1
|
Luan M, Zhang B, Wei Y, Liu F, Zhao Y, Yu Y, Wu Q. MAFF mediates PEITC-induced enhancement of sensitivity to carboplatin in ovarian cancer cell lines via activating ZNF711 transcription in vivo and invitro. Chem Biol Interact 2024; 399:111116. [PMID: 38908812 DOI: 10.1016/j.cbi.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Enhanced drug resistance poses a significant challenge in treating ovarian cancer (OC). Phenylethyl isothiocyanate (PEITC) is involved in drug resistance in OC, but the mechanism remains unclear. In this study, we investigated the molecular regulatory mechanism of carboplatin sensitivity in OC associated with PEITC, MAF BZIP Transcription Factor F (MAFF), and Zinc finger proteins (ZNF) 711. The carboplatin sensitivity was significantly increased in OC cells after PEITC treatment. Knockdown of MAFF significantly enhanced the carboplatin sensitivity of OC cells, promoted apoptosis, inhibited colony-forming efficiency in vitro, and suppressed tumor growth in vivo. The binding site of MAFF to the ZNF711 promoter was predicted, and the knockdown of MAFF significantly increased the ZNF711 expression. Results of the dual luciferase assay and ChIP-PCR confirmed the binding of MAFF to the ZNF711 promoter. Immunofluorescence and CoIP results demonstrated the colocalization and the binding of MAFF and its interacting protein, BZIP Transcription Factor ATF-like 3 (BATF3). Similarly, we confirmed the binding of BATF3 to the ZNF711 promoter. Knockdown of BATF3 alone and simultaneous knockdown of BATF3 and MAFF showed similar regulatory effects on ZNF711 transcription and apoptosis. These suggested that the binding of MAFF to BATF3 inhibited ZNF711 transcription and reduced carboplatin sensitivity in OC.
Collapse
Affiliation(s)
- Meng Luan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yifan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fanghua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yalian Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Qijun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Du J, Zhang Y, Chen J, Jin L, Pan L, Lei P, Lin S. Phenethyl isothiocyanate inhibits the carcinogenic properties of hepatocellular carcinoma Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. PeerJ 2024; 12:e17532. [PMID: 38873643 PMCID: PMC11172670 DOI: 10.7717/peerj.17532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with limited effective treatment options. Phenethyl isothiocyanate (PEITC) is a bioactive substance present primarily in the cruciferous vegetables. PEITC has exhibited anti-cancer properties in various cancers, including lung, bile duct, and prostate cancers. It has been demonstrated that PEITC can inhibit the proliferation, invasion, and metastasis of SK-Hep1 cells, while effectively inducing apoptosis and cell cycle arrest in HepG2 cells. However, knowledge of its anti-carcinogenic effects on Huh7.5.1 cells and its underlying mechanism remains elusive. In the present study, we aim to evaluate the anti-carcinogenic effects of PEITC on human HCC Huh7.5.1 cells. Methods MTT assay and colony formation assay was performed to investigate the anti-proliferative effects of PEITC against Huh7.5.1 cells. The pro-apoptosis effects of PEITC were determined by Annexin V-FITC/PI double staining assay by flow cytometry (FCM), mitochondrial transmembrane potential (MMP) measurement, and Caspase-3 activity detection. A DAPI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay was conducted to estimate the DNA damage in Huh7.5.1 cells induced by PEITC. Cell cycle progression was determined by FCM. Transwell invasion assay and wound healing migration assay were performed to investigate the impact of PEITC on the migration and invasion of Huh7.5.1 cells. In addition, transcriptome sequencing and gene set enrichment analysis (GSEA) were used to explore the potential molecular mechanisms of the inhibitory effects of PEITC on HCC. Quantitative real-time PCR (qRT-PCR) analysis was performed to verify the transcriptome data. Results MTT assay showed that treatment of Huh7.5.1 cells with PEITC resulted in a dose-dependent decrease in viability, and colony formation assay further confirmed its anti-proliferative effect. Furthermore, we found that PEITC could induce mitochondrial-related apoptotic responses, including a decrease of mitochondrial transmembrane potential, activation of Caspase-3 activity, and generation of intracellular reactive oxygen species. It was also observed that PEITC caused DNA damage and cell cycle arrest in the S-phase in Huh7.5.1 cells. In addition, the inhibitory effect of PEITC on the migration and invasion ability of Huh7.5.1 cells was assessed. Transcriptome sequencing analysis further suggested that PEITC could activate the typical MAPK, PI3K-Akt, and p53 signaling pathways, revealing the potential mechanism of PEITC in inhibiting the carcinogenic properties of Huh7.5.1 cells. Conclusion PEITC exhibits anti-carcinogenic activities against human HCC Huh7.5.1 cells by activating MAPK/PI3K-Akt/p53 signaling pathways. Our results suggest that PEITC may be useful for the anti-HCC treatment.
