1
|
Samson SC, Rojas A, Zitnay RG, Carney KR, Hettinga W, Schaelling MC, Sicard D, Zhang W, Gilbert-Ross M, Dy GK, Cavnar MJ, Furqan M, Browning RF, Naqash AR, Schneider BP, Tarhini A, Tschumperlin DJ, Venosa A, Marcus AI, Emerson LL, Spike BT, Knudsen BS, Mendoza MC. Tenascin-C in the early lung cancer tumor microenvironment promotes progression through integrin αvβ1 and FAK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613509. [PMID: 39345541 PMCID: PMC11429853 DOI: 10.1101/2024.09.17.613509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pre-cancerous lung lesions are commonly initiated by activating mutations in the RAS pathway, but do not transition to lung adenocarcinomas (LUAD) without additional oncogenic signals. Here, we show that expression of the extracellular matrix protein Tenascin-C (TNC) is increased in and promotes the earliest stages of LUAD development in oncogenic KRAS-driven lung cancer mouse models and in human LUAD. TNC is initially expressed by fibroblasts and its expression extends to tumor cells as the tumor becomes invasive. Genetic deletion of TNC in the mouse models reduces early tumor burden and high-grade pathology and diminishes tumor cell proliferation, invasion, and focal adhesion kinase (FAK) activity. TNC stimulates cultured LUAD tumor cell proliferation and migration through engagement of αv-containing integrins and subsequent FAK activation. Intringuingly, lung injury causes sustained TNC accumulation in mouse lungs, suggesting injury can induce additional TNC signaling for early tumor cell transition to invasive LUAD. Biospecimens from patients with stage I/II LUAD show TNC in regions of FAK activation and an association of TNC with tumor recurrence after primary tumor resection. These results suggest that exogenous insults that elevate TNC in the lung parenchyma interact with tumor-initiating mutations to drive early LUAD progression and local recurrence.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Anthony Rojas
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Wakeiyo Hettinga
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Mary C Schaelling
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Wei Zhang
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Michael J Cavnar
- Department of Surgery, University of Kentucky, Lexington, KY 40508
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA 52246
| | - Robert F Browning
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Abdul R Naqash
- Division of Medical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Bryan P Schneider
- Department of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ahmad Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL 33612
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Long Island University, College of Veterinary Medicine, Brookville, NY 11548
| | - Lyska L Emerson
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Benjamin T Spike
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Szadai L, Bartha A, Parada IP, Lakatos A, Pál D, Lengyel AS, de Almeida NP, Jánosi ÁJ, Nogueira F, Szeitz B, Doma V, Woldmar N, Guedes J, Ujfaludi Z, Pahi ZG, Pankotai T, Kim Y, Győrffy B, Baldetorp B, Welinder C, Szasz AM, Betancourt L, Gil J, Appelqvist R, Kwon HJ, Kárpáti S, Kuras M, Murillo JR, Németh IB, Malm J, Fenyö D, Pawłowski K, Horvatovich P, Wieslander E, Kemény LV, Domont G, MarkoVarga G, Sanchez A. Predicting immune checkpoint therapy response in three independent metastatic melanoma cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592032. [PMID: 38746333 PMCID: PMC11092593 DOI: 10.1101/2024.05.01.592032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making. Abstract Figure
Collapse
|
3
|
Woodall MNJ, Cujba AM, Worlock KB, Case KM, Masonou T, Yoshida M, Polanski K, Huang N, Lindeboom RGH, Mamanova L, Bolt L, Richardson L, Cakir B, Ellis S, Palor M, Burgoyne T, Pinto A, Moulding D, McHugh TD, Saleh A, Kilich E, Mehta P, O'Callaghan C, Zhou J, Barclay W, De Coppi P, Butler CR, Cortina-Borja M, Vinette H, Roy S, Breuer J, Chambers RC, Heywood WE, Mills K, Hynds RE, Teichmann SA, Meyer KB, Nikolić MZ, Smith CM. Age-specific nasal epithelial responses to SARS-CoV-2 infection. Nat Microbiol 2024; 9:1293-1311. [PMID: 38622380 PMCID: PMC11087271 DOI: 10.1038/s41564-024-01658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024]
Abstract
Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Tereza Masonou
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Liam Bolt
- Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Samuel Ellis
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Machaela Palor
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, UK
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Andreia Pinto
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dale Moulding
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Aarash Saleh
- Royal Free Hospital NHS Foundation Trust, London, UK
| | - Eliz Kilich
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Puja Mehta
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Jie Zhou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | - Paolo De Coppi
- Great Ormond Street UCL Institute of Child Health, London, UK
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Colin R Butler
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
| | | | - Heloise Vinette
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Sunando Roy
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Judith Breuer
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Rachel C Chambers
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Wendy E Heywood
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Kevin Mills
- Great Ormond Street UCL Institute of Child Health, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Dept Physics, University of Cambridge, Cambridge, UK.
| | | | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - Claire M Smith
- Great Ormond Street UCL Institute of Child Health, London, UK.
| |
Collapse
|
4
|
Davis RA, Ganguly T, Harris R, Hausner SH, Kovacs L, Sutcliffe JL. Synthesis and Evaluation of a Monomethyl Auristatin E─Integrin α vβ 6 Binding Peptide-Drug Conjugate for Tumor Targeted Drug Delivery. J Med Chem 2023; 66:9842-9852. [PMID: 37417540 PMCID: PMC10388305 DOI: 10.1021/acs.jmedchem.3c00631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 07/08/2023]
Abstract
Many anticancer drugs exhibit high systemic off-target toxicities causing severe side effects. Peptide-drug conjugates (PDCs) that target tumor-specific receptors such as integrin αvβ6 are emerging as powerful tools to overcome these challenges. The development of an integrin αvβ6-selective PDC was achieved by combining the therapeutic efficacy of the cytotoxic drug monomethyl auristatin E with the selectivity of the αvβ6-binding peptide (αvβ6-BP) and with the ability of positron emission tomography (PET) imaging by copper-64. The [64Cu]PDC-1 was produced efficiently and in high purity. The PDC exhibited high human serum stability, integrin αvβ6-selective internalization, cell binding, and cytotoxicity. Integrin αvβ6-selective tumor accumulation of the [64Cu]PDC-1 was visualized with PET-imaging and corroborated by biodistribution, and [64Cu]PDC-1 showed promising in vivo pharmacokinetics. The [natCu]PDC-1 treatment resulted in prolonged survival of mice bearing αvβ6 (+) tumors (median survival: 77 days, vs αvβ6 (-) tumor group 49 days, and all other control groups 37 days).
Collapse
Affiliation(s)
- Ryan A. Davis
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| | - Tanushree Ganguly
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| | - Rebecca Harris
- Department
of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, 4150 V Street, Sacramento, California 95817, United States
| | - Sven H. Hausner
- Department
of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, 4150 V Street, Sacramento, California 95817, United States
| | - Luciana Kovacs
- Department
of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, 4150 V Street, Sacramento, California 95817, United States
| | - Julie L. Sutcliffe
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
- Department
of Internal Medicine, Division of Hematology/Oncology, University of California, Davis, 4150 V Street, Sacramento, California 95817, United States
- Center
for Molecular and Genomic Imaging, University
of California, Davis, 451 Health Sciences Drive, Davis, California 95616, United States
- Radiochemistry
Research and Training Facility, University
of California, Davis, 2921 Stockton Blvd., Suite 1760, Sacramento, California 95817, United States
| |
Collapse
|
5
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
6
|
Egorova EA, Nikitin MP. Delivery of Theranostic Nanoparticles to Various Cancers by Means of Integrin-Binding Peptides. Int J Mol Sci 2022; 23:ijms232213735. [PMID: 36430214 PMCID: PMC9696485 DOI: 10.3390/ijms232213735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Active targeting of tumors is believed to be the key to efficient cancer therapy and accurate, early-stage diagnostics. Active targeting implies minimized off-targeting and associated cytotoxicity towards healthy tissue. One way to acquire active targeting is to employ conjugates of therapeutic agents with ligands known to bind receptors overexpressed onto cancer cells. The integrin receptor family has been studied as a target for cancer treatment for almost fifty years. However, systematic knowledge on their effects on cancer cells, is yet lacking, especially when utilized as an active targeting ligand for particulate formulations. Decoration with various integrin-targeting peptides has been reported to increase nanoparticle accumulation in tumors ≥ 3-fold when compared to passively targeted delivery. In recent years, many newly discovered or rationally designed integrin-binding peptides with excellent specificity towards a single integrin receptor have emerged. Here, we show a comprehensive analysis of previously unreviewed integrin-binding peptides, provide diverse modification routes for nanoparticle conjugation, and showcase the most notable examples of their use for tumor and metastases visualization and eradication to date, as well as possibilities for combined cancer therapies for a synergetic effect. This review aims to highlight the latest advancements in integrin-binding peptide development and is directed to aid transition to the development of novel nanoparticle-based theranostic agents for cancer therapy.
