1
|
Wongpattaraworakul W, Gibson-Corley KN, Choi A, Buchakjian MR, Lanzel EA, Rajan KD A, Simons AL. Prognostic Role of Combined EGFR and Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:885236. [PMID: 35957892 PMCID: PMC9357911 DOI: 10.3389/fonc.2022.885236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundEpidermal growth factor receptor (EGFR) is well known as a general prognostic biomarker for head and neck tumors, however the specific prognostic value of EGFR in oral squamous cell carcinoma (OSCC) is controversial. Recently, the presence of tumor-infiltrating T cells has been associated with significant survival advantages in a variety of disease sites. The present study will determine if the inclusion of T cell specific markers (CD3, CD4 and CD8) would enhance the prognostic value of EGFR in OSCCs.MethodsTissue microarrays containing 146 OSCC cases were analyzed for EGFR, CD3, CD4 and CD8 expression using immunohistochemical staining. EGFR and T cell expression scores were correlated with clinicopathological parameters and survival outcomes.ResultsResults showed that EGFR expression had no impact on overall survival (OS), but EGFR-positive (EGFR+) OSCC patients demonstrated significantly worse progression free survival (PFS) compared to EGFR-negative (EGFR-) patients. Patients with CD3, CD4 and CD8-positive tumors had significantly better OS compared to CD3, CD4 and CD8-negative patients respectively, but no impact on PFS. Combined EGFR+/CD3+ expression was associated with cases with no nodal involvement and significantly more favorable OS compared to EGFR+/CD3- expression. CD3 expression had no impact on OS or PFS in EGFR- patients. Combinations of EGFR/CD8 and EGFR/CD4 expression showed no significant differences in OS or PFS among the expression groups.ConclusionAltogether these results suggest that the expression of CD3+ tumor-infiltrating T cells can enhance the prognostic value of EGFR expression and warrants further investigation as prognostic biomarkers for OSCC.
Collapse
Affiliation(s)
- Wattawan Wongpattaraworakul
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allen Choi
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Marisa R. Buchakjian
- Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Emily A. Lanzel
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Anand Rajan KD
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Andrean L. Simons
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
- *Correspondence: Andrean L. Simons,
| |
Collapse
|
2
|
Youn GM, Case AG, Jarin T, Li B, Swarup A, Naranjo A, Bou-Khalil C, Yao J, Zhou Q, Hom ME, Rosenthal EL, Wu AY. The Use of Panitumumab-IRDye800CW in a Novel Murine Model for Conjunctival Squamous Cell Carcinoma. Transl Vis Sci Technol 2022; 11:23. [PMID: 35895055 PMCID: PMC9344218 DOI: 10.1167/tvst.11.7.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Conjunctival squamous cell carcinoma (SCC) is a sight-threatening ocular surface malignancy with the primary treatment modality being surgical resection. To evaluate surgical imaging modalities to improve surgical resection, we established a novel murine model for conjunctival SCC to demonstrate the utility of panitumumab-IRDye800, a fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibody. Methods NOD-scid IL2Rgammanull (NSG) mice received subconjunctival injection of UM-SCC-1 or SCC-9, head and neck SCC cell lines. On tumor growth, mice were injected with Panitumumab-IRDye800CW, and imaged with a small animal imaging system and optical coherence tomography (OCT). Immunohistochemistry for SCC markers were used to confirm tumor origin. Results Seventy-five percent (N = 4) of the UM-SCC-1 group developed aggressive, rapidly growing tumors that were P40 and EGFR positive within two weeks of inoculation. The SCC-9 tumors failed to demonstrate any growth (N = 4). Ocular tumors demonstrated high fluorescence levels with a tumor to background ratio of 3.8. Conclusions Subconjunctival injections are an appropriate technique to create in vivo models for assessing treatment modalities and novel therapies in conjunctival SCC. Translational Relevance This model demonstrates Panitumumab-IRDye800CW's utility in the ophthalmic setting and suggests that clinical trials may be warranted.