Collapse
Affiliation(s)
- Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jiajia Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Liying Pan
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Pengyu Lei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Chandra Shill M, El-Nashar HAS, Prova Mollick P, Nath Acharyya R, Afrin S, Hossain H, Halder S, Torequl Islam M, Bhuia MS, Reza HM, El-Shazly M, Mubarak MS. Longevity Spinach (Gynura procumbens) Ameliorated Oxidative Stress and Inflammatory Mediators in Cisplatin-Induced Organ Dysfunction in Rats: Comprehensive in vivo and in silico Studies. Chem Biodivers 2024; 21:e202301719. [PMID: 38361048 DOI: 10.1002/cbdv.202301719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024]
Abstract
This study focused to assess the efficacy of Gynura procumbens (GP) leaf extract against cisplatin (CP)-induced hepatorenal complications in Wister albino rats. Additionally, it aims to detect polyphenolic compounds using high-performance liquid chromatography with diode-array detection (HPLC-DAD). The rats were treated intraperitoneally with CP (7.5 mg/kg) to mediate hepatorenal damage. They were then treated with GP extract (75 and 150 mg/kg, P.O.) for 7 consecutive days. Although GP extract significantly ameliorated CP-mediated hepatorenal biomarkers like alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, and blood urea nitrogen (BUN) levels in a dose-dependent manner, GP extract at 150 mg/kg dose normalized hepatorenal biomarkers ALP (45.11 U/L), ALT (34 U/L), AST (29 U/L), creatinine (10.3 mg/dl) and BUN (11.19 mg/dl) while comparing to control and disease group. Similarly, though it significantly reduced CP-induced oxidative stress inducers, including nitric oxide (NO) and advanced oxidative protein products (AOPP), higher dose (150 mg/kg) exhibited better activity in reducing NO (281.54 mmol/gm tissue in liver and 52.73 mmol/gm tissue in the kidney) and AOPP (770.95 mmol/mg protein in liver and 651.90 mmol/mg protein in the kidney). Besides, it showed better enhancement in the antioxidant enzymes superoxide dismutase, and glutathione levels at a higher dose (150 mg/kg). Histopathological studies showed that CP caused collagen accumulation in the liver and kidney tissues. GP extract drained the collagen mass and acted against hepatorenal damage. Ellagic acid, gallic acid, quercetin hydrate, kaempferol, and rutin hydrate were revealed in GP extract. In-silico modelling showed good docking scores of the polyphenolic compounds with molecular targets including CYP4502E1, NF-κB, caspase-3, and TNF-α. GP could be an effective therapeutic option for management of anticancer drugs' complications like CP-induced organ damage, although clinical studies are required to establish herbal formulation.
