1
|
Rose O, Croonenberg T, Clemens S, Hinteregger T, Eppacher S, Huber-Cantonati P, Garcia-Miralles M, Liuni R, Dossena S. Cisplatin-Induced Hearing Loss, Oxidative Stress, and Antioxidants as a Therapeutic Strategy-A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:1578. [PMID: 39765905 PMCID: PMC11673797 DOI: 10.3390/antiox13121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025] Open
Abstract
Cisplatin is an established component of treatment protocols for various solid malignancies but carries a significant potential for serious adverse effects. Ototoxicity from cisplatin treatment is an important dose-limiting toxicity that manifests as bilateral, progressive, irreversible, dose-dependent sensorineural hearing loss, ear pain, tinnitus, and vestibular dysfunction. Despite the recent approval of sodium thiosulphate for the prevention of cisplatin-induced hearing loss (CIHL) in pediatric patients, structured prevention programs are not routinely implemented in most hospitals, and reducing platinum-induced ototoxicity in adults remains an important clinical problem without established treatment options. Cochlear oxidative stress plays a fundamental role in CIHL. Here, we review the molecular mechanisms leading to oxidative stress in CIHL and the clinical and preclinical studies testing antioxidants in CIHL to guide future clinical trials in assessing the efficacy and safety of candidate antioxidant compounds in this clinical setting.
Collapse
Affiliation(s)
- Olaf Rose
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tim Croonenberg
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stephanie Clemens
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
- Center of Public Health and Health Services Research, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Hinteregger
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Stefanie Eppacher
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Petra Huber-Cantonati
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Marta Garcia-Miralles
- Institute of Pharmacy, Pharmaceutical Biology and Clinical Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria (S.C.)
| | - Raffaella Liuni
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
- Research and Innovation Center Regenerative Medicine & Novel Therapies (FIZ RM&NT), Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Scott EN, Joseph AA, Dhanda A, Tanoshima R, Brooks B, Rassekh SR, Ross CJD, Carleton BC, Loucks CM. Systematic Critical Review of Genetic Factors Associated with Cisplatin-induced Ototoxicity: Canadian Pharmacogenomics Network for Drug Safety 2022 Update. Ther Drug Monit 2023; 45:714-730. [PMID: 37726872 DOI: 10.1097/ftd.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.
Collapse
Affiliation(s)
- Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Akshaya A Joseph
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Angie Dhanda
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Beth Brooks
- Audiology and Speech Pathology Department, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
- School of Audiology and Speech Science, UBC, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and UBC, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, UBC, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; and
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Association of Clinical Aspects and Genetic Variants with the Severity of Cisplatin-Induced Ototoxicity in Head and Neck Squamous Cell Carcinoma: A Prospective Cohort Study. Cancers (Basel) 2023; 15:cancers15061759. [PMID: 36980643 PMCID: PMC10046479 DOI: 10.3390/cancers15061759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Cisplatin (CDDP) is a major ototoxic chemotherapy agent for head and neck squamous cell carcinoma (HNSCC) treatment. Clinicopathological features and genotypes encode different stages of CDDP metabolism, as their coexistence may influence the prevalence and severity of hearing loss. Methods: HNSCC patients under CDDP chemoradiation were prospectively provided with baseline and post-treatment audiometry. Clinicopathological features and genetic variants encoding glutathione S-transferases (GSTT1, GSTM1, GSTP1), nucleotide excision repair (XPC, XPD, XPF, ERCC1), mismatch repair (MLH1, MSH2, MSH3, EXO1), and apoptosis (P53, CASP8, CASP9, CASP3, FAS, FASL)-related proteins were analyzed regarding ototoxicity. Results: Eighty-nine patients were included, with a cumulative CDDP dose of 260 mg/m2. Moderate/severe ototoxicity occurred in 26 (29%) patients, particularly related to hearing loss at frequencies over 3000 Hertz. Race, body-mass index, and cumulative CDDP were independent risk factors. Patients with specific isolated and combined genotypes of GSTM1, GSTP1 c.313A>G, XPC c.2815A>C, XPD c.934G>A, EXO1 c.1762G>A, MSH3 c.3133A>G, FASL c.-844A>T, and P53 c.215G>C SNVs had up to 32.22 higher odds of presenting moderate/severe ototoxicity. Conclusions: Our data present, for the first time, the association of combined inherited nucleotide variants involved in CDDP efflux, DNA repair, and apoptosis with ototoxicity, which could be potential predictors in future clinical and genomic models.