Collapse
Affiliation(s)
- Elena A. Egorova
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 1 Meditsinskaya Str., 603081 Nizhny Novgorod, Russia
| | - Maxim P. Nikitin
- Department of Nanobiomedicine, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sirius, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy per., 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
7
|
Waszczykowska K, Prażanowska K, Kałuzińska Ż, Kołat D, Płuciennik E. Discovering biomarkers for hormone-dependent tumors: in silico study on signaling pathways implicated in cell cycle and cytoskeleton regulation. Mol Genet Genomics 2022; 297:947-963. [PMID: 35532795 DOI: 10.1007/s00438-022-01900-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/16/2022] [Indexed: 02/07/2023]
Abstract
Malignancies dependent on hormone homeostasis include breast, ovary, cervical, prostate, testis and uterine tumors. Hormones are involved in signal transduction which orchestrate processes, such as apoptosis, proliferation, cell cycle or cytoskeleton organization. Currently, there is a need for novel biomarkers which would help to diagnose cancers efficiently. In this study, the genes implicated in signaling that is important in hormone-sensitive carcinogenesis were investigated regarding their prognostic significance. Data of seven cancer cohorts were collected from FireBrowse. 54 gene sets implicated in specific pathways were browsed through MSig database. Profiling was assessed via Monocle3, while gene ontology through PANTHER. For confirmation, correlation analysis was performed using WGCNA. Protein-protein networks were visualized via Cytoscape and impact of genes on survival, as well as cell cycle or cytoskeleton-related prognostic signatures, was tested. Several differences in expression profile were identified, some of them allowed to distinguish histology. Functional annotation revealed that various regulation of cell cycle, adhesion, migration, apoptosis and angiogenesis underlie these differences. Clinical traits, such as histological type or cancer staging, were found during evaluation of module-trait relationships. Of modules, the TopHubs (COL6A3, TNR, GTF2A1, NKX3-1) interacted directly with, e.g., PDGFB, ITGA10, SP1 or AKT3. Among TopHubs and interacting proteins, many showed an impact on hazard ratio and affected the cell cycle or cytoskeleton-related prognostic signatures, e.g., COL1A1 or PDGFB. In conclusion, this study laid the foundation for further hormone-sensitive carcinogenesis research through identification of genes which prove that crosstalk between cell cycle and cytoskeleton exists, opening avenues for future therapeutic strategies.
Collapse
Affiliation(s)
| | - Karolina Prażanowska
- Faculty of Biomedical Sciences, Medical University of Lodz, 90-752, Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland.
| | - Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752, Lodz, Poland
| |
Collapse
|
8
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Sosnowska M, Kutwin M, Strojny B, Wierzbicki M, Cysewski D, Szczepaniak J, Ficek M, Koczoń P, Jaworski S, Chwalibog A, Sawosz E. Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells. Nanotechnol Sci Appl 2021; 14:115-137. [PMID: 34511890 PMCID: PMC8420805 DOI: 10.2147/nsa.s322766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. Methods HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. Results The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. Conclusion In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dominik Cysewski
- Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Ficek
- Department of Metrology and Optoelectronics, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal, Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Janev A, Ramuta TŽ, Tratnjek L, Sardoč Ž, Obradović H, Mojsilović S, Taskovska M, Smrkolj T, Kreft ME. Detrimental Effect of Various Preparations of the Human Amniotic Membrane Homogenate on the 2D and 3D Bladder Cancer In vitro Models. Front Bioeng Biotechnol 2021; 9:690358. [PMID: 34249888 PMCID: PMC8267883 DOI: 10.3389/fbioe.2021.690358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Despite being among the ten most common cancers with high recurrence rates worldwide, there have been no major breakthroughs in the standard treatment options for bladder cancer in recent years. The use of a human amniotic membrane (hAM) to treat cancer is one of the promising ideas that have emerged in recent years. This study aimed to investigate the anticancer activity of hAM homogenate on 2D and 3D cancer models. We evaluated the effects of hAM homogenates on the human muscle invasive bladder cancer urothelial (T24) cells, papillary cancer urothelial (RT4) cells and normal porcine urothelial (NPU) cells as well as on human mammary gland non-tumorigenic (MCF10a) cells and low-metastatic breast cancer (MCF7) cells. After 24 h, we observed a gradual detachment of cancerous cells from the culture surface, while the hAM homogenate did not affect the normal cells. The most pronounced effect hAM homogenate had on bladder cancer cells; however, the potency of their detachment was dependent on the treatment protocol and the preparation of hAM homogenate. We demonstrated that hAM homogenate significantly decreased the adhesion, growth, and proliferation of human bladder invasive and papillary cancer urothelial cells and did not affect normal urothelial cells even in 7-day treatment. By using light and electron microscopy we showed that hAM homogenate disrupted the architecture of 2D and 3D bladder cancer models. The information provided by our study highlights the detrimental effect of hAM homogenate on bladder cancer cells and strengthens the idea of the potential clinical application of hAM for bladder cancer treatment.
Collapse
Affiliation(s)
- Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Sardoč
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Milena Taskovska
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Chair of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaž Smrkolj
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Chair of Surgery, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Sosnowska M, Kutwin M, Strojny B, Koczoń P, Szczepaniak J, Bałaban J, Daniluk K, Jaworski S, Chwalibog A, Bielawski W, Sawosz E. Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-020-00073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Background
The extracellular matrix (ECM) is a mosaic of various structural and functional proteins that cooperate with the cell, regulate adhesion, and consequently manage its further fate. Liver destruction is accompanied by a disruption of the physicochemical properties of the ECM which deregulates the cell–ECM interaction and can lead to uncontrolled proliferation and neoplastic transformation of cells. Therefore, it can be assumed that ECM modification and restoration of its characteristics for healthy tissue may counteract uncontrolled cell proliferation. The purpose of the presented research model was to optimise the physical characteristics of ECM by introducing a graphene oxide plane/nanofilm (nfGO) and enriching the cell environment with potentially missing proteins by adding a functional protein cocktail (chicken embryo liver extract) and determine the impact of these factors on cell–ECM cooperation and its consequences on adhesion, proliferation, and cell phase, which are factors of the invasiveness of cancer cells.
Results
Experiments were performed with non-cancer HS-5 cells and liver cancer cells HepG2 and C3A. The cells were divided into four groups: (1) control, (2) cultured on nfGO, (3) cultured with the addition of chicken embryo liver extract (CELE) and (4) cultured on the nfGO with the addition of CELE. CELE contained 1735 proteins; the top 57 of these proteins have been presented. The use of nfGO as well as CELE and nfGO + CELE reduced the proliferation of HepG2 cancer cells to the greatest extent; this is in contrast to non-cancer cells and also to C3A cancer cells. Furthermore, the combined use of the CELE protein cocktail and GO substrate effectively resulted in a decrease in the population of HepG2 cells in the G0/G1 phase and an increase of the population in G2/M. Molecular analysis of HepG2 cancer cells also showed an increase in the expression of genes responsible for adhesion such as focal adhesion kinase (fak), e-cadherin, and n-cadherin and a decrease in β-catenin, which is considered a proto-oncogene.
Conclusions
Studies have shown that both the GO surface structure on which the cells are grown as well as the presence of a multi-component natural cocktail of regulatory proteins, can modify the expression of integrins, increase adhesion and, as a consequence, proliferation and the cell cycle—entering the resting phase. For the first time, it has been documented that hepatic cancer cells of the HepG2 line under the influence of stimuli derived from mimic ECM (graphene oxide) in interaction with a unique protein complex derived from chicken liver embryo decreased of the invasiveness of cancer cells.
