1
|
Joudinaud R, Boudry A, Fenwarth L, Geffroy S, Salson M, Dombret H, Berthon C, Pigneux A, Lebon D, Peterlin P, Bouzy S, Flandrin-Gresta P, Tavernier E, Carre M, Tondeur S, Haddaoui L, Itzykson R, Bertoli S, Bidet A, Delabesse E, Hunault M, Récher C, Preudhomme C, Duployez N, Dumas PY. Midostaurin shapes macroclonal and microclonal evolution of FLT3-mutated acute myeloid leukemia. Blood Adv 2025; 9:365-374. [PMID: 39418643 DOI: 10.1182/bloodadvances.2024014672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
ABSTRACT Despite the use of midostaurin (MIDO) with intensive chemotherapy (ICT) as frontline treatment for Fms-like tyrosine kinase 3 (FLT3)-mutated acute myeloid leukemia (AML), complete remission rates are close to 60% to 70%, and relapses occur in >40% of cases. Here, we studied the molecular mechanisms underlying refractory/relapsed (R/R) disease in patients with FLT3-mutated AML. We conducted a retrospective and multicenter study involving 150 patients with R/R AML harboring FLT3-internal tandem duplication (ITD) (n = 130) and/or FLT3-tyrosine kinase domain mutation (n = 26) at diagnosis assessed by standard methods. Patients were treated with ICT + MIDO (n = 54) or ICT alone (n = 96) according to the diagnosis date and label of MIDO. The evolution of FLT3 clones and comutations was analyzed in paired diagnosis-R/R samples by targeted high-throughput sequencing. Using a dedicated algorithm for FLT3-ITD detection, 189 FLT3-ITD microclones (allelic ratio [AR] of <0.05) and 225 macroclones (AR ≥ 0.05) were detected at both time points. At R/R disease, the rate of FLT3-ITD persistence was lower in patients treated with ICT + MIDO than in patients not receiving MIDO (68% vs 87.5%; P = .011). In patients receiving ICT + MIDO, detection of multiple FLT3-ITD clones was associated with a higher FLT3-ITD persistence rate at R/R disease (multiple clones: 88% vs single clones: 57%; P = .049). If only 24% of FLT3-ITD microclones detected at diagnosis were retained at relapse, 43% became macroclones. Together, these results identify parameters influencing the fitness of FLT3-ITD clones.
Collapse
Affiliation(s)
- Romane Joudinaud
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Augustin Boudry
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
- ULR 2694 Metrics, Centre Hospitalier Universitaire de Lille, Université de Lille, Lille, France
| | - Laurène Fenwarth
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Sandrine Geffroy
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Mikaël Salson
- UMR 9189 Cristal, Centrale Lille, Centre National de la Recherche Scientifique, Université de Lille, Lille, France
| | - Hervé Dombret
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Berthon
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Department, Centre Hospitalier Universitaire Lille, Lille, France
| | - Arnaud Pigneux
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Delphine Lebon
- Hematology Department, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Pierre Peterlin
- Service d'hématologie clinique, Nantes University Hospital, Nantes, France
| | - Simon Bouzy
- Hematology Biology, Nantes University Hospital, Nantes, France
| | | | - Emmanuelle Tavernier
- Département d'hématologie clinique, Centre Hospitalier Universitaire de Saint-Étienne, Saint-Priest-en-Jarez, France
| | - Martin Carre
- Département d'hématologie, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Sylvie Tondeur
- Laboratoire de Génétique des hémopathies, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Lamya Haddaoui
- French Innovative Leukemia Organization Tumor Bank, Pitié-Salpêtrière Hospital, Paris, France
| | - Raphael Itzykson
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Sarah Bertoli
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Eric Delabesse
- Laboratoire d'Hématologie Biologique, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Mathilde Hunault
- Département des Maladies du Sang, Centre Hospitalier Universitaire Angers, INSERM, Centre National de la Recherche Scientifique, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers, Fédération Hospitalo-Universitaire Grand Ouest Against Leukemia, Université d'Angers, Université de Nantes, Angers, France
| | - Christian Récher
- Service d'Hématologie, Institut Universitaire du Cancer de Toulouse Oncopole, Centre Hospitalier Universitaire Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Claude Preudhomme
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Nicolas Duployez
- INSERM UMR1277, Centre National de la Recherche Scientifique UMR9020-CANTHER, Lille University Hospital, Université de Lille, Lille, France
- Hematology Laboratory, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-Yves Dumas
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Oduro KA, Spivey T, Moore EM, Meyerson H, Yoest J, Tomlinson B, Beck R, Alouani D, Sadri N. Clonal Dynamics and Relapse Risk Revealed by High-Sensitivity FLT3-Internal Tandem Duplication Detection in Acute Myeloid Leukemia. Mod Pathol 2024; 37:100534. [PMID: 38852814 DOI: 10.1016/j.modpat.2024.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
The ability to detect low-level disease is key to our understanding of clonal heterogeneity in acute myeloid leukemia (AML) and residual disease that elude conventional assays and seed relapse. We developed a high-sensitivity next-generation sequencing (HS-NGS) clinical assay, able to reliably detect low levels (1 × 10-5) of FLT3-ITD, a frequent, therapeutically targetable and prognostically relevant mutation in AML. By applying this assay to 289 longitudinal samples from 62 patients at initial diagnosis and/or clinical follow-up (mean follow-up of 22 months), we reveal the frequent occurrence of FLT3-ITD subclones at diagnosis and demonstrate a significantly decreased relapse risk when FLT3-ITD is cleared after induction or thereafter. We perform pairwise sequencing of diagnosis and relapse samples from 23 patients to uncover more detailed patterns of FLT3-ITD clonal evolution at relapse than is detectable by less-sensitive assays. Finally, we show that rising ITD level during consecutive biopsies is a harbinger of impending relapse. Our findings corroborate the emerging clinical utility of high-sensitivity FLT3-ITD testing and expands our understanding of clonal dynamics in FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Kwadwo Asare Oduro
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio.
| | - Theresa Spivey
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Erika M Moore
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Howard Meyerson
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jennifer Yoest
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Benjamin Tomlinson
- Department of Hematology/Oncology, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rose Beck
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - David Alouani
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Navid Sadri
- Department of Pathology and Laboratory Medicine, University Hospitals Cleveland Medical Center & Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
3
|
Schwede M, Jahn K, Kuipers J, Miles LA, Bowman RL, Robinson T, Furudate K, Uryu H, Tanaka T, Sasaki Y, Ediriwickrema A, Benard B, Gentles AJ, Levine R, Beerenwinkel N, Takahashi K, Majeti R. Mutation order in acute myeloid leukemia identifies uncommon patterns of evolution and illuminates phenotypic heterogeneity. Leukemia 2024; 38:1501-1510. [PMID: 38467769 PMCID: PMC11250774 DOI: 10.1038/s41375-024-02211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.
