1
|
Iida M, Kuniki Y, Yagi K, Goda M, Namba S, Takeshita JI, Sawada R, Iwata M, Zamami Y, Ishizawa K, Yamanishi Y. A network-based trans-omics approach for predicting synergistic drug combinations. COMMUNICATIONS MEDICINE 2024; 4:154. [PMID: 39075184 PMCID: PMC11286857 DOI: 10.1038/s43856-024-00571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Combination therapy can offer greater efficacy on medical treatments. However, the discovery of synergistic drug combinations is challenging. We propose a novel computational method, SyndrumNET, to predict synergistic drug combinations by network propagation with trans-omics analyses. METHODS The prediction is based on the topological relationship, network-based proximity, and transcriptional correlation between diseases and drugs. SyndrumNET was applied to analyzing six diseases including asthma, diabetes, hypertension, colorectal cancer, acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). RESULTS Here we show that SyndrumNET outperforms the previous methods in terms of high accuracy. We perform in vitro cell survival assays to validate our prediction for CML. Of the top 17 predicted drug pairs, 14 drug pairs successfully exhibits synergistic anticancer effects. Our mode-of-action analysis also reveals that the drug synergy of the top predicted combination of capsaicin and mitoxantrone is due to the complementary regulation of 12 pathways, including the Rap1 signaling pathway. CONCLUSIONS The proposed method is expected to be useful for discovering synergistic drug combinations for various complex diseases.
Collapse
Affiliation(s)
- Midori Iida
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Yurika Kuniki
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenta Yagi
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Satoko Namba
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi, Japan
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Michio Iwata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Yoshito Zamami
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Pharmacy, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and Therapeutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Clinical Research Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan.
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Aichi, Japan.
| |
Collapse
|
2
|
Di Giuseppe F, Ricci-Vitiani L, Pallini R, Di Pietro R, Di Iorio P, Ascani G, Ciccarelli R, Angelucci S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024; 13:571. [PMID: 38607010 PMCID: PMC11011151 DOI: 10.3390/cells13070571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.
Collapse
Affiliation(s)
- Fabrizio Di Giuseppe
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| | - Lucia Ricci-Vitiani
- Department of Medical, Oral and Biotechnological Sciences, ‘G d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Roberto Pallini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy;
| | - Roberta Di Pietro
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Patrizia Di Iorio
- Department of Medicine and Aging Sciences, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Giuliano Ascani
- UOSD Maxillofacial Surgery, Azienda Sanitaria Locale di Pescara, Via Renato Paolini 47, 65124 Pescara, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. d’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Center for Advanced Studies and Technology (CAST), ‘G d’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
3
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Kawaguchi K, Otani R, Kikuchi M, Kushihara Y, Funata N, Yamada R, Shinoura N. Genetic Characteristics of Mismatch Repair-deficient Glioblastoma. NMC Case Rep J 2022; 8:565-571. [PMID: 35079518 PMCID: PMC8769403 DOI: 10.2176/nmccrj.cr.2020-0366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Mismatch repair (MMR) gene deficiency is rarely observed in gliomas, a constitutional defect is associated with tumorigenesis in Lynch syndrome, and an acquired defect is associated with hypermutation after temozolomide treatment. However, the meaning of MMR gene deficiency in gliomas is unclear. Two cases of MMR-deficient glioblastomas are reported, and mutational status of oncogenes was compared between primary and recurrent tumor samples in a glioblastoma patient with Lynch syndrome. Additionally, the characteristics of MMR-deficient glioblastomas were analyzed using public glioma datasets to determine the meaning of MMR deficiency in gliomas. Case 1 was a glioblastoma patient with Lynch syndrome, and treatment with pembrolizumab for the recurrent tumor was temporarily effective for a short period. Comparison of mutational changes between primary and recurrent tumor samples showed many additional mutated genes associated with multiple signaling pathways in the recurrent tumor. Tumor recurrence and chemoresistance could be associated with intratumoral heterogeneity and accelerated tumor progression due to defects of multiple signaling pathways. Case 2 was a glioblastoma patient with acquired MMR gene deficiency, and she died of rapid progression of bone marrow metastases. This rare clinical course was considered to be associated with gene expression changes and heterogeneity that resulted from MMR gene deficiency. Two cases of MMR gene-deficient glioblastomas were presented, and their genetic characteristics suggested that their clinical courses could be associated with MMR gene deficiency.