Collapse
|
4
|
Hong DZ, Ong TCC, Timbadia DP, Tan HTA, Kwa ED, Chong WQ, Goh BC, Loh WS, Loh KS, Tan EC, Tay JK. Systematic Review and Meta-Analysis of the Influence of Genetic Variation on Ototoxicity in Platinum-Based Chemotherapy. Otolaryngol Head Neck Surg 2023; 168:1324-1337. [PMID: 36802061 DOI: 10.1002/ohn.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 02/19/2023]
Abstract
OBJECTIVE The objective of this meta-analysis is to evaluate the impact of genetic polymorphisms on platinum-based chemotherapy (PBC)-induced ototoxicity. DATA SOURCES Systematic searches of PubMed, Embase, Cochrane, and Web of Science were conducted from the inception of the databases to May 31, 2022. Abstracts and presentations from conferences were also reviewed. REVIEW METHODS Four investigators independently extracted data in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Differences in the prevalence of PBC-induced ototoxicity between reference and variant (i) genotypes and (ii) alleles were analyzed. The overall effect size was presented using the random-effects model as an odds ratio (OR) with a 95% confidence interval (CI). RESULTS From 32 included articles, 59 single nucleotide polymorphisms on 28 genes were identified, with 4406 total unique participants. For allele frequency analysis, the A allele in ACYP2 rs1872328 was positively associated with ototoxicity (OR: 2.61; 95% CI: 1.06-6.43; n = 2518). Upon limiting to cisplatin use only, the T allele of COMT rs4646316 and COMT rs9332377 revealed significant results. For genotype frequency analysis, the CT/TT genotype in ERCC2 rs1799793 demonstrated an otoprotective effect (OR: 0.50; 95% CI: 0.27-0.94; n = 176). Excluding studies using carboplatin or concomitant radiotherapy revealed significant effects with COMT rs4646316, GSTP1 rs1965, and XPC rs2228001. Major sources of variations between studies include differences in patient demographics, ototoxicity grading systems, and treatment protocols. CONCLUSION Our meta-analysis presents polymorphisms that exert ototoxic or otoprotective effects in patients undergoing PBC. Importantly, several of these alleles are observed at high frequencies globally, highlighting the potential for polygenic screening and cumulative risk evaluation for personalized care.
Collapse
Affiliation(s)
- Daniel Z Hong
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Thaned C C Ong
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Dhayan P Timbadia
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Hui T A Tan
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - Eunice D Kwa
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Wan Q Chong
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Boon C Goh
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Woei S Loh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Kwok S Loh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Ene C Tan
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Sherief LM, Rifky E, Attia M, Ahmed R, Kamal NM, Oshi MAM, Hanna D. Platinum-induced ototoxicity in pediatric cancer survivors: GSTP1 c.313A>G variant association. Medicine (Baltimore) 2022; 101:e31627. [PMID: 36397425 PMCID: PMC9666226 DOI: 10.1097/md.0000000000031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hearing damage is one of the main toxic effects of platinum compounds, it derives from the irreversible degeneration of hair cells of the ear. Genetic association studies have suggested an association between GSTP1 c.313A>G variant and platinum-induced ototoxicity in childhood cancer survivors. We aimed to detect the frequency of ototoxicity and associated risk factors in survivors of childhood cancer receiving platinum-based chemotherapy and to detect the relation between GSTP1 c.313A>G (rs1695) polymorphisms and ototoxicity. We conducted a cross-sectional study on 64 cancer survivors who received platinum agents (cisplatin and/or carboplatin) at least 2 years after the end of chemotherapy. The patients underwent comprehensive audiological evaluations and genotyping to detect the presence of the GSTP1 c.313A>G polymorphisms. Hearing loss (HL) was identified in 16/64 patients (25%), including 62.5% treated with cisplatin and 37.5% treated with carboplatin. The greater incidence of ototoxicity was found in children treated for osteosarcoma (28.1%) followed by patients with germ cell tumors (25%) and neuroblastoma (21.9%). The AA, AG, and GG types of GSTP1 c.313A>G variant were detected in 84.4%, 9.4%, and 6.3%, respectively, of patients with HL with a significant association between mutant genotype of GSTP1 rs1695 and platinum-induced ototoxicity (P = .035). HL was not significantly associated with the total cumulative dose of cisplatin and carboplatin. GSTP1 c.313A>G variant may increase the risk of HL in pediatric oncology patients treated with cisplatin or carboplatin chemotherapy.