Collapse
Affiliation(s)
- Gun Min Youn
- Stanford University School of Medicine, Stanford, CA, USA.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ayden G Case
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA.,Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Trent Jarin
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - BaoXiang Li
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrea Naranjo
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charbel Bou-Khalil
- Stanford University School of Medicine, Stanford, CA, USA.,Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jacqueline Yao
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Quan Zhou
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Marisa E Hom
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eben L Rosenthal
- Department of Otolaryngology-Head and Neck Surgery, Stanford Hospital and Clinics, Stanford, CA, USA.,Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Ratkaj I, Mušković M, Malatesti N. Targeting Microenvironment of Melanoma and Head and Neck Cancers
in Photodynamic Therapy. Curr Med Chem 2022; 29:3261-3299. [DOI: 10.2174/0929867328666210709113032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Background:
Photodynamic therapy (PDT), in comparison to other skin cancers,
is still far less effective for melanoma, due to the strong absorbance and the role of
melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in
tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression
to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours
in the head and neck region that indicates negative prognosis.
Objective:
The aim of this study was to individuate and describe systematically the main
strategies in targeting the TME, especially hypoxia, in PDT against melanoma and head
and neck cancers (HNC), and assess the current success in their application.
Methods:
PubMed was used for searching, in MEDLINE and other databases, for the
most recent publications on PDT against melanoma and HNC in combination with the
TME targeting and hypoxia.
Results:
In PDT for melanoma and HNC, it is very important to control hypoxia levels,
and amongst the different approaches, oxygen self-supply systems are often applied. Vascular
targeting is promising, but to improve it, optimal drug-light interval, and formulation
to increase the accumulation of the photosensitiser in the tumour vasculature, have to
be established. On the other side, the use of angiogenesis inhibitors, such as those interfering
with VEGF signalling, is somewhat less successful than expected and needs to be
further investigated.
Conclusion:
The combination of PDT with immunotherapy by using multifunctional nanoparticles
continues to develop and seems to be the most promising for achieving a
complete and lasting antitumour effect.
Collapse
Affiliation(s)
- Ivana Ratkaj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Martina Mušković
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Nela Malatesti
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
4
|
Packeiser EM, Taher L, Kong W, Ernst M, Beck J, Hewicker-Trautwein M, Brenig B, Schütz E, Murua Escobar H, Nolte I. RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures. Cancer Cell Int 2022; 22:54. [PMID: 35109825 PMCID: PMC8812184 DOI: 10.1186/s12935-021-02422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. METHODS This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. RESULTS Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. CONCLUSION Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057, Rostock, Germany
| | - Weibo Kong
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Mathias Ernst
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Bertram Brenig
- University of Göttingen, Institute of Veterinary Medicine, Göttingen, Germany
| | | | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, Rostock, Germany.
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany.
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
5
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
6
|
Evaluation of the Targeting and Therapeutic Efficiency of Anti-EGFR Functionalised Nanoparticles in Head and Neck Cancer Cells for Use in NIR-II Optical Window. Pharmaceutics 2021; 13:pharmaceutics13101651. [PMID: 34683944 PMCID: PMC8537270 DOI: 10.3390/pharmaceutics13101651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Gold nanoparticles have been indicated for use in a diagnostic and/or therapeutic role in several cancer types. The use of gold nanorods (AuNRs) with a surface plasmon resonance (SPR) in the second near-infrared II (NIR-II) optical window promises deeper anatomical penetration through increased maximum permissible exposure and lower optical attenuation. In this study, the targeting and therapeutic efficiency of anti-epidermal growth factor receptor (EGFR)-antibody-functionalised AuNRs with an SPR at 1064 nm was evaluated in vitro. Four cell lines, KYSE-30, CAL-27, Hep-G2 and MCF-7, which either over- or under-expressed EGFR, were used once confirmed by flow cytometry and immunofluorescence. Optical microscopy demonstrated a significant difference (p < 0.0001) between targeted AuNRs (tAuNRs) and untargeted AuNRs (uAuNRs) in all four cancer cell lines. This study demonstrated that anti-EGFR functionalisation significantly increased the association of tAuNRs with each EGFR-positive cancer cell. Considering this, the MTT assay showed that photothermal therapy (PTT) significantly increased cancer cell death (>97%) in head and neck cancer cell line CAL-27 using tAuNRs but not uAuNRs, apoptosis being the major mechanism of cell death. This successful targeting and therapeutic outcome highlight the future use of tAuNRs for molecular photoacoustic imaging or tumour treatment through plasmonic photothermal therapy.