Collapse
Affiliation(s)
- Matthew Schwede
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
| | - Katharina Jahn
- Biomedical Data Science, Institute for Computer Science, Free University of Berlin, Berlin, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Linde A Miles
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Robert L Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidetaka Uryu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuya Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Asiri Ediriwickrema
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooks Benard
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Bergeron J, Capo-Chichi JM, Tsui H, Mahe E, Berardi P, Minden MD, Brandwein JM, Schuh AC. The Clinical Utility of FLT3 Mutation Testing in Acute Leukemia: A Canadian Consensus. Curr Oncol 2023; 30:10410-10436. [PMID: 38132393 PMCID: PMC10742150 DOI: 10.3390/curroncol30120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are detected in approximately 20-30% of patients with acute myeloid leukemia (AML), with the presence of a FLT3 internal tandem duplication (FLT3-ITD) mutation being associated with an inferior outcome. Assessment of FLT3 mutational status is now essential to define optimal upfront treatment in both newly diagnosed and relapsed AML, to support post-induction allogeneic hematopoietic stem cell transplantation (alloSCT) decision-making, and to evaluate treatment response via measurable (minimal) residual disease (MRD) evaluation. In view of its importance in AML diagnosis and management, the Canadian Leukemia Study Group/Groupe canadien d'étude sur la leucémie (CLSG/GCEL) undertook the development of a consensus statement on the clinical utility of FLT3 mutation testing, as members reported considerable inter-center variability across Canada with respect to testing availability and timing of use, methodology, and interpretation. The CLSG/GCEL panel identified key clinical and hematopathological questions, including: (1) which patients should be tested for FLT3 mutations, and when?; (2) which is the preferred method for FLT3 mutation testing?; (3) what is the clinical relevance of FLT3-ITD size, insertion site, and number of distinct FLT3-ITDs?; (4) is there a role for FLT3 analysis in MRD assessment?; (5) what is the clinical relevance of the FLT3-ITD allelic burden?; and (6) how should results of FLT3 mutation testing be reported? The panel followed an evidence-based approach, taken together with Canadian clinical and laboratory experience and expertise, to create a consensus document to facilitate a more uniform approach to AML diagnosis and treatment across Canada.
Collapse
Affiliation(s)
- Julie Bergeron
- CEMTL Installation Maisonneuve-Rosemont, Institut Universitaire d’Hématologie-Oncologie et de Thérapie Cellulaire, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jose-Mario Capo-Chichi
- Division of Clinical Laboratory Genetics, Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Hubert Tsui
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Laboratory Medicine and Pathobiology, Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Mahe
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Division of Hematology and Hematological Malignancies, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philip Berardi
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Ottawa, ON K1H 8M2, Canada;
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joseph M. Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Andre C. Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
5
|
Koo M, Song IC, Kim J, Kwon GC, Kim SY. Prognostic value of the mutation types and dynamics of FLT3-ITD in acute myeloid leukemia. Eur J Haematol 2023; 111:562-572. [PMID: 37435718 DOI: 10.1111/ejh.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVE The prognostic value of the mutation types and dynamics of FLT3-ITD in acute myeloid leukemia (AML) and other known factors were studied. METHODS Initial and follow-up samples from 45 AML patients with FLT3-ITD mutations were analyzed by fragment length analysis, Sanger sequencing, and next-generation sequencing. RESULTS Some patients (13%) had multiple FLT3-ITD mutations, and many of them had acute promyelocytic leukemia (APL). FLT3-ITD mutations were classified according to mutation types, including duplication-only FLT3-ITD (52%) and FLT3-ITD with duplications and insertions (dup + ins) (48%). The dup + ins FLT3-ITD variant was independently associated with poor prognosis among non-APL patients (odds ratio, 2.92) in addition to FLT3-ITD with ≥50% variant allele frequency (VAF). The VAFs of FLT3-ITD were low (median 2.2%) when detected during morphologic complete remission (CR) after conventional chemotherapy; however, in two patients treated with gilteritinib after relapse, the VAFs of FLT3-ITD were much higher (>95% and 8.1%) in the morphologic CR state. CONCLUSIONS The type of FLT3-ITD mutation is important in prognosis, and the dup + ins type of FLT3-ITD can be an indicator of poor prognosis. In addition, the FLT3-ITD mutation status may unexpectedly not match the morphologic examination results after gilteritinib treatment.
Collapse
Affiliation(s)
- Mosae Koo
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jimyung Kim
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Gye Cheol Kwon
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
- Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Molica M, Perrone S, Rossi M. Gilteritinib: The Story of a Proceeding Success into Hard-to-Treat FLT3-Mutated AML Patients. J Clin Med 2023; 12:3647. [PMID: 37297842 PMCID: PMC10253262 DOI: 10.3390/jcm12113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The traditionally dismal outcome of acute myeloid leukemia (AML) patients carrying the FMS-related tyrosine kinase 3 (FLT3) mutations has been mitigated by the recent introduction of tyrosine kinase inhibitors (TKI) into clinics, such as midostaurin and gilteritinib. The present work summarizes the clinical data that led to the use of gilteritinib in clinical practice. Gilteritinib is a second-generation TKI with deeper single-agent activity than first-generation drugs against both FLT3-ITD and TKD mutations in human studies. Moreover, the phase I/II dose-escalation, dose-expansion Chrysalis trial showed an acceptable safety profile of gilteritinib (diarrhea, elevated aspartate aminotransferase, febrile neutropenia, anemia, thrombocytopenia, sepsis, and pneumonia) and a 49% overall response rate (ORR) in 191 FLT3-mutated relapsed/refractory (R/R) AML patients. In 2019, the pivotal ADMIRAL trial showed that the median overall survival was significantly longer in patients treated with gilteritinib than among those receiving chemotherapy (9.3 vs. 5.6 months, respectively) and the ORR to gilteritinib was 67.6%, outperforming the 25.8% for chemotherapy arm and leading to the license for its clinical use by the US Food and Drug Administration. Since then, several real-world experiences have confirmed the positive results in the R/R AML setting. Finally, gilteritinib-based combinations currently under investigation, with several compounds (venetoclax, azacitidine, conventional chemotherapy, etc.) and some practical tips (maintenance after allogeneic transplantation, interaction with antifungal drugs, extramedullary disease, and onset of resistance), will be analyzed in detail in this review.
Collapse
Affiliation(s)
- Matteo Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| | - Salvatore Perrone
- Department of Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, 04100 Latina, Italy;
| | - Marco Rossi
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| |
Collapse
|
7
|
Yokoyama S, Onozawa M, Yoshida S, Miyashita N, Kimura H, Takahashi S, Matsukawa T, Goto H, Fujisawa S, Miki K, Hidaka D, Hashiguchi J, Wakasa K, Ibata M, Takeda Y, Shigematsu A, Fujimoto K, Tsutsumi Y, Mori A, Ishihara T, Kakinoki Y, Kondo T, Hashimoto D, Teshima T. Subclinical minute FLT3-ITD clone can be detected in clinically FLT3-ITD-negative acute myeloid leukaemia at diagnosis. Br J Haematol 2023. [PMID: 37067758 DOI: 10.1111/bjh.18800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in next-generation sequencing (NGS) have enabled the detection of subclinical minute FLT3-ITD. We selected 74 newly diagnosed, cytogenetically normal acute myeloid leukaemia (AML) samples in which FLT3-ITD was not detected by gel electrophoresis. We sequenced them using NGS and found minute FLT3-ITDs in 19 cases. We compared cases with clinically relevant FLT3-ITD (n = 37), cases with minute FLT3-ITD (n = 19) and cases without detectable FLT3-ITD (n = 55). Molecular characteristics (location and length) of minute FLT3-ITD were similar to those of clinically relevant FLT3-ITD. Survival of cases with minute FLT3-ITD was similar to that of cases without detectable FLT3-ITD, whereas the relapse rate within 1 year after onset was significantly higher in cases with minute FLT3-ITD. We followed 18 relapsed samples of cases with clinically FLT3-ITD-negative at diagnosis. Two of 3 cases with minute FLT3-ITD relapsed with progression to clinically relevant FLT3-ITD. Two of 15 cases in which FLT3-ITD was not detected by NGS relapsed with the emergence of minute FLT3-ITD, and one of them showed progression to clinically relevant FLT3-ITD at the second relapse. We revealed the clonal dynamics of subclinical minute FLT3-ITD in clinically FLT3-ITD-negative AML. Minute FLT3-ITD at the initial AML can expand to become a dominant clone at relapse.