Collapse
Affiliation(s)
- Laila M. Sherief
- Department of Pediatrics and Pediatric Hematology/Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- * Correspondence: Laila M. Sherief, Department of Pediatrics, Zagazig University, Zagazig, Egypt (e-mail: )
| | - Elhamy Rifky
- Department of Pediatrics and Pediatric Hematology/Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Attia
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Naglaa M. Kamal
- Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine Cairo University, Cairo, Egypt
| | - Mohammed A. M. Oshi
- Department of Pediatrics and Pediatric Neurology, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Diana Hanna
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Patatt FSA, Gonçalves LF, Paiva KMD, Haas P. Ototoxic effects of antineoplastic drugs: a systematic review. Braz J Otorhinolaryngol 2022; 88:130-140. [PMID: 33757754 PMCID: PMC9422719 DOI: 10.1016/j.bjorl.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Platinum-based chemotherapeutics play an important role in the treatment of cancer at different levels and are the most cited ototoxic agents when scientific evidence is analyzed. OBJECTIVE To present scientific evidence based on a systematic literature review, PRISMA, in order to systematize information on the ototoxic effects of using antineoplastic drugs. METHODS For the selection of studies, the combination based on the Medical Subject Heading Terms (MeSH) was used. The Medline (Pubmed), LILACS, SciELO, SCOPUS, WEB OF SCIENCE and BIREME databases were used, without restriction of language, period, and location. Evaluation of the quality of the articles was carried out, which included articles with a minimum score of 6 in the modified scale of the literature. The designs of the selected studies were descriptive, cohort, and cross-sectional, which were related to the research objective. RESULTS Three articles were included in this systematic review. The ototoxicity caused by cisplatin alone varied from 45% to 83.3%, while that caused by the use associated with carboplatin varied from 16.6% to 75%. There was a significant variation in the cumulative doses of these antineoplastic agents, both in isolated and in combination. Auditory changes, especially at high frequencies, were evident after completion of treatment. CONCLUSION Auditory changes after the use of platinum-based antineoplastic drugs were found, however, there was an important heterogeneity regarding the frequency of ototoxicity and the cumulative dose of the drugs used.
Collapse
Affiliation(s)
| | | | | | - Patrícia Haas
- Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
7
|
Curti RRDJ, Castilha EP, Bonaldo ALL, Okuyama NCM, Trugilo KP, Guembarovski RL, Couto-Filho JD, Watanabe MAE, de Oliveira KB. Development of cervical intraepithelial lesions and cervical cancer is not influenced by SOD2 RS4880 polymorhism. Pathol Res Pract 2021; 230:153742. [PMID: 34959097 DOI: 10.1016/j.prp.2021.153742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
Some of the more than 200 known HPV types are essential for cervical cancer development, the third type of cancer most incident in the female population. However, for the malignant transformation occur, some cofactors are needed, as the reactive oxygen species (ROS), which can be neutralized by the antioxidant system. The SOD2 enzyme, encoded by the same name gene, is found in mitochondria and is part of the first line of defense against oxidative stress damage. Genetic polymorphisms can act by altering the efficiency of the enzyme, among which the most studied is the rs4880. Thus, the purpose of the present study was to evaluate the association of this polymorphism with HPV infection and the development of low and high grade squamous intraepithelial lesions (LSIL and HSIL) and cervical cancer, in 407 women attended by the public health system in Brazil. HPV detection in cervical secretion samples was carried out by polymerase chain reaction (PCR) and blood samples were used for polymorphism genotyping through PCR followed by restriction fragment length polymorphism (RFLP). PCR and restriction products were subjected to 10% polyacrylamide gel electrophoresis. HPV negative group (control) included 158 women and the HPV positive group (case) 249 women. The infected group was divided into No Lesion (n = 90), LSIL (n = 20), HSIL (n = 67) and cervical cancer (n = 72). The data found on socio-epidemiological characteristics and habits corroborated with data found in the literature. The distribution of genotypes in the control group was 51.9% women TC, 29.8% TT and 18.3% CC. In the case group, the distribution was 55.0% women TC, 26.1% TT and 18.9% CC. This is the first study evaluating the influence of SOD2 rs4880 polymorphism on HPV infection, the development of cervical intraepithelial lesions and cervical cancer in a Brazilian population, although additional studies are needed to corroborate the results.