Collapse
|
7
|
Vageli DP, Doukas SG, Doukas PG, Judson BL. Bile reflux and hypopharyngeal cancer (Review). Oncol Rep 2021; 46:244. [PMID: 34558652 PMCID: PMC8485019 DOI: 10.3892/or.2021.8195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Laryngopharyngeal reflux, a variant of gastroesophageal reflux disease, has been considered a risk factor in the development of hypopharyngeal cancer. Bile acids are frequently present in the gastroesophageal refluxate and their effect has been associated with inflammatory and neoplastic changes in the upper aerodigestive tract. Recent in vitro and in vivo studies have provided direct evidence of the role of acidic bile refluxate in hypopharyngeal carcinogenesis and documented the crucial role of NF-κB as a key mediator of early oncogenic molecular events in this process and also suggested a contribution of STAT3. Acidic bile can cause premalignant changes and invasive squamous cell cancer in the affected hypopharynx accompanied by DNA damage, elevated p53 expression and oncogenic mRNA and microRNA alterations, previously linked to head and neck cancer. Weakly acidic bile can also increase the risk for hypopharyngeal carcinogenesis by inducing DNA damage, exerting anti-apoptotic effects and causing precancerous lesions. The most important findings that strongly support bile reflux as an independent risk factor for hypopharyngeal cancer are presented in the current review and the underlying mechanisms are provided.
Collapse
Affiliation(s)
- Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Panagiotis G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Benjamin L Judson
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Beltrán Hernández I, Grinwis GC, Di Maggio A, van Bergen en Henegouwen PM, Hennink WE, Teske E, Hesselink JW, van Nimwegen SA, Mol JA, Oliveira S. Nanobody-targeted photodynamic therapy for the treatment of feline oral carcinoma: a step towards translation to the veterinary clinic. NANOPHOTONICS 2021; 10:3075-3087. [PMID: 36405501 PMCID: PMC9646246 DOI: 10.1515/nanoph-2021-0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
Nanobody-targeted photodynamic therapy (NB-PDT) has been developed as a potent and tumor-selective treatment, using nanobodies (NBs) to deliver a photosensitizer (PS) specifically to cancer cells. Upon local light application, reactive oxygen species are formed and consequent cell death occurs. NB-PDT has preclinically shown evident success and we next aim to treat cats with oral squamous cell carcinoma (OSCC), which has very limited therapeutic options and is regarded as a natural model of human head and neck SCC. Immunohistochemistry of feline OSCC tissue confirmed that the epidermal growth factor receptor (EGFR) is a relevant target with expression in cancer cells and not in the surrounding stroma. Three feline OSCC cell lines were employed together with a well-characterized human cancer cell line (HeLa), all with similar EGFR expression, and a low EGFR-expressing human cell line (MCF7), mirroring the EGFR expression level in the surrounding mucosal stroma. NBA was identified as a NB binding human and feline EGFR with comparable high affinity. This NB was developed into NiBh, a NB-PS conjugate with high PS payload able to effectively kill feline OSCC and HeLa cell lines, after illumination. Importantly, the specificity of NB-PDT was confirmed in co-cultures where only the feline OSCC cells were killed while surrounding MCF7 cells were unaffected. Altogether, NiBh can be used for NB-PDT to treat feline OSCC and further advance NB-PDT towards the human clinic.
Collapse
Affiliation(s)
- Irati Beltrán Hernández
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Guillaume C.M. Grinwis
- Department of Biomedical Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CLUtrecht, the Netherlands
| | - Alessia Di Maggio
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Paul M.P. van Bergen en Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| | - Wim E. Hennink
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
| | - Erik Teske
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Jan W. Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CMUtrecht, the Netherlands
| | - Sabrina Oliveira
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CGUtrecht, the Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CHUtrecht, the Netherlands
| |
Collapse
|
9
|
Sherin DR, Manojkumar TK. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach. Sci Rep 2021; 11:16251. [PMID: 34376738 PMCID: PMC8355261 DOI: 10.1038/s41598-021-95507-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Drug repurposing is one of the modern techniques used in the drug discovery to find out the new targets for existing drugs. Insilico methods have a major role in this approach. We used 60 FDA approved antiviral drugs reported in the last 50 years to screen against different cancer cell receptors. The thirteen compounds selected after virtual screening are analyzed for their druggability based on ADMET parameters and found the selectivity of guanine derivatives-didanosine, entecavir, acyclovir, valganciclovir, penciclovir, ganciclovir and valacyclovir as suitable candidates. The pharmacophore model, AARR, suggested based on the common feature alignment, shows that the two fused rings as in guanine and two acceptors-one from keto-oxygen (A5) and other from the substituent attached to nitrogen of imidazole ring (A4) give the druggability to the guanine derivatives. The NBO analysis on N9 is indicative of charge distribution from the ring to substituents, which results in delocalization of negative character in most of the ligands. The molecular dynamics simulations also pointed out the importance of guanine scaffold, which stabilizes the ligands inside the binding pocket of the receptor. All these results are indicative of the selectivity of guanine scaffold in anticancer drug development, especially as PARP1 inhibitors in breast, ovarian and prostate cancer. As these seven molecules are already approved by FDA, we can safely go for further preclinical trials.