Collapse
Affiliation(s)
- Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yoshida
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shogo Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kosuke Miki
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Kentaro Wakasa
- Division of Hematology, Obihiro-Kosei General Hospital, Obihiro, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Yukari Takeda
- Department of Hematology, Tonan Hospital, Sapporo, Japan
| | - Akio Shigematsu
- Department of Hematology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | | | | | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
8
|
Tiong IS, Loo S. Targeting Measurable Residual Disease (MRD) in Acute Myeloid Leukemia (AML): Moving beyond Prognostication. Int J Mol Sci 2023; 24:4790. [PMID: 36902217 PMCID: PMC10003715 DOI: 10.3390/ijms24054790] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Measurable residual disease (MRD) assessment in acute myeloid leukemia (AML) has an established role in disease prognostication, particularly in guiding decisions for hematopoietic cell transplantation in first remission. Serial MRD assessment is now routinely recommended in the evaluation of treatment response and monitoring in AML by the European LeukemiaNet. The key question remains, however, if MRD in AML is clinically actionable or "does MRD merely portend fate"? With a series of new drug approvals since 2017, we now have more targeted and less toxic therapeutic options for the potential application of MRD-directed therapy. Recent approval of NPM1 MRD as a regulatory endpoint is also foreseen to drastically transform the clinical trial landscape such as biomarker-driven adaptive design. In this article, we will review (1) the emerging molecular MRD markers (such as non-DTA mutations, IDH1/2, and FLT3-ITD); (2) the impact of novel therapeutics on MRD endpoints; and (3) how MRD might be used as a predictive biomarker to guide therapy in AML beyond its prognostic role, which is the focus of two large collaborative trials: AMLM26 INTERCEPT (ACTRN12621000439842) and MyeloMATCH (NCT05564390).
Collapse
Affiliation(s)
- Ing S. Tiong
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Alfred Hospital, Melbourne, VIC 3004, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Sun Loo
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- The Northern Hospital, Epping, VIC 3076, Australia
| |
Collapse
|
9
|
Boudry A, Darmon S, Duployez N, Figeac M, Geffroy S, Bucci M, Celli-Lebras K, Duchmann M, Joudinaud R, Fenwarth L, Nibourel O, Goursaud L, Itzykson R, Dombret H, Hunault M, Preudhomme C, Salson M. Frugal alignment-free identification of FLT3-internal tandem duplications with FiLT3r. BMC Bioinformatics 2022; 23:448. [PMID: 36307762 PMCID: PMC9617311 DOI: 10.1186/s12859-022-04983-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Internal tandem duplications in the FLT3 gene, termed FLT3-ITDs, are useful molecular markers in acute myeloid leukemia (AML) for patient risk stratification and follow-up. FLT3-ITDs are increasingly screened through high-throughput sequencing (HTS) raising the need for robust and efficient algorithms. We developed a new algorithm, which performs no alignment and uses little resources, to identify and quantify FLT3-ITDs in HTS data. RESULTS Our algorithm (FiLT3r) focuses on the k-mers from reads covering FLT3 exons 14 and 15. We show that those k-mers bring enough information to accurately detect, determine the length and quantify FLT3-ITD duplications. We compare the performances of FiLT3r to state-of-the-art alternatives and to fragment analysis, the gold standard method, on a cohort of 185 AML patients sequenced with capture-based HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the other software evaluated. We also assess the software on public RNA-Seq data, which confirms the previous results and shows that FiLT3r requires little resources compared to other software. CONCLUSION FiLT3r is a free software available at https://gitlab.univ-lille.fr/filt3r/filt3r . The repository also contains a Snakefile to reproduce our experiments. We show that FiLT3r detects FLT3-ITDs better than other software while using less memory and time.
Collapse
Affiliation(s)
- Augustin Boudry
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Sasha Darmon
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France ,grid.15140.310000 0001 2175 9188ENS Lyon, Lyon, France
| | - Nicolas Duployez
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Martin Figeac
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sandrine Geffroy
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Maxime Bucci
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Karine Celli-Lebras
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Matthieu Duchmann
- grid.508487.60000 0004 7885 7602INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
| | - Romane Joudinaud
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Laurène Fenwarth
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Olivier Nibourel
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Laure Goursaud
- grid.410463.40000 0004 0471 8845Hematology Department, CHU LILLE, Lille, France
| | - Raphael Itzykson
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France ,grid.508487.60000 0004 7885 7602INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
| | - Hervé Dombret
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- grid.7252.20000 0001 2248 3363Univ Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Claude Preudhomme
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Mikaël Salson
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
| |
Collapse
|
10
|
Ding Y, Smith GH, Deeb K, Schneider T, Campbell A, Zhang L. Revealing molecular architecture of FLT3 internal tandem duplication: Development and clinical validation of a web-based application to generate accurate nomenclature. Int J Lab Hematol 2022; 44:918-927. [PMID: 35795913 DOI: 10.1111/ijlh.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION FLT3 internal tandem duplicate (ITD) is associated with unfavorable prognosis of acute myeloid leukemia; targeted therapy improves clinical outcome. We propose that FLT3-ITD detected by next generation sequencing (NGS) should be reported with the same nomenclature pattern as single nucleotide variants so that the mutation can be better interpreted clinically. METHODS A Python-based web application was developed to generate FLT3-ITD nomenclature as recommended by the Human Genome Variation Society (HGVS). Assembled FLT3-ITD sequences from 84 patients and 11 artificially created ITD sequences were used for the validation of this web-based application. Each sequence was inspected manually to confirm that the nomenclature was accurate. RESULTS Accurate nomenclatures were generated for 113 of 114 sequencing results and 7 artificial sequences. One assembled sequence and four artificial sequences were not named accurately; warning statements were automatically generated to alert further inspection. Of the 105 unique FLT3-ITDs, the ITD lengths range from 18 to 300 bp. Depending whether the ITD involves intron or extends into exon 15, three patterns were recognized. Only 44 (42%) ITDs were pure duplications, and three types of variants were identified at the 5' of ITD. When ITD involves intronic sequence, the protein may comprise inserted amino acids encoded by the intron, due to disrupted RNA splicing. CONCLUSION The web application generates accurate FLT3-ITD nomenclature from NGS results except in rare situations. The HGVS nomenclatures provide information on the molecular architecture of FLT3-ITDs and reveal details of complex insertions with partial duplications.