Collapse
Affiliation(s)
- Rafaela Roberta de Jaime Curti
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Ana Luiza Labbate Bonaldo
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Nádia Calvo Martins Okuyama
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil
| | - Roberta Losi Guembarovski
- Laboratory of Mutagenesis and Oncogenetics, Molecular Genetics and Immunology, Department of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | | | - Maria Angelica Ehara Watanabe
- Laboratory of Study and Application of DNA Polymorphism, Department of Pathological Science, Londrina State University, Londrina, Paraná, Brazil
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Pathological Sciences, State University of Londrina, 86.057-970 Paraná, Brazil.
| |
Collapse
|
8
|
Pasquariello KZ, Dey JM, Sprowl JA. Current Understanding of Membrane Transporters as Regulators or Targets for Cisplatin-Induced Hearing Loss. Mol Pharmacol 2021; 100:348-355. [PMID: 34330821 DOI: 10.1124/molpharm.121.000274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is a platinum-based drug which remains among the most efficacious anticancer treatment options. Unfortunately, use of cisplatin is hindered by dose-limiting toxicities, including irreversible hearing loss, which can grossly affect patient quality of life. Cisplatin-induced ototoxicity is the result of cochlear hair cell damage through a mechanism that is poorly understood. However, cisplatin cytotoxicity is reliant on intracellular accumulation, a process that is largely dependent on the presence of particular membrane transporters. This review will provide an update on our current understanding of the various transporters known to be involved in the disposition and cytotoxicity of platinum drugs or their metabolites, as well as their role in mediating cisplatin-induced hearing loss. We also provide a summary of the successes and opportunities in therapeutically targeting membrane transporters to alleviate platinum-induced hearing loss. Moreover, we describe how this approach could be used to reduce the severity or onset of other adverse events associated with exposure to various forms of platinum drugs, without diminishing anti-tumor efficacy. Significance Statement Cisplatin-induced hearing loss is a dose limiting and irreversible adverse event with no current preventative or curative treatment measures. Pharmacological targeting of membrane transporters that regulate platinum uptake into cochlear hair cells, if conducted appropriately, may alleviate this devastating side effect and could be applied to alleviate other platinum-induced toxicities.
Collapse
Key Words
- Uptake transporters (OATP, OAT, OCT, PEPT, MCT, NTCP, ASBT, etc.)
- cancer chemotherapy
- efflux transporters (P-gp, BCRP, MRP, MATE, BSEP, etc)
- ototoxicity
Collapse
Affiliation(s)
| | | | - Jason A Sprowl
- School of Pharmacy, University of Buffalo, United States
| |
Collapse
|
9
|
Tang Q, Wang X, Jin H, Mi Y, Liu L, Dong M, Chen Y, Zou Z. Cisplatin-induced ototoxicity: Updates on molecular mechanisms and otoprotective strategies. Eur J Pharm Biopharm 2021; 163:60-71. [PMID: 33775853 DOI: 10.1016/j.ejpb.2021.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin is a highly effective antitumor drug generally used in the treatment of solid malignant tumors. However, cisplatin causes severe side effects such as bone marrow depression, nephrotoxicity, and ototoxicity, thus limiting its clinical application. The incidence of ototoxicity induced by cisplatin ranges from 20% to 70%, and it usually manifests as a progressive, bilateral and irreversible hearing loss. Although the etiology of cisplatin-induced ototoxicity remains unclear, an increasing body of evidence suggests that the ototoxicity of cisplatin is mainly related to the production of reactive oxygen species and activation of apoptotic pathway in cochlear tissues. Many drugs have been well proved to protect cisplatin-induced hearing loss in vitro and in vivo. However, the anti-tumor effect of cisplatin is also weakened by systemic administration of those drugs for hearing protection, especially antioxidants. Therefore, establishing a local administration strategy contributes to the otoprotection without affecting the effect of cisplatin. This review introduces the pathology of ototoxicity caused by cisplatin, and focuses on recent developments in the mechanisms and protective strategies of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xianren Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research and Thoracic Tumor Diagnosis & Treatment, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| | - Lingfeng Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mengyuan Dong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