Collapse
Affiliation(s)
- D R Sherin
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Trivandrum, Kerala, India.
| | - T K Manojkumar
- School of Digital Sciences, Kerala University of Digital Sciences, Innovation and Technology, Trivandrum, Kerala, India.
| |
Collapse
|
10
|
Kleszcz R, Skalski M, Krajka-Kuźniak V, Paluszczak J. The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur J Pharm Sci 2021; 166:105961. [PMID: 34363938 DOI: 10.1016/j.ejps.2021.105961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Novel therapeutics are required to improve treatment outcomes in head and neck squamous cell carcinoma (HNSCC) patients. Histone lysine demethylases (KDM) have emerged recently as new potential drug targets for HNSCC therapy. They might also potentiate the action of the inhibitors of EGFR and PI3K signaling pathways. This study aimed at evaluating the anti-cancer effects of KDM4 (ML324) and KDM6 (GSK-J4) inhibitors and their combinations with EGFR (erlotinib) and PI3K (HS-173) inhibitors in HNSCC cells. The effect of the inhibitors on the viability of CAL27 and FaDu cells was evaluated using resazurin assay. The effect of the chemicals on cell cycle and apoptosis was assessed using propidium iodide and Annexin V staining, respectively. The effect of the compounds on gene expression was determined using qPCR and Western blot. The changes in cell cycle distribution upon treatment with the compounds were small to moderate, with the exception of erlotinib, which induced G1 arrest. However, all the compounds and their combinations induced apoptosis in both cell lines. These effects were associated with changes in the level of expression of CDKN1A, CCND1 and BIRC5. The inhibition of KDM4 and KDM6 using ML324 and GSK-J4, respectively, can be regarded as a novel therapeutic strategy in HNSCC.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Marcin Skalski
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland.
| |
Collapse
|
11
|
Bußmann L, Hoffer K, von Bargen CM, Droste C, Lange T, Kemmling J, Schröder-Schwarz J, Vu AT, Akingunsade L, Nollau P, Rangarajan S, de Wijn R, Oetting A, Müller C, Böckelmann LC, Zech HB, Berger JC, Möckelmann N, Busch CJ, Böttcher A, Gatzemeier F, Klinghammer K, Simnica D, Binder M, Struve N, Rieckmann T, Schumacher U, Clauditz TS, Betz CS, Petersen C, Rothkamm K, Münscher A, Kriegs M. Analyzing tyrosine kinase activity in head and neck cancer by functional kinomics: Identification of hyperactivated Src family kinases as prognostic markers and potential targets. Int J Cancer 2021; 149:1166-1180. [PMID: 33890294 DOI: 10.1002/ijc.33606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
Signal transduction via protein kinases is of central importance in cancer biology and treatment. However, the clinical success of kinase inhibitors is often hampered by a lack of robust predictive biomarkers, which is also caused by the discrepancy between kinase expression and activity. Therefore, there is a need for functional tests to identify aberrantly activated kinases in individual patients. Here we present a systematic analysis of the tyrosine kinases in head and neck cancer using such a test-functional kinome profiling. We detected increased tyrosine kinase activity in tumors compared with their corresponding normal tissue. Moreover, we identified members of the family of Src kinases (Src family kinases [SFK]) to be aberrantly activated in the majority of the tumors, which was confirmed by additional methods. We could also show that SFK hyperphosphorylation is associated with poor prognosis, while inhibition of SFK impaired cell proliferation, especially in cells with hyperactive SFK. In summary, functional kinome profiling identified SFK to be frequently hyperactivated in head and neck squamous cell carcinoma. SFK may therefore be potential therapeutic targets. These results furthermore demonstrate how functional tests help to increase our understanding of cancer biology and support the expansion of precision oncology.