Collapse
Affiliation(s)
- Yi Ding
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Geoffrey Hughes Smith
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristin Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew Campbell
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Kim T, Lee H, Capo‐Chichi J, Chang MH, Yoo YS, Basi G, Ketela T, Smith AC, Tierens A, Zhang Z, Minden MD, Kim DDH. Single cell proteogenomic sequencing identifies a relapse-fated AML subclone carrying FLT3-ITD with CN-LOH at chr13q. EJHAEM 2022; 3:426-433. [PMID: 35846029 PMCID: PMC9175792 DOI: 10.1002/jha2.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023]
Abstract
Internal tandem duplication of the Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3-ITD) is one of the most clinically relevant mutations in acute myeloid leukemia (AML), with a high FLT3-ITD allelic ratio (AR) (≥0.5) being strongly associated with poor prognosis. FLT3-ITDs are heterogeneous, varying in size and location, with some patients having multiple FLT3-ITDs. Bulk cell-based approaches are limited in their ability to reveal the clonal structure in such cases. Using single-cell proteogenomic sequencing (ScPGseq), we attempted to identify a relapse-fated subclone in an AML case with mutations in WT1, NPM1, and FLT3 tyrosine kinase domain and two FLT3-ITDs (21 bp and 39 bp) (low AR) at presentation, then relapsed only with WT1 and NPM1 mutations and one FLT3-ITD (high AR). This relapse-fated subclone at presentation (∼2.1% of sequenced cells) was characterized by the presence of a homozygous 21 bp FLT3-ITD resulting from copy neutral loss of heterozygosity (CN-LOH) of chr13q and an aberrant, immature myeloid cell surface signature, contrast to the cell surface phenotype at presentation. In contrast to results from multicolor flow-cytometry, ScPGseq not only enabled the early detection of rare relapse-fated subclone showing immature myeloid signature but also highlighted the presence of homozygous 21 bp FLT3-ITDs in the clone at presentation.
Collapse
Affiliation(s)
- TaeHyung Kim
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada,The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada
| | - Hyewon Lee
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Center for Hematologic MalignanciesNational Cancer CenterGoyangRepublic of Korea
| | - Jose‐Mario Capo‐Chichi
- Department of Clinical Laboratory GeneticsGenome Diagnostics Laboratory Medicine ProgramUniversity of TorontoTorontoOntarioCanada
| | - Myung Hee Chang
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Division of Oncology‐HematologyDepartment of Internal MedicineNational Health Insurance Service Ilsan HospitalGoyangRepublic of Korea
| | - Young Seok Yoo
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Gurbaksh Basi
- Princess Margaret Genomics CentrePrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Troy Ketela
- Princess Margaret Genomics CentrePrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Adam C. Smith
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Anne Tierens
- Laboratory Medicine ProgramUniversity Health NetworkTorontoOntarioCanada,Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Zhaolei Zhang
- Department of Computer ScienceUniversity of TorontoTorontoOntarioCanada,The Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioCanada,Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Mark D. Minden
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Dennis Dong Hwan Kim
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada,Hans Messner Allogeneic Blood and Marrow Transplant UnitPrincess Margaret Cancer CentreTorontoOntarioCanada
| |
Collapse
|
12
|
Kim JJ, Lee KS, Lee TG, Lee S, Shin S, Lee ST. A comparative study of next-generation sequencing and fragment analysis for the detection and allelic ratio determination of FLT3 internal tandem duplication. Diagn Pathol 2022; 17:14. [PMID: 35081962 PMCID: PMC8790841 DOI: 10.1186/s13000-022-01202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, FLT3 internal tandem duplication (ITD) is tested by fragment analysis. With next-generation sequencing (NGS), however, not only FLT3 ITD but also other mutations can be detected, which can provide more genetic information on disease. METHODS We retrospectively reviewed the results of two tests-fragment analysis and a custom-designed, hybridization capture-based, targeted NGS panel-performed simultaneously. We used the Pindel algorithm to detect FLT3 ITD mutations. RESULTS Among 277 bone marrow aspirate samples tested by NGS and fragment analysis, the results revealed 99.6% concordance in FLT3 ITD detection. Overall, the allele frequency (AF) attained by NGS positively correlated with the standard allelic ratio (AR) attained by fragment analysis, with a Spearman correlation coefficient (r) of 0.757 (95% confidence interval: 0.627-0.846; p < 0.001). It was concluded that an AF of 0.11 attained by NGS is the most appropriate cutoff value (with 85.3% sensitivity and 86.7% specificity) for high mutation burden criterion presented by guidelines. CONCLUSION Sensitive FLT3 ITD detection with comprehensive information of other mutation offered by NGS could be a useful tool in clinical laboratories. Future studies will be needed to evaluate and standardize NGS AF cutoff to predict actual clinical outcomes.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang Seob Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taek Gyu Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Seungjae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
13
|
Cartwright A, Scott S, Francis S, Whitby L. Assessing the impact of the 2017 European LeukemiaNet recommendations on FLT3 allelic ratio calculation and reporting in acute myeloid leukaemia. Br J Haematol 2022; 197:e35-e37. [PMID: 34981510 DOI: 10.1111/bjh.18023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Ashley Cartwright
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Stuart Scott
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sebastian Francis
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Liam Whitby
- UK NEQAS for Leucocyte Immunophenotyping, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
14
|
Tung JK, Suarez CJ, Chiang T, Zehnder JL, Stehr H. Accurate Detection and Quantification of FLT3 Internal Tandem Duplications in Clinical Hybrid Capture Next-Generation Sequencing Data. J Mol Diagn 2021; 23:1404-1413. [PMID: 34363960 DOI: 10.1016/j.jmoldx.2021.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
FLT3 internal tandem duplications (ITDs) are found in approximately one-third of patients with acute myeloid leukemia and have important prognostic and therapeutic implications that have supported their assessment in routine clinical practice. Conventional methods for assessing FLT3-ITD status and allele burden have been primarily limited to PCR fragment size analysis because of the inherent difficulty in detecting large ITD variants by next-generation sequencing (NGS). In this study, we assess the performance of publicly available bioinformatic tools for the detection and quantification of FLT3-ITDs in clinical hybridization-capture NGS data. We found that FLT3_ITD_ext had the highest overall accuracy for detecting FLT3-ITDs and was able to accurately quantify allele burden. Although all other tools evaluated were able to detect FLT3-ITDs reasonably well, allele burden was consistently underestimated. We were able to significantly improve quantification of FLT3-ITD allelic burden independent of the detection method by utilizing soft-clipped reads and/or ITD junctional sequences. In addition, we show that identifying mutant reads by previously identified junctional sequences further improves the sensitivity of detecting FLT3-ITDs in post-treatment samples. Our results demonstrate that FLT3-ITDs can be reliably detected in clinical NGS data using available bioinformatic tools. We further describe how accurate quantification of FLT3-ITD allele burden can be added on to existing clinical NGS pipelines for routine assessment of FLT3-ITD status in patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Jack K Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Tsoyu Chiang
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
15
|
Engen C, Hellesøy M, Grob T, Al Hinai A, Brendehaug A, Wergeland L, Bedringaas SL, Hovland R, Valk PJM, Gjertsen BT. FLT3-ITD mutations in acute myeloid leukaemia - molecular characteristics, distribution and numerical variation. Mol Oncol 2021; 15:2300-2317. [PMID: 33817952 PMCID: PMC8410560 DOI: 10.1002/1878-0261.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022] Open
Abstract
Recurrent somatic internal tandem duplications (ITD) in the FMS-like tyrosine kinase 3 (FLT3) gene characterise approximately one third of patients with acute myeloid leukaemia (AML), and FLT3-ITD mutation status guides risk-adapted treatment strategies. The aim of this work was to characterise FLT3-ITD variant distribution in relation to molecular and clinical features, and overall survival in adult AML patients. We performed two parallel retrospective cohort studies investigating FLT3-ITD length and expression by cDNA fragment analysis, followed by Sanger sequencing in a subset of samples. In the two cohorts, a total of 139 and 172 mutant alleles were identified in 111 and 123 patients, respectively, with 22% and 28% of patients presenting with more than one mutated allele. Further, 15% and 32% of samples had a FLT3-ITD total variant allele frequency (VAF) < 0.3, while 24% and 16% had a total VAF ≥ 0.7. Most of the assessed clinical features did not significantly correlate to FLT3-ITD numerical variation nor VAF. Low VAF was, however, associated with lower white blood cell count, while increasing VAF correlated with inferior overall survival in one of the cohorts. In the other cohort, ITD length above 50 bp was identified to correlate with inferior overall survival. Our report corroborates the poor prognostic association with high FLT3-ITD disease burden, as well as extensive inter- and intrapatient heterogeneity in the molecular features of FLT3-ITD. We suggest that future use of FLT3-targeted therapy could be accompanied with thorough molecular diagnostics and follow-up to better predict optimal therapy responders.
