1
|
Bergman DR, Karikomi MK, Yu M, Nie Q, MacLean AL. Modeling the effects of EMT-immune dynamics on carcinoma disease progression. Commun Biol 2021; 4:983. [PMID: 34408236 PMCID: PMC8373868 DOI: 10.1038/s42003-021-02499-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
During progression from carcinoma in situ to an invasive tumor, the immune system is engaged in complex sets of interactions with various tumor cells. Tumor cell plasticity alters disease trajectories via epithelial-to-mesenchymal transition (EMT). Several of the same pathways that regulate EMT are involved in tumor-immune interactions, yet little is known about the mechanisms and consequences of crosstalk between these regulatory processes. Here we introduce a multiscale evolutionary model to describe tumor-immune-EMT interactions and their impact on epithelial cancer progression from in situ to invasive disease. Through simulation of patient cohorts in silico, the model predicts that a controllable region maximizes invasion-free survival. This controllable region depends on properties of the mesenchymal tumor cell phenotype: its growth rate and its immune-evasiveness. In light of the model predictions, we analyze EMT-inflammation-associated data from The Cancer Genome Atlas, and find that association with EMT worsens invasion-free survival probabilities. This result supports the predictions of the model, and leads to the identification of genes that influence outcomes in bladder and uterine cancer, including FGF pathway members. These results suggest new means to delay disease progression, and demonstrate the importance of studying cancer-immune interactions in light of EMT.
Collapse
Affiliation(s)
- Daniel R. Bergman
- grid.266093.80000 0001 0668 7243Department of Mathematics, University of California, Irvine, CA USA
| | - Matthew K. Karikomi
- grid.266093.80000 0001 0668 7243Department of Mathematics, University of California, Irvine, CA USA
| | - Min Yu
- grid.42505.360000 0001 2156 6853USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA ,grid.42505.360000 0001 2156 6853Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Qing Nie
- grid.266093.80000 0001 0668 7243Department of Mathematics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Cell and Developmental Biology, University of California, Irvine, CA USA
| | - Adam L. MacLean
- grid.266093.80000 0001 0668 7243Department of Mathematics, University of California, Irvine, CA USA ,grid.42505.360000 0001 2156 6853USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA ,grid.42505.360000 0001 2156 6853Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci 2019; 76:4043-4070. [PMID: 31317205 PMCID: PMC6785598 DOI: 10.1007/s00018-019-03199-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Stem cells give rise to all cells and build the tissue structures in our body, and heterogeneity and plasticity are the hallmarks of stem cells. Epigenetic modification, which is associated with niche signals, determines stem cell differentiation and somatic cell reprogramming. Stem cells play a critical role in the development of tumors and are capable of generating 3D organoids. Understanding the properties of stem cells will improve our capacity to maintain tissue homeostasis. Dissecting epigenetic regulation could be helpful for achieving efficient cell reprograming and for developing new drugs for cancer treatment. Stem cell-derived organoids open up new avenues for modeling human diseases and for regenerative medicine. Nevertheless, in addition to the achievements in stem cell research, many challenges still need to be overcome for stem cells to have versatile application in clinics.
Collapse
Affiliation(s)
- Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Abstract
The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in 'pure' epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS.
Collapse
Affiliation(s)
- Yutong Sha
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Daniel Haensel
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
- Co-first authors
| | - Guadalupe Gutierrez
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Huijing Du
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697, United States of America
- Department of Development and Cell Biology, University of California, Irvine, CA 92697, United States of America
| |
Collapse
|