Collapse
Affiliation(s)
- Kei Kawaguchi
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Miyu Kikuchi
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Nobuaki Funata
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Ryoji Yamada
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Nobusada Shinoura
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
5
|
C3G Protein, a New Player in Glioblastoma. Int J Mol Sci 2021; 22:ijms221810018. [PMID: 34576182 PMCID: PMC8466177 DOI: 10.3390/ijms221810018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.
Collapse
|
6
|
Kraboth Z, Kalman B. Longitudinal Characteristics of Glioblastoma in Genome-Wide Studies. Pathol Oncol Res 2020; 26:2035-2047. [PMID: 31376079 PMCID: PMC7471193 DOI: 10.1007/s12253-019-00705-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/25/2019] [Indexed: 01/20/2023]
Abstract
Glioblastoma is one of the deadliest tumors with barely over one-year median survival despite intensive efforts in defining its molecular characteristics and searching for innovative treatment strategies. While major progress has been made in cataloging cross-sectional genomic, transcriptomic and epigenomic features of the tumor, and inferring its main molecular pathways and niches for potential targeted intervention, we still do not have sufficient knowledge concerning evolutionary patterns and dynamics of molecular changes or the treatment-induced effects affecting glioblastoma biology. In this review, we summarize the results of recent longitudinal genomic, transcriptomic and epigenomic studies that brought us closer to a better understanding of this lethal disease. Evidence suggests that neuronal / glioma stem cells with accumulating mutations initiate glioblastoma development and recurrence, but the hypothetical models describing the courses that lead to established tumors have not been fully proven. Moving from the histopathological phenotype to the results of high resolution OMICS studies, we try to synthesize the currently available information from sequential glioblastoma analyses in order to highlight its multifaceted features and heterogenetity, as well as the expected complexity of potential treatment strategies that might once succeed.
Collapse
Affiliation(s)
- Zoltan Kraboth
- Graduate School in Neurosciences, University of Pecs, 12. Szigeti street, Pecs, 7624, Hungary
- Institute of Laboratory Medicine, University of Pecs, 13. Ifjusag street, Pecs, 7624, Hungary
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary
| | - Bernadette Kalman
- Graduate School in Neurosciences, University of Pecs, 12. Szigeti street, Pecs, 7624, Hungary.
- Institute of Laboratory Medicine, University of Pecs, 13. Ifjusag street, Pecs, 7624, Hungary.
- Szentagothai Research Center, University of Pecs, 20. Ifjusag street, Pecs, 7624, Hungary.
| |
Collapse
|
7
|
Chen X, Wen Q, Stucky A, Zeng Y, Gao S, Loudon WG, Ho HW, Kabeer MH, Li SC, Zhang X, Zhong JF. Relapse pathway of glioblastoma revealed by single-cell molecular analysis. Carcinogenesis 2019; 39:931-936. [PMID: 29718126 DOI: 10.1093/carcin/bgy052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) remains an incurable brain tumor. The highly malignant behavior of GBM may, in part, be attributed to its intraclonal genetic and phenotypic diversity (subclonal evolution). Identifying the molecular pathways driving GBM relapse may provide novel, actionable targets for personalized diagnosis, characterization of prognosis and improvement of precision therapy. We screened single-cell transcriptomes, namely RNA-seq data of primary and relapsed GBM tumors from a patient, to define the molecular profile of relapse. Characterization of hundreds of individual tumor cells identified three mutated genes within single cells, involved in the RAS/GEF GTP-dependent signaling pathway. The identified molecular pathway was further verified by meta-analysis of RNA-seq data from more than 3000 patients. This study showed that single-cell molecular analysis overcomes the inherent heterogeneity of bulk tumors with respect to defining tumor subclonal evolution relevant to GBM relapse.