10
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
11
|
Chen C, Chen Q, Xu Y, Zheng W, Lin Z, Wu Z, Ye W, Huang X, Lin X, Bai P. Comparison of Prognosis Between Juvenile and Adult Nasopharyngeal Carcinoma: A Propensity Score-Matched Analysis. Cancer Manag Res 2020; 12:8613-8621. [PMID: 32982452 PMCID: PMC7509313 DOI: 10.2147/cmar.s260402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To investigate whether juvenile patients with nasopharyngeal carcinoma (NPC) in China have better prognosis than their adult counterparts in the intensity-modulated radiation therapy (IMRT) era, after controlling for potential confounding variables. Methods Data pertaining to 1139 patients with newly diagnosed NPC without metastasis, who were treated with IMRT at our hospital, were retrospectively analyzed. Of these, 60 patients were juvenile (age ≤18 years) diagnosed between January 2003 and December 2018, while 1079 patients were adults (≤65 years) diagnosed between January 2013 and December 2014. To minimize the influence of selection and confounding bias, 1:2 propensity score matching (PSM) was used. Overall survival (OS), disease-free survival (DFS), locoregional relapse-free survival (LRFS), and distant metastasis-free survival (DMFS) were estimated using the Kaplan–Meier method and between-group differences assessed using the Log rank test. The long-term toxicity of the juvenile patients was evaluated according to the criteria of the Radiation Therapy Oncology Group (RTOG) and the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. Results Five-year OS of juvenile and adult patients were 88.07% and 85.08%, respectively. Before PSM, OS, PFS, DMFS, or LRFS were comparable in the two groups (all P > 0.05). After PSM, OS, DFS, and LRFS in the juvenile group were markedly longer than that in adults (P = 0.005, P = 0.027, and P = 0.024, respectively). With respect to long-term toxicity, the most common adverse effects in juvenile patients were cervix fibrosis, ototoxicity, and xerostomia. However, except for two patients who developed grade 3 ototoxicity, all adverse effects were within grade 2. Conclusion In the IMRT era, juvenile Chinese patients with NPC had better 5-year OS, DFS, and LRFS than their adult counterparts. The adverse events in the juvenile cohort were relatively mild; however, the risk of severe ototoxicity should not be neglected.
Collapse
Affiliation(s)
- Chuanben Chen
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Qinyan Chen
- Graduate School, Fujian Medical University, Fuzhou 350000, Fujian Province, People's Republic of China
| | - Yuanji Xu
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Wei Zheng
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Zhizhong Lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Zijie Wu
- Graduate School, Fujian Medical University, Fuzhou 350000, Fujian Province, People's Republic of China
| | - Wangzhong Ye
- Graduate School, Fujian Medical University, Fuzhou 350000, Fujian Province, People's Republic of China
| | - Xinyi Huang
- Graduate School, Fujian Medical University, Fuzhou 350000, Fujian Province, People's Republic of China
| | - Xiurong Lin
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| | - Penggang Bai
- Department of Radiation Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, Fujian Province, People's Republic of China
| |
Collapse
|
12
|
Zazuli Z, Duin NJCB, Jansen K, Vijverberg SJH, Maitland-van der Zee AH, Masereeuw R. The Impact of Genetic Polymorphisms in Organic Cation Transporters on Renal Drug Disposition. Int J Mol Sci 2020; 21:ijms21186627. [PMID: 32927790 PMCID: PMC7554776 DOI: 10.3390/ijms21186627] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
A considerable number of drugs and/or their metabolites are excreted by the kidneys through glomerular filtration and active renal tubule secretion via transporter proteins. Uptake transporters in the proximal tubule are part of the solute carrier (SLC) superfamily, and include the organic cation transporters (OCTs). Several studies have shown that specific genetic polymorphisms in OCTs alter drug disposition and may lead to nephrotoxicity. Multiple single nucleotide polymorphisms (SNPs) have been reported for the OCT genes (SLC22A1, SLC22A2 and SLC22A3), which can influence the proteins’ structure and expression levels and affect their transport function. A gain-in-function mutation may lead to accumulation of drugs in renal proximal tubule cells, eventually leading to nephrotoxicity. This review illustrates the impact of genetic polymorphisms in OCTs on renal drug disposition and kidney injury, the clinical significances and how to personalize therapies to minimize the risk of drug toxicity.