Collapse
Affiliation(s)
- Caroline Engen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Monica Hellesøy
- Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Tim Grob
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Adil Al Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Atle Brendehaug
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Line Wergeland
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Siv Lise Bedringaas
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway.,Department of Biosciences, University of Bergen, Norway
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bjørn T Gjertsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway.,Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| |
Collapse
|
16
|
Yuan D, He X, Han X, Yang C, Liu F, Zhang S, Luan H, Li R, He J, Duan X, Wang D, Zhou Q, Gao S, Niu B. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia. Brief Bioinform 2021; 22:6225087. [PMID: 33851200 DOI: 10.1093/bib/bbab099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3-ITD) constitutes an independent indicator of poor prognosis in acute myeloid leukaemia (AML). AML with FLT3-ITD usually presents with poor treatment outcomes, high recurrence rate and short overall survival. Currently, polymerase chain reaction and capillary electrophoresis are widely adopted for the clinical detection of FLT3-ITD, whereas the length and mutation frequency of ITD are evaluated using fragment analysis. With the development of sequencing technology and the high incidence of FLT3-ITD mutations, a multitude of bioinformatics tools and pipelines have been developed to detect FLT3-ITD using next-generation sequencing data. However, systematic comparison and evaluation of the methods or software have not been performed. In this study, we provided a comprehensive review of the principles, functionality and limitations of the existing methods for detecting FLT3-ITD. We further compared the qualitative and quantitative detection capabilities of six representative tools using simulated and biological data. Our results will provide practical guidance for researchers and clinicians to select the appropriate FLT3-ITD detection tools and highlight the direction of future developments in this field. Availability: A Docker image with several programs pre-installed is available at https://github.com/niu-lab/docker-flt3-itd to facilitate the application of FLT3-ITD detection tools.
Collapse
Affiliation(s)
- Danyang Yuan
- Computer Network Information Center, Chinese Academy of Sciences. She is mainly engaged in leukaemia-related bioinformatics and cancer genomics research. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu He
- Computer Network Information Center, Chinese Academy of Sciences. She is mainly engaged in research related to the cancer genome and construction of the Chinese Cancer Genome Database. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyin Han
- Computer Network Information Center, Chinese Academy of Sciences. He is mainly engaged in cancer genomics research focusing on the precise detection of tumour immunotherapy biomarkers. His affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Yang
- Vice Director of the Laboratory of ChosenMed Technology (Beijing) Co., Ltd. She is mainly engaged in research regarding solid tumours and haematologic malignancy using multiple approaches, including next-generation sequencing. Her affiliation is with ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Fei Liu
- bioinformatics analysis engineer of ChosenMed Technology (Beijing) Co., Ltd. She is mainly engaged in the collection of biological information and analysis of genomic and cancer data or other biological information. Her affiliation is with ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Shuying Zhang
- Computer Network Information Center, Chinese Academy of Sciences. Her research mainly focuses on the cancer genome and bioinformatics. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Haijing Luan
- Computer Network Information Center, Chinese Academy of Sciences. She is mainly engaged in researching cancers of unknown primary sites (CUP) based on deep learning. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Ruilin Li
- Computer Network Information Center, Chinese Academy of Sciences. Her research interests include high-performance computing and bioinformatics. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayin He
- George Washington University. She is currently researching at the Computer Network Information Center, Chinese Academy of Sciences. Her research interests include biostatistics and computational statistics. Her affiliation is with Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohong Duan
- Laboratory of ChosenMed Technology (Beijing) Co., Ltd. She is mainly engaged in the research of solid tumours and haematologic malignancies using multiple approaches, including next-generation sequencing. Her affiliation is with ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Dongliang Wang
- Harbin Medical University. He is now the Chief Medical Officer of ChosenMed Technology (Beijing). His research mainly focuses on the mining and verification of molecular markers for tumour therapy. His affiliation is with ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Qiming Zhou
- CTO of ChosenMed Technology (Beijing) Co., Ltd. He is mainly engaged in the development of new molecular diagnostics technologies in genetic testing. His affiliation is with ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Sujun Gao
- Department of Haematology, The First Hospital of Jilin University. Her research mainly focuses on the experimental and clinical research of malignant haematological disorders and haematopoietic stem cell transplantation. Her affiliation is with Department of Haematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences. His research interests include cancer genomics, metagenomics, and the development of computational tools for working with data from next-generation sequencing technologies. His affiliation is with Computer Network Information Center, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing 100190, China, ChosenMed Technology (Beijing) Co., Ltd., Beijing 100176, China
| |
Collapse
|
17
|
Hansen MH, Cédile O, Larsen TS, Abildgaard N, Nyvold CG. Perspective: sensitive detection of residual lymphoproliferative disease by NGS and clonal rearrangements-how low can you go? Exp Hematol 2021; 98:14-24. [PMID: 33823225 DOI: 10.1016/j.exphem.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023]
Abstract
Malignant lymphoproliferative disorders collectively constitute a large fraction of the hematological cancers, ranging from indolent to highly aggressive neoplasms. Being a diagnostically important hallmark, clonal gene rearrangements of the immunoglobulins enable the detection of residual disease in the clinical course of patients down to a minute fraction of malignant cells. The introduction of next-generation sequencing (NGS) has provided unprecedented assay specificity, with a sensitivity matching that of polymerase chain reaction-based measurable residual disease (MRD) detection down to the 10-6 level. Although reaching 10-6 to 10-7 is theoretically feasible, employing a sufficient amount of DNA and sequencing coverage is placed in the perspective of the practical challenges when relying on clinical samples in contrast to controlled serial dilutions. As we discuss, the randomness of subsampling must be taken into account to accommodate the sensitivity threshold-in terms of both the required number of cells and sequencing coverage. As a substantial part of the reviewed studies do not state the depth of coverage or even amount of DNA in some cases, we call for increased transparency to enable critical assessment of the MRD assays for clinical implementation and feasibility.