Collapse
|
12
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Integrin-Activating Peptides Derived from Tenascin-C in Cancer Aggression and New Anticancer Strategy Using the Fibronectin-Derived Integrin-Inactivating Peptide. Molecules 2020; 25:E3239. [PMID: 32708610 PMCID: PMC7396993 DOI: 10.3390/molecules25143239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate β1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate β1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on β1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of β1-integrin by FNIII14.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| | - Manabu Sasada
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.F.); (M.S.)
| |
Collapse
|
13
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
14
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
15
|
Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2019; 69:325-336. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022]
Abstract
Integrins are the main cell surface receptors and execute multifaceted functions such as the bidirectional transmission of signals (i.e., inside-out and outside-in) and provide communication between cells and their microenvironments. Integrins are the key regulators of critical biological functions and contribute significantly to the promotion of cancer at almost every stage of disease progression from initial tumor formation to metastasis. Integrin expressions are frequently altered in different cancers, and consequently, several therapeutic strategies targeting integrins have been developed. Furthermore, nanotechnology-based approaches have been devised to overcome the intrinsic limitations of conventional therapies for cancer management, and have been shown to more precise, safer, and highly effective therapeutic tools. Although nanotechnology-based approaches have achieved substantial success for the management of cancer, certain obstacles remain such as inadequate knowledge of nano-bio interactions and the challenges associated with the three stages of clinical trials. This review highlights the different roles of integrins and of integrin-dependent signaling in various cancers and describes the applications of nanotherapeutics targeting integrins. In addition, we discuss RGD-based approaches and challenges posed to cancer management.
Collapse
|
16
|
Pei D, Hu J, Rao C, Yu P, Xu H, Wang J. Anti-Tumor Activity and Pharmacokinetics of AP25-Fc Fusion Protein. Int J Med Sci 2019; 16:1032-1041. [PMID: 31341417 PMCID: PMC6643120 DOI: 10.7150/ijms.34365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
AP25 is an anti-tumor peptide with a high affinity for integrins. It exerts its anti-tumor activity by inhibiting angiogenesis and by directly inhibiting the growth of tumor cells. Its half-life time in vivo is only about 50 minutes, which limits its clinical application. In order to prolong the half-life time of AP25 while preserving its anti-tumor activity, several fusion proteins of AP25 and IgG4 Fc were designed and expressed; their anti-tumor activity and pharmacokinetics properties were evaluated. Firstly, four AP25-Fc fusion protein sequences were designed, and the corresponding proteins were expressed and purified. Based on the results of HUVEC migration inhibition assay, HUVEC and tumor cell proliferation inhibition assay and yields of expression by HEK293 cells, the fusion protein designated PSG4R was selected for further evaluation. The anti-tumor effect of PSG4R was then evaluated in vivo on HCT-116 nude mice xenograft model. And the pharmacokinetics properties of PSG4R were investigated in rats. The results showed that PSG4R could inhibit the growth of xenografts of human colon cancer cell line HCT-116 in nude mice by intravenous administration of 40 mg/kg once every two days. The half-life time of PSG4R was 56.270 ± 15.398 h. This study showed that the construction of AP25-Fc fusion protein could significantly prolong the half-life of AP25 while retaining its anti-tumor activity, which provides a new direction for new drug development of AP25.
Collapse
Affiliation(s)
- Dening Pei
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jialiang Hu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunming Rao
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Pengcheng Yu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Junzhi Wang
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an 710032, China
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
17
|
Feng G, Zhang M, Wang H, Cai J, Chen S, Wang Q, Gong J, Leong KW, Wang J, Zhang X, Zeng M. Identification of an Integrin α6‐Targeted Peptide for Nasopharyngeal Carcinoma‐Specific Nanotherapeutics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| | - Meng‐Qing Zhang
- Rehabilitation Departmentthe Third Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong 510060 P. R. China
| | - Hong‐Xia Wang
- Department of Biomedical EngineeringColumbia University New York NY 10027 USA
| | - Jing Cai
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| | - Shu‐Peng Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| | - Qian Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| | - Jing Gong
- Department of Biomedical EngineeringColumbia University New York NY 10027 USA
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia University New York NY 10027 USA
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei Anhui 230027 P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou Guangdong 510006 P. R. China
| | - Xing Zhang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou Guangdong 510060 P. R. China
| |
Collapse
|