Collapse
Affiliation(s)
- Lara Bußmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Marie von Bargen
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Conrad Droste
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Kemmling
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Schröder-Schwarz
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anh Thu Vu
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Nollau
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Rik de Wijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Agnes Oetting
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General and Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henrike Barbara Zech
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Caroline Berger
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Möckelmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chia-Jung Busch
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina Struve
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Sebastian Clauditz
- Department of Pathology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology and Experimental Radiation Oncology, UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Doukas PG, Vageli DP, Sasaki CT, Judson BL. Pepsin Promotes Activation of Epidermal Growth Factor Receptor and Downstream Oncogenic Pathways, at Slightly Acidic and Neutral pH, in Exposed Hypopharyngeal Cells. Int J Mol Sci 2021; 22:ijms22084275. [PMID: 33924087 PMCID: PMC8074291 DOI: 10.3390/ijms22084275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pepsin refluxate is considered a risk factor for laryngopharyngeal carcinogenesis. Non-acidic pepsin was previously linked to an inflammatory and tumorigenic effect on laryngopharyngeal cells in vitro. Yet there is no clear evidence of the pepsin-effect on a specific oncogenic pathway and the importance of pH in this process. We hypothesized that less acidic pepsin triggers the activation of a specific oncogenic factor and related-signalling pathway. To explore the pepsin-effect in vitro, we performed intermittent exposure of 15 min, once per day, for a 5-day period, of human hypopharyngeal primary cells (HCs) to pepsin (1 mg/mL), at a weakly acidic pH of 5.0, a slightly acidic pH of 6.0, and a neutral pH of 7.0. We have documented that the extracellular environment at pH 6.0, and particularly pH 7.0, vs. pH 5.0, promotes the pepsin-effect on HCs, causing increased internalized pepsin and cell viability, a pronounced activation of EGFR accompanied by NF-κB and STAT3 activation, and a significant upregulation of EGFR, AKT1, mTOR, IL1β, TNF-α, RELA(p65), BCL-2, IL6 and STAT3. We herein provide new evidence of the pepsin-effect on oncogenic EGFR activation and its related-signaling pathway at neutral and slightly acidic pH in HCs, opening a window to further explore the prevention and therapeutic approach of laryngopharyngeal reflux disease.
Collapse
|
13
|
Deuss E, Gößwein D, Gül D, Zimmer S, Foersch S, Eger CS, Limburg I, Stauber RH, Künzel J. Growth Factor Receptor Expression in Oropharyngeal Squamous Cell Cancer: Her1-4 and c-Met in Conjunction with the Clinical Features and Human Papillomavirus (p16) Status. Cancers (Basel) 2020; 12:cancers12113358. [PMID: 33202816 PMCID: PMC7697064 DOI: 10.3390/cancers12113358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Growth factor expression is a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). Targeted therapy has a limited effect on the treatment of advanced stages due to evolving resistance mechanisms. The aim of this study was to assess the distribution of growth factor receptors in oropharyngeal squamous cell cancer (OPSCC) and evaluate their role in the context of the human papillomavirus status, prognosis and possible relevance for targeted therapy. Tissue microarrays of 78 primary OPSCC, 35 related lymph node metastasis, 6 distant metastasis and 9 recurrent tumors were manufactured to evaluate the expression of human epidermal growth factor receptor (EGFR/erbB/Her)1–4 and c-Met by immunohistochemistry. EGFR and c-Met are relevant negative prognostic factors especially in noxae-induced OPSCC. Thus, dual targeting of EGFR and c-Met could be a promising prospective target in OPSCC treatment. Frequent coexpression of assessed receptors represents a possible intrinsic resistance mechanism in targeted therapy. Abstract This study aimed to assess the distribution of growth factor receptors in oropharyngeal squamous cell cancer (OPSCC) and evaluate their role in the context of human papillomavirus (HPV) status, prognosis and potential relevance for targeted therapy. The protein expression of human epidermal growth factor receptor (Her)1–4 and c-Met were retrospectively assessed using semiquantitative immunohistochemistry on tissue microarrays and analyzed for correlations as well as differences in the clinicopathological criteria. Her1–4 and c-met were overexpressed compared to normal mucosa in 46%, 4%, 17%, 27% and 23%, respectively. Interestingly, most receptors were coexpressed. Her1 and c-Met were inversely correlated with p16 (p = 0.04; p = 0.02). Her2 and c-Met were associated with high tobacco consumption (p = 0.016; p = 0.04). High EGFR, Her3, Her4 and c-Met expression were associated with worse overall and disease-free survival (p ≤ 0.05). Furthermore, EGFR and c-Met expression showed raised hazard ratios of 2.53 (p = 0.02; 95% CI 1.24–5.18) and 2.45 (p = 0.02; 95% CI 1.13–5.35), respectively. Her4 was expressed less in distant metastases than in corresponding primary tumors and was correlated to a higher T category. EGFR and c-Met are relevant negative prognostic factors in OPSCC, independent of known clinicopathological parameters. We suggest dual targeting of EGFR and c-Met as a promising strategy for OPSCC treatment.