Collapse
Affiliation(s)
- Xuelian Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Qin Wen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Yunjing Zeng
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Shengjia Gao
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - William G Loudon
- Department of Neurosurgery, CHOC Children's Hospital, Neuroscience Institute, Gamma Knife Center of Southern California, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Hector W Ho
- Division of Neurological Surgery, Saint Jude Heritage Medical Group, Saint Joseph Hospital, Orange, CA, USA
| | - Mustafa H Kabeer
- Department of Surgery, CHOC Children's Hospital, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, CHOC Children's Research Institute, Children's Hospital of Orange County, Department of Neurology, University of California - Irvine School of Medicine, Orange, CA, USA
| | - Xi Zhang
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Li C, Mo D, Li M, Zheng Y, Li Q, Ou S, Zhang Z. Age-related but not longevity-related genes are found by weighted gene co-expression network analysis in the peripheral blood cells of humans. Genes Genet Syst 2018; 93:221-228. [PMID: 30541985 DOI: 10.1266/ggs.17-00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human lifespan is determined by genetic and environmental factors. Potential longevity genes are neither specific nor reproducible, and longevity-related genes are constantly confused with age-related genes. To distinguish specific age- and longevity-related genes, we analyzed a Gene Expression Omnibus (GEO) dataset established by the Leiden Longevity Study. The individuals were classified into longevity (mean age, 93.4 ± 3.0 years), longevity offspring (60.8 ± 6.1) and control (61.9 ± 6.9) groups. The series matrix files were downloaded, and average expression values were calculated. Differentially expressed genes (DEGs) between longevity and control groups and those between longevity and their offspring were identified by GEO2R online. A total of 507 longevity- and 755 age-related DEGs were visualized using a Venn diagram. Weighted gene co-expression network analysis (WGCNA) was performed on the longevity- and age-related DEGs. Age-related color modules and genes were identified. However, no longevity-related modules or genes were found. The green module, with 46 age-related DEGs, was the most biologically significant to age and aging. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction pathway analyses were conducted on these 46 DEGs, which are mainly enriched in B cell activation and receptor signaling pathways. CR2, VPREB3, MS4A1 and CCR6 were considered the most crucial candidate genes for aging.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Environmental Health, School of Public Health, Guangxi Medical University.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University
| | - Dan Mo
- Department of Surgery, Maternal and Child Health Hospital of Guangxi
| | - Meiqin Li
- Department of Laboratory, Affiliated Tumor Hospital of Guangxi Medical University
| | - Yanyan Zheng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University
| | - Qiao Li
- Department of Biostatistics, School of Public Health, Guangxi Medical University
| | - Shiyan Ou
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University
| | - Zhiyong Zhang
- Department of Environmental Health, School of Public Health, Guangxi Medical University
| |
Collapse
|
9
|
Zhang Z, Ma M, Hu R, Xu B, Zong L, Wei H, Meng Y. RasGRP3, a Ras guanyl releasing protein 3 that contributes to malignant proliferation and aggressiveness in human esophageal squamous cell carcinoma. Clin Exp Pharmacol Physiol 2018; 45:720-728. [PMID: 29461644 DOI: 10.1111/1440-1681.12926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide; however, clinical and pathological parameters have limited ability in discriminating between clinically significant and indolent ESCC. Since RasGRP3 transcript levels have prognostic value in discriminating ESCC with different clinical aggressiveness, we decided to investigate its putative oncogenic role in ESCC. We found that RasGRP3 was highly expressed in ESCC cells. Suppression of endogenous RasGRP3 expression in esophageal cell lines reduced Ras-GTP formation as well as AKT phosphorylation. RasGRP3 suppression also inhibited cell invasion and migration and reduced proliferation, demonstrating the importance of RasGRP3 for the transformed phenotype of melanoma cells. Suppression of RasGRP3 expression in these cells inhibited downstream RasGRP3 responses and suppressed cell growth and migration, confirming the functional role of RasGRP3 in the altered behaviour of these cells. This suggests that RasGRP3 may function as a Ras activator in the phosphoinositide signalling pathway and may potentially serve as a new therapeutic target.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ming Ma
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ronghang Hu
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Baobin Xu
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Haixiang Wei
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yanhong Meng
- Department of Ultrasonography, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
10
|
Jiang W, Finniss S, Cazacu S, Xiang C, Brodie Z, Mikkelsen T, Poisson L, Shackelford DB, Brodie C. Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget 2018; 7:56456-56470. [PMID: 27486821 PMCID: PMC5302927 DOI: 10.18632/oncotarget.10919] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication.