Collapse
Affiliation(s)
- Marcus H Hansen
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Oriane Cédile
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Thomas S Larsen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Charlotte G Nyvold
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Hughes CFM, Gallipoli P, Agarwal R. Design, implementation and clinical utility of next generation sequencing in myeloid malignancies: acute myeloid leukaemia and myelodysplastic syndrome. Pathology 2021; 53:328-338. [PMID: 33676768 DOI: 10.1016/j.pathol.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
Next generation sequencing (NGS) based technology has contributed enormously to our understanding of the biology of myeloid malignancies including acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS). Assessment of clinically important mutations by NGS is a powerful tool to define diagnosis, determine prognostic risk, monitor measurable residual disease and uncover predictive mutational markers/therapeutic targets, and is now a routine component in the workup and monitoring of haematological disorders. There are many technical challenges in the design, implementation, analysis and reporting of NGS based results, and expert interpretation is essential. It is vital to distinguish relevant somatic disease associated mutations from those that are known polymorphisms, rare germline variants and clonal haematopoiesis of indeterminate potential (CHIP) associated variants. This review highlights and addresses the technical and biological challenges that should be considered before the implementation of NGS based testing in diagnostic laboratories and seeks to outline the essential and expanding role NGS plays in myeloid malignancies. Broad aspects of NGS panel design and reporting including inherent technological, biological and economic considerations are covered, following which the utility of NGS based testing in AML and MDS are discussed. In current practice, patient care is now strongly shaped by the results of NGS assessment and is considered a vital piece of the puzzle for clinicians as they manage these complex haematological disorders.
Collapse
Affiliation(s)
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
19
|
Liu X, Zou Y, Zhang L, Chen X, Yang W, Guo Y, Chen Y, Zhang Y, Zhu X. Early T-cell precursor acute lymphoblastic leukemia and other subtypes: a retrospective case report from a single pediatric center in China. J Cancer Res Clin Oncol 2021; 147:2775-2788. [PMID: 33651142 DOI: 10.1007/s00432-021-03551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is rare in China and case reports are varied. We conducted an in-depth analysis of newly diagnosed children with T-ALL from January 1999 to April 2015 in our center, to show the biological differences between Chinese ETP-ALL children and other immune types of T-ALL. METHODS The newly diagnosed children with T-ALL were divided into four groups according to their immunophenotype: ETP-ALL, early non-ETP-ALL, cortical T-ALL and medullary T-ALL. Disease-free survival (DFS), event-free survival (EFS), and overall survival (OS) rates were estimated by the Kaplan-Meier method. The Cox regression model was used for multivariate analysis. RESULTS A total of 117 newly diagnosed children with T-ALL were enrolled in this study. The 10-year EFS and OS rates for all patients were 59.0 ± 4.7% and 61.0 ± 4.7%, respectively, with a median follow-up of 64 (5-167) months. Univariate analysis showed that ETP-ALL patients had the lowest 10-year DFS rate of 32.1 ± 11.7%, while cortical T-ALL had the highest DFS rate of 81.3 ± 8.5% compared with early non-ETP-ALL (61.6 ± 7.0%) and medullary T-ALL (59.1 ± 10.6%). Multivariate analysis demonstrated that only ETP-ALL and involvement of the central nervous system were independent prognostic factors. CONCLUSION Compared with other subtypes, pediatric ETP-ALL had a poor treatment response and high recurrence rate while cortical T-ALL appeared to have much better outcome. Our observations highlight the need for an individualized treatment regime for ETP-ALL.
Collapse
Affiliation(s)
- Xiaoming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yao Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Li Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaojuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wenyu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ye Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yumei Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
20
|
Cumbo C, Orsini P, Anelli L, Zagaria A, Minervini CF, Coccaro N, Tota G, Impera L, Parciante E, Conserva MR, Redavid I, Carluccio P, Tarantini F, Specchia G, Musto P, Albano F. Nanopore sequencing sheds a light on the FLT3 gene mutations complexity in acute promyelocytic leukemia. Leuk Lymphoma 2020; 62:1219-1225. [PMID: 33289421 DOI: 10.1080/10428194.2020.1856838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) patients carry in 27% of cases an activating mutation of the fms-like tyrosine kinase-3 (FLT3) gene: internal tandem duplication (ITD) or tyrosine kinase domain (TKD) point mutation. The simultaneous presence of both types of mutations, so-called FLT3 dual mutations, has been reported in 2% of APL, but this circumstance has never been studied. We studied a cohort of 74 APL cases, performing an in-depth analysis of three FLT3 dual mutant cases. Nanopore sequencing (NS) allowed us to characterize their complex mutational profile, showing the occurrence of multiple activating FLT3 mutations on different alleles in the leukemic promyelocytes and suggesting a cumulative impact of these events on the constitutive activation of the FLT3 pathway in APL cells. NS approach not only sheds light on the FLT3 mutational complexity in APL, but may also be useful to better clarify the FLT3 mutations landscape in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Immacolata Redavid
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
21
|
Sahajpal NS, Mondal AK, Ananth S, Njau A, Ahluwalia P, Jones K, Ahluwalia M, Okechukwu N, Savage NM, Kota V, Rojiani AM, Kolhe R. Clinical performance and utility of a comprehensive next-generation sequencing DNA panel for the simultaneous analysis of variants, TMB and MSI for myeloid neoplasms. PLoS One 2020; 15:e0240976. [PMID: 33075099 PMCID: PMC7571681 DOI: 10.1371/journal.pone.0240976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023] Open
Abstract
The extensively employed limited-gene coverage NGS panels lead to clinically inadequate molecular profiling of myeloid neoplasms. The aim of the present investigation was to assess performance and clinical utility of a comprehensive DNA panel for myeloid neoplasms. Sixty-one previously well characterized samples were sequenced using TSO500 library preparation kit on NextSeq550 platform. Variants with a VAF ≥ 5% and a total read depth of >50X were filtered for analysis. The following results were recorded-for clinical samples: clinical sensitivity (97%), specificity (100%), precision (100%) and accuracy (99%) whereas reference control results were 100% for analytical sensitivity, specificity, precision and accuracy, with high intra- and inter-run reproducibility. The panel identified 880 variants across 292 genes, of which, 749 variants were in genes not covered in the 54 gene panel. The investigation revealed 14 variants in ten genes, and at least one was present in 96.2% patient samples that were pathogenic/ likely pathogenic in myeloid neoplasms. Also, 15 variants in five genes were found to be pathogenic/ likely pathogenic in other tumor types. Further, the TMB and MSI scores ranged from 0–7 and 0–9, respectively. The high analytical performance and clinical utility of this comprehensive NGS panel makes it practical and clinically relevant for adoption in clinical laboratories for routine molecular profiling of myeloid neoplasms.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Sudha Ananth
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Allan Njau
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Nwogbo Okechukwu
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tsai HK, Brackett DG, Szeto D, Frazier R, MacLeay A, Davineni P, Manning DK, Garcia E, Lindeman NI, Le LP, Lennerz JK, Gibson CJ, Lindsley RC, Kim AS, Nardi V. Targeted Informatics for Optimal Detection, Characterization, and Quantification of FLT3 Internal Tandem Duplications Across Multiple Next-Generation Sequencing Platforms. J Mol Diagn 2020; 22:1162-1178. [PMID: 32603763 PMCID: PMC7479488 DOI: 10.1016/j.jmoldx.2020.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
Assessment of internal tandem duplications in FLT3 (FLT3-ITDs) and their allelic ratio (AR) is recommended by clinical guidelines for diagnostic workup of acute myeloid leukemia and traditionally performed through capillary electrophoresis (CE). Although significant progress has been made integrating FLT3-ITD detection within contemporary next-generation sequencing (NGS) panels, AR estimation is not routinely part of clinical NGS practice because of inherent biases and challenges. In this study, data from multiple NGS platforms—anchored multiplex PCR (AMP), amplicon [TruSeq Custom Amplicon (TSCA)], and hybrid-capture—were analyzed through a custom algorithm, including platform-specific measures of AR. Sensitivity and specificity of NGS for FLT3-ITD status relative to CE were 100% (42/42) and 99.4% (1076/1083), respectively, by AMP on an unselected cohort and 98.1% (53/54) and 100% (48/48), respectively, by TSCA on a selected cohort. Primer analysis identified criteria for ITDs to escape detection by TSCA, estimated to occur in approximately 9% of unselected ITDs. Allelic fractions under AMP or TSCA were highly correlated to CE, with linear regression slopes near 1 for ITDs not duplicating primers, and systematically underestimated for ITDs duplicating a primer. Bias was alleviated in AMP through simple adjustments. This article provides an approach for targeted computational FLT3-ITD analysis for NGS data from multiple platforms; AMP was found capable of near perfect sensitivity and specificity with relatively accurate estimates of ARs.