Collapse
Affiliation(s)
- Eric Deuss
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital, 45147 Essen, Germany
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Correspondence: ; Tel.: +49-0-177-8482208
| | - Dorothee Gößwein
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Stefanie Zimmer
- Institute of Pathology, University Medical Center, 55131 Mainz, Germany; (S.Z.); (S.F.)
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center, 55131 Mainz, Germany; (S.Z.); (S.F.)
| | - Claudia S. Eger
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Ivonne Limburg
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Julian Künzel
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (D.G.); (D.G.); (C.S.E.); (I.L.); (R.H.S.); (J.K.)
- Ear, Nose and Throat Department, University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Morlandt AB, Moore LS, Johnson AO, Smith CM, Stevens TM, Warram JM, MacDougall M, Rosenthal EL, Amm HM. Fluorescently Labeled Cetuximab-IRDye800 for Guided Surgical Excision of Ameloblastoma: A Proof of Principle Study. J Oral Maxillofac Surg 2020; 78:1736-1747. [PMID: 32554066 PMCID: PMC7541684 DOI: 10.1016/j.joms.2020.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Fluorescently labeled epidermal growth factor receptor (EGFR) antibodies have successfully identified microscopic tumors in multiple in vivo models of human cancers with limited toxicity. The present study sought to demonstrate the ability of fluorescently labeled anti-EGFR, cetuximab-IRDye800, to localize to ameloblastoma (AB) tumor cells in vitro and in vivo. MATERIAL AND METHODS EGFR expression in AB cells was confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Primary AB cells were labeled in vitro with cetuximab-IRDye800 or nonspecific IgG-IRDye800. An in vivo patient-derived xenograft (PDX) model of AB was developed. The tumor tissue from 3 patients was implanted subcutaneously into immunocompromised mice. The mice received an intravenous injection of cetuximab-IRDye800 or IgG-IRDye800 and underwent imaging to detect infrared fluorescence using a Pearl imaging system (LI-COR Biosciences, Lincoln, NE). After resection of the overlying skin, the tumor/background ratios (TBRs) were calculated and statistically analyzed using a paired t test. RESULTS EGFR expression was seen in all AB samples. Tumor-specific labeling was achieved, as evidenced by a positive fluorescence signal from cetuximab-IRDye800 binding to AB cells, with little staining seen in the negative controls treated with IgG-IRDye800. In the animal PDX model, imaging revealed that the TBRs produced by cetuximab were significantly greater than those produced by IgG on days 7 to 14 for AB-20 tumors. After skin flap removal to simulate a preresection state, the TBRs increased with cetuximab and were significantly greater than the TBRs with the IgG control for PDX tumors derived from the 3 patients with AB. The excised tissues were embedded in paraffin and examined to confirm the presence of tumor. CONCLUSIONS Fluorescently labeled anti-EGFR demonstrated specificity for AB cells and PDX tumors. The present study is the first report of tumor-specific, antibody-based imaging of odontogenic tumors, of which AB is one of the most clinically aggressive. We expect this technology will ultimately assist surgeons treating AB by helping to accurately assess the tumor margins during surgery, leading to improved long-term local tumor control and less surgical morbidity.