Collapse
Affiliation(s)
- Zulfan Zazuli
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.J.H.V.); (A.H.M.-v.d.Z.)
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Jawa Barat 40132, Indonesia
- Correspondence: (Z.Z.); (R.M.)
| | - Naut J. C. B. Duin
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.J.C.B.D.); (K.J.)
| | - Katja Jansen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.J.C.B.D.); (K.J.)
| | - Susanne J. H. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.J.H.V.); (A.H.M.-v.d.Z.)
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (S.J.H.V.); (A.H.M.-v.d.Z.)
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.J.C.B.D.); (K.J.)
- Correspondence: (Z.Z.); (R.M.)
| |
Collapse
|
13
|
Fetoni AR, Astolfi L. Cisplatin ototoxicity and role of antioxidant on its prevention. HEARING, BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2020.1810962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anna Rita Fetoni
- Department of Head and Neck Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neuroscience, University of Padua, Padua, Italy
| |
Collapse
|
14
|
GSTM1 null and GSTT1 null: predictors of cisplatin-caused acute ototoxicity measured by DPOAEs. J Mol Med (Berl) 2020; 98:963-971. [PMID: 32435918 PMCID: PMC7343745 DOI: 10.1007/s00109-020-01921-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Preventing the ototoxicity caused by cisplatin is a major issue yet to be overcome. Useful preventive treatments will soon be available. Consequently, the next step is to filter out those patients who are more prone to develop ototoxicity. The aim of this study was to prospectively evaluate potential predictive markers of acute ototoxicity as determined by measures of distortion product otoacoustic emissions (DPOAEs). A total of 118 patients from our previous DPOAE analysis were put under evaluation. Ototoxic cases were divided according to unilateral (n = 45) or bilateral (n = 23) involvement. The clinicopathological characteristics, hearing test results, germline GSTT1, GSTM1, and GSTP1 polymorphisms, and common laboratory parameters were included in the new analysis. Univariate and multivariate statistical tests were applied. According to multivariate logistic regression, the only independent predictor of unilateral ototoxicity (vs. non-affected) was a GSTM1 null genotype (OR = 4.52; 95%CI = 1.3-16.3), while for bilateral damage, the GSTT1 null genotype (OR = 4.76; 1.4-16) was a predictor. The higher starting serum urea level was characteristic of bilateral ototoxicity; however, the only independent marker of bilateral (vs. unilateral) ototoxicity was the presence of GSTT1 null genotype (OR = 2.44; 1.23-4.85). Different processes, involving the GSTM1 and GSTT1 genotypes, respectively, govern the development of acute unilateral and bilateral ototoxicities. Further research is needed to clarify these processes. Based on the above findings, patients whom are at risk may be selected for otoprotective therapies. KEY MESSAGES: The acute ototoxicity was determined by DPOAE in 118 testicular cancer patients. GSTM1 null was the only marker of unilateral ototoxicity (vs. non-affected). The only marker of bilateral hearing loss (vs. non-affected) was the GSTT1 null. GSTT1 null was also the marker of bilateral vs. unilateral ototoxicity. A high-risk group may be selected for new, individualized otoprotective treatment.
Collapse
|
15
|
Ahmadmehrabi S, Brant J, Epstein DJ, Ruckenstein MJ, Rader DJ. Genetics of Postlingual Sensorineural Hearing Loss. Laryngoscope 2020; 131:401-409. [PMID: 32243624 DOI: 10.1002/lary.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Literature and clinical practice around adult-onset hearing loss (HL) has traditionally focused on environmental risk factors, including noise exposure, ototoxic drug exposure, and cardiovascular disease. The most common diagnosis in adult-onset HL is presbycusis. However, the age of onset of presbycusis varies, and patients often describe family history of HL as well as individual variation in progression and severity. In recent years, there has been accumulating evidence of gene-environment interactions underlying adult cases of HL. Susceptibility loci for age-related HL have been identified, and genes related to postlingual nonsyndromic HL continue to be discovered through individual reports and genome-wide association studies. This review will outline main concepts in genetics as related to HL, identify implicated genes, and discuss clinical implications. Laryngoscope, 131:401-409, 2021.