Collapse
Affiliation(s)
- Manik Chandra Shill
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | | | | - Silvia Afrin
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Hemayet Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shimul Halder
- Department of Pharmaceutical Technology, Dhaka University, Dhaka, 1000, Bangladesh
| | - Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioluster Research Center, Gopalganj, 8100, Dhaka, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | |
Collapse
|
4
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
5
|
Sai S, Yamada T, Ito K, Kanematsu N, Suzuki M, Hayashi M, Koto M. Carbon-ion beam irradiation in combination with cisplatin effectively suppresses xenografted malignant pleural mesothelioma. Am J Cancer Res 2022; 12:5657-5667. [PMID: 36628287 PMCID: PMC9827089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer. This study investigated the growth-inhibitory effects of the combination of carbon ion beam irradiation (IR) and cisplatin (CDDP) on MPM xenografts. Carbon-ion beam IR at 15 Gy effectively inhibited tumor growth and decreased the tumor volume more than 90% after 9 weeks. However, tumor regrowth was observed after 17 weeks. The combination of carbon-ion beam IR (15 Gy) and CDDP significantly suppressed tumor growth after 9 weeks, with tumor regression being observed for more than 18 weeks. In contrast, X-ray IR (30 Gy) alone or in combination with CDDP effectively suppressed tumor growth and decreased the tumor volume after 11 weeks, but tumor growth was observed after 15 weeks. Carbon-ion beam IR at 25 Gy resulted in complete tumor regression without tumor regrowth in the 20-week follow-up period. Histopathological analysis revealed that combination of carbon-ion beam IR and CDDP exerted effective cytotoxic effects on MPM xenograft tumor cells and significantly promoted tumor cell necrosis, cavitation, and fibrosis when compared with individual treatment with carbon-ion beam, X-ray IR, or CDDP. Immunohistochemical analysis revealed that the expression levels of tumor cell migration and invasion-related proteins such as CXCL12, MMP2 and MMP9 were not significantly affected upon low dose (15 Gy) carbon-ion beam IR alone or in combination with CDDP but were markedly upregulated upon treatment with CDDP alone relative to control. However, IR with a high dose (25 Gy) carbon-ion beam inhibited tumor growth without upregulating these proteins. In conclusion, the combination of IR with a low dose (15 Gy) carbon ion beam and CDDP effectively suppressed MPM tumor in vivo without significantly upregulating CXCL12, MMP2 and MMP9, suggesting that combination therapy of carbon ion beam IR and chemotherapy is a promising therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Taiju Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Keiko Ito
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Mitsuhiro Hayashi
- Syneos Health Clinical K.K.1-2-70 Konan, Minato-ku, Tokyo 108-0075, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan,QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
6
|
Zhang Q, Chen M, Cao L, Ren Y, Guo X, Wu X, Xu K. Phenethyl isothiocyanate synergistically induces apoptosis with Gefitinib in non-small cell lung cancer cells via endoplasmic reticulum stress-mediated degradation of Mcl-1. Mol Carcinog 2020; 59:590-603. [PMID: 32189414 DOI: 10.1002/mc.23184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Isothiocyanates (ITCs) are natural compounds abundant in cruciferous vegetables. Numerous studies have shown that ITCs exhibit anticancer activity by affecting multiple pathways including apoptosis and oxidative stress, and are expected to be developed into novel anticancer drugs. In our previous studies, we demonstrated that ITCs effectively inhibit the proliferation of non-small cell lung cancer (NSCLC) cells, also induce apoptosis and autophagy. In the present study, we found that phenethyl isothiocyanate (PEITC) had significant synergistic effects with epidermal growth factor receptor tyrosine kinase inhibitor Gefitinib in NSCLC cell lines NCI-H1299 and SK-MES-1; and the degradation of antiapoptotic factor myeloid cell leukemia 1 (Mcl-1) caused by PEITC treatment played key roles in the sensitivity of NSCLC cells to Gefitinib. We further illustrated that PEITC regulated the expression of Mcl-1 through protein kinase RNA-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor 2α-CHOP-Noxa pathway by a posttranscriptional modulation. Pretreatment with endoplasmic reticulum stress (ER stress) inhibitor tauroursodeoxycholic acid and knockdown of PERK expression attenuated the degradation of Mcl-1 caused by PEITC. In in vivo study, nude mice bearing NCI-H1299 xenograft were administrated with PEITC (50 mg/kg, ip) and Gefitinib (50 mg/kg, ig) for 15 days, the PEITC-Gefitinib combination treatment resulted in a significant synergistic reduction in tumor growth, and significantly induced both ER stress and Mcl-1 degradation in tumor tissues. In conclusion, we explored the prospect of PEITC in improving the efficacy of targeted drug therapy and demonstrated the synergistic effects and underlined mechanisms of PEITC combined with Gefitinib in NSCLC cells treatment. This study provided useful information for developing novel therapy strategies by combination treatment of PEITC with targeted drugs.
