1
|
Caval V, Jiao W, Berry N, Khalfi P, Pitré E, Thiers V, Vartanian JP, Wain-Hobson S, Suspène R. Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA. BMC Genomics 2019; 20:858. [PMID: 31726973 PMCID: PMC6854741 DOI: 10.1186/s12864-019-6216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1 cytidine deaminases to chromosomal DNA. Results Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1 have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be singular, being able to introduce somatic mutations into nuclear DNA with a clear 5’TpC editing context, and to deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B. Conclusions At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving rise to off-target editing of mammalian genomes.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.
| | - Wenjuan Jiao
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Pierre Khalfi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Emmanuelle Pitré
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Valérie Thiers
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
2
|
Yang Z, Tao Y, Xu X, Cai F, Yu Y, Ma L. Bufalin inhibits cell proliferation and migration of hepatocellular carcinoma cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway. Biochem Biophys Res Commun 2018; 503:2124-2131. [PMID: 30100060 DOI: 10.1016/j.bbrc.2018.07.169] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to evaluate functions of APOBEC3F gene in biological process of hepatocellular carcinoma (HCC) and anti-tumor mechanisms of bufalin. METHODS Effect of APOBEC3F and bufalin on cell proliferation and migration abilities were evaluated by CCK-8, wounding healing tests and transwell assays in SK-Hep1 and Bel-7404 cells. Bioinformatic analysis were also used to compare APOBEC3F expression levels, detect coexpressed genes and enrichment of pathways. RESULTS APOBEC3F was overexpressed in tumor tissues compared to adjacent tissues in HCC patients. And, APOBEC3F promotes cell proliferation and migration in SK-Hep1 and Bel-7404 cells. Bufalin inhibits cell proliferation and migration and reduces APOBEC3F expression. GO and KEGG enrichment of APOBEC3F-coexpressed genes revealed that APOBEC3F might active intestinal immune network for IgA production signaling pathway, leading to malignant biological behaviors of HCC cells. Additionally, siAPOBEC3F could decrease pIgR, CCR9, CCR10 and CXCR4 protein levels. And, bufalin inhibits the pIgR, CCR9, CCR10 and CXCR4 protein expressions. CONCLUSIONS Bufalin inhibits cell proliferation and migration of HCC cells via APOBEC3F induced intestinal immune network for IgA production signaling pathway.
Collapse
Affiliation(s)
- Zongguo Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, PR China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China; Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China.
| | - Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China.
| |
Collapse
|