Collapse
Affiliation(s)
- Anthony B Morlandt
- Associate Professor and Section Chief, Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Lindsay S Moore
- Resident, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Aubrey O Johnson
- Student, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Caris M Smith
- Researcher II, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Todd M Stevens
- Associate Professor, Department of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jason M Warram
- Associate Professor, Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary MacDougall
- Dean and Professor, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Eben L Rosenthal
- Professor, Division of Otolaryngology - Head and Neck Surgery, and Associate Director, Department of Clinical Care, Stanford Cancer Institute, Stanford University, Stanford, CA
| | - Hope M Amm
- Assistant Professor, Department of Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
15
|
Tuomainen K, Al-Samadi A, Potdar S, Turunen L, Turunen M, Karhemo PR, Bergman P, Risteli M, Åström P, Tiikkaja R, Grenman R, Wennerberg K, Monni O, Salo T. Human Tumor-Derived Matrix Improves the Predictability of Head and Neck Cancer Drug Testing. Cancers (Basel) 2019; 12:cancers12010092. [PMID: 31905951 PMCID: PMC7017272 DOI: 10.3390/cancers12010092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/11/2019] [Accepted: 12/25/2019] [Indexed: 12/13/2022] Open
Abstract
In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma–derived matrix “Myogel” to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo–relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma–derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods.
Collapse
Affiliation(s)
- Katja Tuomainen
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.T.); (A.A.-S.); (M.T.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.T.); (A.A.-S.); (M.T.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland; (S.P.); (L.T.); (K.W.)
| | - Laura Turunen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland; (S.P.); (L.T.); (K.W.)
| | - Minna Turunen
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.T.); (A.A.-S.); (M.T.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Piia-Riitta Karhemo
- Research Programs Unit, Genome-Scale Biology Program and Medicum, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland; (P.-R.K.); (O.M.)
| | - Paula Bergman
- Biostatistics Consulting, Department of Public Health, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland;
| | - Maija Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (M.R.); (P.Å.); (R.T.)
| | - Pirjo Åström
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (M.R.); (P.Å.); (R.T.)
| | - Riia Tiikkaja
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (M.R.); (P.Å.); (R.T.)
| | - Reidar Grenman
- Department of Otorhinolaryngology—Head and Neck Surgery, Turku University Hospital, University of Turku, 20520 Turku, Finland;
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland; (S.P.); (L.T.); (K.W.)
- Biotech Research and Innovation Center, Department of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Outi Monni
- Research Programs Unit, Genome-Scale Biology Program and Medicum, Biochemistry and Developmental Biology, University of Helsinki, 00014 Helsinki, Finland; (P.-R.K.); (O.M.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.T.); (A.A.-S.); (M.T.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (M.R.); (P.Å.); (R.T.)
- Medical Research Center, Oulu University Hospital, 90014 Oulu, Finland
- Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence: ; Tel.: +358-40-544-1560
| |
Collapse
|
16
|
Rahman S, Kraljević Pavelić S, Markova-Car E. Circadian (De)regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20112662. [PMID: 31151182 PMCID: PMC6600143 DOI: 10.3390/ijms20112662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancer encompass different malignancies that develop in and around the throat, larynx, nose, sinuses and mouth. Most head and neck cancers are squamous cell carcinomas (HNSCC) that arise in the flat squamous cells that makeup the thin layer of tissue on the surface of anatomical structures in the head and neck. Each year, HNSCC is diagnosed in more than 600,000 people worldwide, with about 50,000 new cases. HNSCC is considered extremely curable if detected early. But the problem remains in treatment of inoperable cases, residues or late stages. Circadian rhythm regulation has a big role in developing various carcinomas, and head and neck tumors are no exception. A number of studies have reported that alteration in clock gene expression is associated with several cancers, including HNSCC. Analyses on circadian clock genes and their association with HNSCC have shown that expression of PER1, PER2, PER3, CRY1, CRY2,CKIε, TIM, and BMAL1 are deregulated in HNSCC tissues. This review paper comprehensively presents data on deregulation of circadian genes in HNSCC and critically evaluates their potential diagnostics and prognostics role in this type of pathology.
Collapse
Affiliation(s)
- Sadia Rahman
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| | - Elitza Markova-Car
- University of Rijeka, Department of Biotechnology, Centre for High-Throughput Technologies, 51000 Rijeka, Croatia.
| |
Collapse
|