Collapse
Affiliation(s)
- Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Diane G Brackett
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - David Szeto
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ryan Frazier
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Allison MacLeay
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Phani Davineni
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Danielle K Manning
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Elizabeth Garcia
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Long P Le
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Christopher J Gibson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - R Coleman Lindsley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
23
|
Abou Dalle I, Ghorab A, Patel K, Wang X, Hwang H, Cortes J, Issa GC, Yalniz F, Sasaki K, Chihara D, Price A, Kadia T, Pemmaraju N, Daver N, DiNardo C, Ravandi F, Kantarjian HM, Borthakur G. Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer J 2020; 10:48. [PMID: 32366841 PMCID: PMC7198530 DOI: 10.1038/s41408-020-0318-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
FLT3-ITD mutations in newly diagnosed acute myeloid leukemia (AML) are associated with worse overall survival (OS). FLT3-ITD diversity can further influence clinical outcomes. Addition of FLT3 inhibitors to standard chemotherapy has improved OS. The aim of this study is to evaluate the prognostic impact of FLT3 diversity and identify predictors of efficacy of FLT3 inhibitors. We reviewed prospectively collected data from 395 patients with newly diagnosed FLT3-ITD mutant AML. 156 (39%) patients received FLT3 inhibitors combined with either high or low intensity chemotherapy. There was no statistically significant difference in clinical outcomes among patients treated with FLT3 inhibitors based on FLT3 numerical variation (p = 0.85), mutation length (p = 0.67). Overall, the addition of FLT3 inhibitor to intensive chemotherapy was associated with an improved OS (HR = 0.35, 95% CI: 0.24-0.5, p = 0.0005), but not in combination with lower intensity chemotherapy (HR = 0.98, 95%CI: 0.7-1.36, p = 0.85). A differential effect of FLT3 inhibitor on OS was more pronounced in younger patients with FLT3 allelic ratio ≥0.5 (HR = 0.41, 95% CI: 0.25-0.66, p < 0.001), single ITD mutation (HR = 0.55, 95% CI: 0.34-0.88, p = 0.01), diploid cytogenetics (HR = 0.52, 95% CI: 0.35-0.76, p = 0.001), NPM1 co-mutation (HR = 0.35, 95% CI: 0.19-0.67, p = 0.001). Our analysis identifies predictors of survival among diverse FLT3 related variables in patients treated with FLT3 inhibitor.
Collapse
Affiliation(s)
- Iman Abou Dalle
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmad Ghorab
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur Patel
- Department of hemopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Department of biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hyunsoo Hwang
- Department of biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghayas C Issa
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fevzi Yalniz
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dai Chihara
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Allyson Price
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 2020; 9:4. [PMID: 32231866 PMCID: PMC7099827 DOI: 10.1186/s40164-020-00161-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal malignancy characterized by recurrent gene mutations. Genomic heterogeneity, patients’ individual variability, and recurrent gene mutations are the major obstacles among many factors that impact treatment efficacy of the AML patients. With the application of cost- and time-effective next-generation sequencing (NGS) technologies, an enormous diversity of genetic mutations has been identified. The recurrent gene mutations and their important roles in acute myeloid leukemia (AML) pathogenesis have been studied extensively. In this review, we summarize the recent development on the gene mutation in patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China.,2Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Danfeng Zhang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhongxing Jiang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
25
|
Minervini CF, Cumbo C, Orsini P, Anelli L, Zagaria A, Specchia G, Albano F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front Genet 2020; 11:76. [PMID: 32140171 PMCID: PMC7043087 DOI: 10.3389/fgene.2020.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
The molecular pathogenesis of hematological diseases is often driven by genetic and epigenetic alterations. Next-generation sequencing has considerably increased our genomic knowledge of these disorders becoming ever more widespread in clinical practice. In 2012 Oxford Nanopore Technologies (ONT) released the MinION, the first long-read nanopore-based sequencer, overcoming the main limits of short-reads sequences generation. In the last years, several nanopore sequencing approaches have been performed in various "-omic" sciences; this review focuses on the challenge to introduce ONT devices in the hematological field, showing advantages, disadvantages and future perspectives of this technology in the precision medicine era.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|
26
|
Aguilera-Diaz A, Vazquez I, Ariceta B, Mañú A, Blasco-Iturri Z, Palomino-Echeverría S, Larrayoz MJ, García-Sanz R, Prieto-Conde MI, del Carmen Chillón M, Alfonso-Pierola A, Prosper F, Fernandez-Mercado M, Calasanz MJ. Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS One 2020; 15:e0227986. [PMID: 31978184 PMCID: PMC6980571 DOI: 10.1371/journal.pone.0227986] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/04/2020] [Indexed: 12/17/2022] Open
Abstract
The diagnosis of myeloid neoplasms (MN) has significantly evolved through the last few decades. Next Generation Sequencing (NGS) is gradually becoming an essential tool to help clinicians with disease management. To this end, most specialized genetic laboratories have implemented NGS panels targeting a number of different genes relevant to MN. The aim of the present study is to evaluate the performance of four different targeted NGS gene panels based on their technical features and clinical utility. A total of 32 patient bone marrow samples were accrued and sequenced with 3 commercially available panels and 1 custom panel. Variants were classified by two geneticists based on their clinical relevance in MN. There was a difference in panel’s depth of coverage. We found 11 discordant clinically relevant variants between panels, with a trend to miss long insertions. Our data show that there is a high risk of finding different mutations depending on the panel of choice, due both to the panel design and the data analysis method. Of note, CEBPA, CALR and FLT3 genes, remains challenging the use of NGS for diagnosis of MN in compliance with current guidelines. Therefore, conventional molecular testing might need to be kept in place for the correct diagnosis of MN for now.