Collapse
Affiliation(s)
- Wei Jiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Susan Finniss
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Ziv Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Tom Mikkelsen
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Laila Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - David B Shackelford
- Department of Pulmonary and Critical Care Medicine, UCLA David Geffen School of Medicine Los Angeles, CA, USA
| | - Chaya Brodie
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.,Everard and Mina Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
11
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
12
|
Hu G, Zhou Y, Zhu Y, Zhou L, Ling R, Wu D, Mi L, Wang X, Dai D, Mao C, Chen D. Novel transduction of nutrient stress to Notch pathway by RasGRP3 promotes malignant aggressiveness in human esophageal squamous cell carcinoma. Oncol Rep 2017; 38:2975-2984. [PMID: 29048643 DOI: 10.3892/or.2017.5996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/28/2017] [Indexed: 11/05/2022] Open
Abstract
In the process of enlarging of tumors, the dissolving tissue structures and remodeling endothelial cells for restoring gas exchange and nutritional support, further facilitate tumor cell invasion and metastasis. Activation of Ras plays a critical role in the development of esophageal squamous cell carcinoma (ESCC), but the underlying mechanisms remain poorly understood. We therefore investigated whether Ras guanyl-releasing protein 3 (RasGRP3), a Ras activator, could promote metastasis by inducing vascular regeneration and further epithelial-mesenchymal transition under nutrient stress (NS). In the present study, we explored that the accumulation of RasGRP3 regulated vascular endothelial growth factor-A production, co-stimulated Notch pathway with high expression of Notch intracellular domain (NICD) and Hes1. Moreover, ESCC cells under NS increased the expression of vimentin, Snail, Slug and MMP9 proteins; while inhibition of Notch activation by DAPT (a γ-secretase inhibitor) or RasGRP3-targeted RNA interference prevented from the effect. In conclusion, these findings provide a new insight into the upregulation of RasGRP3 involved in Notch pathway activation in the development of ESCC, especially under nutrient deprivation.
Collapse
Affiliation(s)
- Ge Hu
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yu Zhu
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ling Zhou
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dan Wu
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lei Mi
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xuefeng Wang
- Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dongfang Dai
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
13
|
Qiu W, Xia X, Qiu Z, Guo M, Yang Z. RasGRP3 controls cell proliferation and migration in papillary thyroid cancer by regulating the Akt-MDM2 pathway. Gene 2017; 633:35-41. [PMID: 28864115 DOI: 10.1016/j.gene.2017.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023]
Abstract
Accumulating evidence has shown that Ras guanylnucleotide releasing peptide 3 (RasGRP3) is up-regulated in several distinct cancer types; however, its role in papillary thyroid cancer (PTC) remains unclear. In this study, we demonstrate that RasGRP3 was overexpressed in PTC tissues and cell lines. Downregulation of RasGRP3 using small interfering (si) RNA significantly inhibited PTC cell proliferation and migration in vitro, and tumor growth in vivo, reflecting an oncogenic role of RasGRP3 in PTC. We subsequently identified that the expression of mouse double minute 2 homolog (MDM2) and phosphorylated Akt (p-Akt) was significantly decreased in RasGRP3-downregulated PTC cells. Overexpression of MDM2 attenuated the function of si-RasGRP3. Taken together, our data show that RasGRP3 exerts its oncogenic effect in PTC through Akt-mediated MDM2 activation. RasGRP3 may serve as a potential new therapeutic target for PTC.
