weng W, Chen T, Xu M, Wei P, Li J, Lu L, Wang Y. LINC00152 Promotes Tumor Progression and Predicts Poor Prognosis by Stabilizing BCL6 From Degradation in the Epithelial Ovarian Cancer. Front Oncol 2020; 10:555132. [PMID: 33282727 PMCID: PMC7690314 DOI: 10.3389/fonc.2020.555132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA 00152 (LINC00152) is tumorigenic in multiple somatic malignancies. However, its prognostic significance and molecular mechanisms in the epithelial ovarian cancer (EOC) remain elusive. Here our study reveals that dysregulation of LINC00152 is a predictor of poor prognosis in patients with EOC and facilitates ovarian tumor growth and metastasis both in vitro and in vivo; the expression of LINC00152 positively correlates with the protein levels of BCL6 in EOC tissues and ovarian tumor cells; LINC00152 binds to Ser333 and Ser343 of BCL6 protein and stabilizes BCL6 from poly-ubiquitination thus facilitating the oncogenic functions in EOC. Moreover, overexpression of the mutant BCL6S333A/S343A fails to rescue the reduced proliferation and invasion caused by the knockdown of endogenous BCL6 in LINC00152-overexpressing cells. Our study might not only offer clues to the network of lncRNA-protein interactions but also provide potential therapeutic targets for the tumor pharmacology.
Collapse
Affiliation(s)
- Shunni Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tingting Chen
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Li
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Linghui Lu
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yiqin Wang
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
11
|
Inflammatory Cells in Diffuse Large B Cell Lymphoma. J Clin Med 2020; 9:jcm9082418. [PMID: 32731512 PMCID: PMC7463675 DOI: 10.3390/jcm9082418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Diffuse large B cell lymphoma (DLBCL), known as the most common non-Hodgkin lymphoma (NHL) subtype, is characterized by high clinical and biological heterogeneity. The tumor microenvironment (TME), in which the tumor cells reside, is crucial in the regulation of tumor initiation, progression, and metastasis, but it also has profound effects on therapeutic efficacy. The role of immune cells during DLBCL development is complex and involves reciprocal interactions between tumor cells, adaptive and innate immune cells, their soluble mediators and structural components present in the tumor microenvironment. Different immune cells are recruited into the tumor microenvironment and exert distinct effects on tumor progression and therapeutic outcomes. In this review, we focused on the role of macrophages, Neutrophils, T cells, natural killer cells and dendritic cells in the DLBCL microenvironment and their implication as target for DLBCL treatment. These new therapies, carried out by the induction of adaptive immunity through vaccination or passive of immunologic effectors delivery, enhance the ability of the immune system to react against the tumor antigens inducing the destruction of tumor cells.
Collapse
|
12
|
Tamma R, Ingravallo G, Gaudio F, Annese T, Albano F, Ruggieri S, Dicataldo M, Maiorano E, Specchia G, Ribatti D. STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk Lymphoma 2019; 61:567-574. [DOI: 10.1080/10428194.2019.1678154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Francesco Gaudio
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Albano
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michele Dicataldo
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
13
|
Tamma R, Rutigliano M, Lucarelli G, Annese T, Ruggieri S, Cascardi E, Napoli A, Battaglia M, Ribatti D. Microvascular density, macrophages, and mast cells in human clear cell renal carcinoma with and without bevacizumab treatment. Urol Oncol 2019; 37:355.e11-355.e19. [PMID: 30738745 DOI: 10.1016/j.urolonc.2019.01.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/31/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) represents a highly vascularized aggressive kidney cancer. Due to ccRCC chemotherapy resistance, antiangiogenesis is one of the most innovative targeted therapies for this tumor. The tumor microenvironment exerts important roles in tumor growth, angiogenesis, and metastatic escape. MATERIALS AND METHODS In this study, we investigated the composition of tumor cell microenvironment including mast cells, macrophages, and microvascular density in ccRCC tumor tissues collected from patients who underwent nephrectomy treated or not with bevacizumab as neoadjuvant therapy before surgery. RESULTS The results of this study indicate that bevacizumab-treated ccRCC samples present reduced microvascular density as well as a lower number of CD68-positive macrophages and tryptase-positive mast cells in comparison with the untreated patients. CONCLUSIONS It follows that the antiangiogenic activity of bevacizumab may be due to a direct effect on angiogenic cytokines released by tumor cells and an indirect effect on the release of pro-angiogenic factors by inflammatory stromal cells.
Collapse
Affiliation(s)
- Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Monica Rutigliano
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari Medical School, Bari, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organ Transplantation-Section of Pathology, University of Bari Medical School, Bari, Italy
| | - Anna Napoli
- Department of Emergency and Organ Transplantation-Section of Pathology, University of Bari Medical School, Bari, Italy
| | - Michele Battaglia
- Department of Emergency and Organ Transplantation-Urology, Andrology and Kidney Transplantation Unit, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| |
Collapse
|