Collapse
Affiliation(s)
- Almudena Aguilera-Diaz
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Iria Vazquez
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Beñat Ariceta
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Amagoia Mañú
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Zuriñe Blasco-Iturri
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | | | - María José Larrayoz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca, IBSAL and CIBERONC, Salamanca, Spain
| | | | | | - Ana Alfonso-Pierola
- Hematology Department, Clinica Universidad de Navarra (CUN), Pamplona, Spain
| | - Felipe Prosper
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), Pamplona, Spain
| | - Marta Fernandez-Mercado
- Advanced Genomics Laboratory, Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- Biomedical Engineering Department, School of Engineering, University of Navarra, San Sebastian, Spain
- * E-mail: ,
| | - María José Calasanz
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- Scientific Co-Director of CIMA LAB Diagnostics, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
| |
Collapse
|
27
|
Schumacher JA, Holgard VD, Sial F, Pearson LN, Patel JL, Karner KH. Detection and Quantification of FLT3 Internal Tandem Duplication Mutations Do Not Vary Significantly Between Whole Blood and Blast-Enriched Samples. Am J Clin Pathol 2020; 153:251-257. [PMID: 31628845 DOI: 10.1093/ajcp/aqz166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Many commonly used FLT3 mutational assay protocols require a tedious blast enrichment step. We investigated whether elimination of this step would still give equivalent results and compared the accuracy of variant allele fraction (VAF) between polymerase chain reaction/capillary electrophoresis (PCR/CE) vs next-generation sequencing (NGS) methods. METHODS Total leukocyte vs blast-enriched whole-blood aliquots were tested for FLT3 internal tandem duplication (ITD) and tyrosine kinase domain mutations by PCR/CE. VAF of the ITD mutations was also compared with NGS VAF. RESULTS Blast-enriched vs total leukocyte specimens showed 100% concordance in the 25 positive specimens. VAF was consistently lower by NGS, with poorer fidelity to PCR/CE VAF as the ITD size increased. CONCLUSIONS Our study supports elimination of the blast enrichment step without compromising results or sensitivity. In addition, since NGS shows a loose correlation with PCR/CE quantitative results, NGS VAF should not be reported for FLT3 ITDs.
Collapse
Affiliation(s)
| | | | | | - Lauren N Pearson
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City
| | - Jay L Patel
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City
| | - Kristin H Karner
- ARUP Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City
| |
Collapse
|
28
|
Nanopore Targeted Sequencing for Rapid Gene Mutations Detection in Acute Myeloid Leukemia. Genes (Basel) 2019; 10:genes10121026. [PMID: 31835432 PMCID: PMC6947272 DOI: 10.3390/genes10121026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) clinical settings cannot do without molecular testing to confirm or rule out predictive biomarkers for prognostic stratification, in order to initiate or withhold targeted therapy. Next generation sequencing offers the advantage of the simultaneous investigation of numerous genes, but these methods remain expensive and time consuming. In this context, we present a nanopore-based assay for rapid (24 h) sequencing of six genes (NPM1, FLT3, CEBPA, TP53, IDH1 and IDH2) that are recurrently mutated in AML. The study included 22 AML patients at diagnosis; all data were compared with the results of S5 sequencing, and discordant variants were validated by Sanger sequencing. Nanopore approach showed substantial advantages in terms of speed and low cost. Furthermore, the ability to generate long reads allows a more accurate detection of longer FLT3 internal tandem duplications and phasing double CEBPA mutations. In conclusion, we propose a cheap, rapid workflow that can potentially enable all basic molecular biology laboratories to perform detailed targeted gene sequencing analysis in AML patients, in order to define their prognosis and the appropriate treatment.
Collapse
|
29
|
Zhang Q, Wu X, Cao J, Gao F, Huang K. Association between increased mutation rates in DNMT3A and FLT3-ITD and poor prognosis of patients with acute myeloid leukemia. Exp Ther Med 2019; 18:3117-3124. [PMID: 31572552 PMCID: PMC6755468 DOI: 10.3892/etm.2019.7891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
A total of 133 patients with acute myeloid leukemia (AML) were enrolled in the current study and were subdivided into 4 groups: 34 harboring DNA methyltransferase 3 α (DNMT3A) + fms related tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations, 37 harboring only FLT3-ITD mutation, 32 harboring only DNMT3A mutation and 30 harboring no mutations in DNMT3A and FLT3-ITD (control). Patients in all groups were administered daunorubicin and cytarabine chemotherapy regimens. The rates of complete remission (CR), 1-year relapse (RR) and 3-year overall survival (OS) were compared. Patients in the DNMT3A + FLT3-ITD mutation group exhibited higher proportions of peripheral white blood cells (WBCs) and myeloid progenitor cells compared with those in DNMT3A mutation only, FLT3-ITD mutation only and control groups (P<0.05). The rates of CD15+ and HLA-DR+ in the DNMT3A + FLT3-ITD mutation and DNMT3A mutation only groups were significantly higher than those in the FLT3-ITD mutation only and control groups (P<0.05); in addition, the rate of CD38+ in the DNMT3A + FLT3-ITD mutation and FLT3-ITD mutation only groups was significantly higher compared with that in the DNMT3A mutation only and control groups (P<0.05). The overall chemotherapy effectiveness rate, CR, 1-year RR and the 3-year OS rates of patients in the DNMT3A + FLT3-ITD mutation group were significantly worse compared with FLT3-ITD mutation only, DNMT3A mutation only and control groups (P<0.05). The results of this study indicated that increased mutation rates in DNMT3A and FLT3-ITD may be associated with increased WBC and myeloid progenitor cell counts, an inferior chemotherapy efficacy and prognosis, a lower CR rate, and higher 1-year RR and mortality rate.
Collapse
Affiliation(s)
- Qiurong Zhang
- Department of Hematology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiao Wu
- Department of Hematology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Jing Cao
- Department of Hematology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Feng Gao
- Department of Hematology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Kun Huang
- Department of Hematology, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
30
|
Mutated WT1, FLT3-ITD, and NUP98-NSD1 Fusion in Various Combinations Define a Poor Prognostic Group in Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:1609128. [PMID: 31467532 PMCID: PMC6699323 DOI: 10.1155/2019/1609128] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.
Collapse
|
31
|
A DNA pool of FLT3-ITD positive DNA samples can be used efficiently for analytical evaluation of NGS-based FLT3-ITD quantitation - Testing several different ITD sequences and rates, simultaneously. J Biotechnol 2019; 303:25-29. [PMID: 31302157 DOI: 10.1016/j.jbiotec.2019.06.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Internal tandem duplication (ITD) in the fms-like tyrosine kinase 3 (FLT3) gene is one of the most frequent genetic alteration in acute myeloid leukemia (AML), and it is associated with worse clinical outcome. Not only the presence but also the size, localization and the rate of this variant or the presence of multiple ITDs has prognostic information. The traditional PCR based diagnostic methods cannot provide information about all of these parameters in one assay, however the application of next generation sequencing (NGS) technique can be a reliable solution for this diagnostic problem. In order to evaluate the analytical properties of an NGS-based FLT3-ITD detection assay a quality control sample was prepared from DNA of AML patients containing 19 different FLT3-ITD variants identified by NGS. The higher the total read count was in a certain sample of the NGS run, the more ITD variant types could be detected. The maximal sensitivity of FLT3-ITD detection by NGS technique was as low as 0.007% FLT3-ITD/total allele rate, however, below 0.1% rate, the reproducibility of the quantitation was poor (CV > 25%). DNA pools with several FLT3-ITDs can be used efficiently for analytical evaluation of NGS-based FLT3-ITD quantitation testing several different ITD sequences and rates, simultaneously.
Collapse
|
32
|
Levine RL, Valk PJM. Next-generation sequencing in the diagnosis and minimal residual disease assessment of acute myeloid leukemia. Haematologica 2019; 104:868-871. [PMID: 30923100 PMCID: PMC6518900 DOI: 10.3324/haematol.2018.205955] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA .,Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter J M Valk
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA .,Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|