Collapse
Affiliation(s)
- Wangwang Qiu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaotian Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Minggao Guo
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhili Yang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
14
|
Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog 2017; 56:1531-1542. [PMID: 28112438 DOI: 10.1002/mc.22617] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Few kinases have been studied as extensively as protein kinase C (PKC), particularly in the context of cancer. As major cellular targets for the phorbol ester tumor promoters and diacylglycerol (DAG), a second messenger generated by stimulation of membrane receptors, PKC isozymes play major roles in the control of signaling pathways associated with proliferation, migration, invasion, tumorigenesis, and metastasis. However, despite decades of research, fundamental questions remain to be answered or are the subject of intense controversy. Primary among these unresolved issues are the role of PKC isozymes as either tumor promoter or tumor suppressor kinases and the incomplete understanding on isozyme-specific substrates and effectors. The involvement of PKC isozymes in cancer progression needs to be reassessed in the context of specific oncogenic and tumor suppressing alterations. In addition, there are still major hurdles in addressing isozyme-specific function due to the limited specificity of most pharmacological PKC modulators and the lack of validated predictive biomarkers for response, which impacts the translation of these agents to the clinic. In this review we focus on key controversial issues and upcoming challenges, with the expectation that understanding the intricacies of PKC function will help fulfill the yet unsuccessful promise of targeting PKCs for cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Liu S, Yin F, Zhao M, Zhou C, Ren J, Huang Q, Zhao Z, Mitra R, Fan W, Fan M. The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells. Oncotarget 2017; 7:17920-31. [PMID: 26908439 PMCID: PMC4951260 DOI: 10.18632/oncotarget.7472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant gliomas patients have a poor survival rate, partially due to the inability in delivering therapeutic agents to the tumors, especially to the metastasis of human glioma stem cells (hGSCs). To explore whether the human neural stem cells (hNSCs) with an over-expression of BMP4 (hNSCs-BMP4) can trace and inhibit hGSCs, in this study, we examined the migration of hNSCs to hGSCs using transwell assay in vitro and performed the fluorescent tracer experiment in vivo. We examined the proliferation, differentiation, apoptosis and migration of hGSCs after co-culturing with hNSCs-BMP4 in vitro and tested the tropism and antitumor effects of hNSCs-BMP4 in the established brain xenograft models of hGSCs. We found that hNSCs-BMP4 could secrete BMP4 and trace hGSCs both in vitro and in vivo. When compared to the normal human astrocytes (NHAs) and hNSCs, hNSCs-BMP4 could significantly inhibit the invasive growth of hGSCs, promote their differentiation and apoptosis by activating Smad1/5/8 signaling, and prolong the survival time of the tumor-bearing nude mice. Collectively, this study suggested that hNSCs-BMP4 may help in developing therapeutic approaches for the treatment of human malignant gliomas.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Feng Yin
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Mingming Zhao
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Chunhui Zhou
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Junlin Ren
- Department of Neurosurgery, Navy General Hospital, PLA, Beijing 100048, China
| | - Qiming Huang
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Departments of Psychiatry and Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Wenhong Fan
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
16
|
Golec DP, Henao Caviedes LM, Baldwin TA. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors. THE JOURNAL OF IMMUNOLOGY 2016; 197:1743-53. [PMID: 27465532 DOI: 10.4049/jimmunol.1502107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation.
Collapse
Affiliation(s)
- Dominic P Golec
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Laura M Henao Caviedes
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|