Collapse
Affiliation(s)
- Shadi Ahmadmehrabi
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Brant
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Ruckenstein
- Department of Otorhinolaryngology Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Drögemöller BI, Wright GE, Lo C, Le T, Brooks B, Bhavsar AP, Rassekh SR, Ross CJ, Carleton BC. Pharmacogenomics of Cisplatin‐Induced Ototoxicity: Successes, Shortcomings, and Future Avenues of Research. Clin Pharmacol Ther 2019; 106:350-359. [DOI: 10.1002/cpt.1483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Britt I. Drögemöller
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Galen E.B. Wright
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| | - Cody Lo
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Faculty of MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Tan Le
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
| | - Beth Brooks
- Audiology and Speech Pathology DepartmentBC Children's Hospital Vancouver British Columbia Canada
| | - Amit P. Bhavsar
- Department of Medical Microbiology and ImmunologyFaculty of Medicine and DentistryUniversity of Alberta Edmonton Alberta Canada
| | - Shahrad R. Rassekh
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| | - Colin J.D. Ross
- Faculty of Pharmaceutical SciencesUniversity of British Columbia Vancouver British Columbia Canada
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
| | - Bruce C. Carleton
- BC Children's Hospital Research Institute Vancouver British Columbia Canada
- Division of Translational TherapeuticsDepartment of PediatricsUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
17
|
Rybak LP, Mukherjea D, Ramkumar V. Mechanisms of Cisplatin-Induced Ototoxicity and Prevention. Semin Hear 2019; 40:197-204. [PMID: 31036996 DOI: 10.1055/s-0039-1684048] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois.,Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
18
|
Tserga E, Nandwani T, Edvall NK, Bulla J, Patel P, Canlon B, Cederroth CR, Baguley DM. The genetic vulnerability to cisplatin ototoxicity: a systematic review. Sci Rep 2019; 9:3455. [PMID: 30837596 PMCID: PMC6401165 DOI: 10.1038/s41598-019-40138-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Ototoxicity is one of the major side-effects of platinum-based chemotherapy, in particular cisplatin (cis-diammine dichloroplatinum II). To our knowledge, no systematic review has previously provided a quantitative summary estimate of the impact of genetics upon the risk of developing hearing loss. We searched Embase, Medline, ASSIA, Pubmed, Scopus, and Web of Science, for studies documenting the genetic risk of ototoxicity in patients with cancer treated with cisplatin. Titles/abstracts and full texts were reviewed for inclusion. Meta-analytic estimates of risk (Odds Ratio) from the pooled data were calculated for studies that have been repeated twice or more. The search identified 3891 papers, of which 30 were included. The majority were retrospective (44%), ranging from n = 39 to n = 317, some including only patients younger than 25 years of age (33%), and some on both genders (80%). The most common cancers involved were osteosarcoma (53%), neuroblastoma (37%), prostate (17%) and reproductive (10%). Most studies performed genotyping, though only 5 studies performed genome-wide association studies. Nineteen single-nucleotide polymorphisms (SNPs) from 15 genes were repeated more than twice. Meta-analysis of group data indicated that rs1872328 on ACYP2, which plays a role in calcium homeostasis, increases the risk of ototoxicity by 4.61 (95% CI: 3.04-7.02; N = 696, p < 0.0001) as well as LRP2 rs4668123 shows a cumulated Odds Ratio of 3.53 (95% CI: 1.48-8.45; N = 118, p = 0.0059), which could not be evidenced in individual studies. Despite the evidence of heterogeneity across studies, these meta-analytic results from 30 studies are consistent with a view of a genetic predisposition to platinum-based chemotherapy mediated ototoxicity. These new findings are informative and encourage the genetic screening of cancer patients in order to identify patients with greater vulnerability of developing hearing loss, a condition having a potentially large impact on quality of life. More studies are needed, with larger sample size, in order to identify additional markers of ototoxic risk associated with platinum-based chemotherapy and investigate polygenic risks, where multiple markers may exacerbate the side-effects.
Collapse
Affiliation(s)
- Evangelia Tserga
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Tara Nandwani
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Niklas K Edvall
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Jan Bulla
- Department of Mathematics, University of Bergen, Bergen, Norway.,Department of Psychiatry and Psychotherapy, University Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Poulam Patel
- Division of Oncology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Barbara Canlon
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Christopher R Cederroth
- Experimental Audiology, Biomedicum, Karolinska Institutet, Solnavägen 9, 171 65, Stockholm, Sweden
| | - David M Baguley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK. .,NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|