Collapse
Affiliation(s)
- Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Urso L, Cavallari I, Sharova E, Ciccarese F, Pasello G, Ciminale V. Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br J Cancer 2020; 122:52-61. [PMID: 31819191 PMCID: PMC6964675 DOI: 10.1038/s41416-019-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy of mesothelial cells with increasing incidence, and in many cases, dismal prognosis due to its aggressiveness and lack of effective therapies. Environmental and occupational exposure to asbestos is considered the main aetiological factor for MPM. Inhaled asbestos fibres accumulate in the lungs and induce the generation of reactive oxygen species (ROS) due to the presence of iron associated with the fibrous silicates and to the activation of macrophages and inflammation. Chronic inflammation and a ROS-enriched microenvironment can foster the malignant transformation of mesothelial cells. In addition, MPM cells have a highly glycolytic metabolic profile and are positive in 18F-FDG PET analysis. Loss-of-function mutations of BRCA-associated protein 1 (BAP1) are a major contributor to the metabolic rewiring of MPM cells. A subset of MPM tumours show loss of the methyladenosine phosphorylase (MTAP) locus, resulting in profound alterations in polyamine metabolism, ATP and methionine salvage pathways, as well as changes in epigenetic control of gene expression. This review provides an overview of the perturbations in metabolism and ROS homoeostasis of MPM cells and the role of these alterations in malignant transformation and tumour progression.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | | | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
8
|
Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:349. [PMID: 31399037 PMCID: PMC6689183 DOI: 10.1186/s13046-019-1352-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Background Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. Methods The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in “in vitro” and “in vivo” models of MPM. At the molecular level, two “omic” approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. Results We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. Conclusions Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management. Electronic supplementary material The online version of this article (10.1186/s13046-019-1352-3) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Chen Y, Li Y, Wang XQ, Meng Y, Zhang Q, Zhu JY, Chen JQ, Cao WS, Wang XQ, Xie CF, Li XT, Geng SS, Wu JS, Zhong CY, Han HY. Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Phytother Res 2018; 32:2447-2455. [DOI: 10.1002/ptr.6183] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Chen
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Yuan Li
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Xiao-qian Wang
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Yu Meng
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Qi Zhang
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Jian-yun Zhu
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Jia-qi Chen
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Wan-shuang Cao
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Xue-qi Wang
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
| | - Chun-feng Xie
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing China
| | - Xiao-ting Li
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing China
| | - Shan-shan Geng
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing China
| | - Jie-shu Wu
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing China
| | - Cai-yun Zhong
- Department of Nutrition and Food Safety, School of Public Health; Nanjing Medical University; Nanjing China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health; Nanjing Medical University; Nanjing China
| | - Hong-yu Han
- Department of Clinical Nutrition, State Key Laboratory of Oncology in South China; Sun Yat-Sen University Cancer Center; Guangzhou China
| |
Collapse
|
10
|
Sai S, Suzuki M, Kim EH, Hayashi M, Vares G, Yamamoto N, Miyamoto T. Effects of carbon ion beam alone or in combination with cisplatin on malignant mesothelioma cells in vitro. Oncotarget 2017; 9:14849-14861. [PMID: 29599911 PMCID: PMC5871082 DOI: 10.18632/oncotarget.23756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MM) is extremely aggressive and a typical refractory cancer. In this study we investigated how effective on killing MM cells by carbon ion beam alone or in combination with cisplatin (CDDP) in vitro. Carbon ion beam (at the center of SOBP with 50 keV/µm of average LET) dose-independently suppressed MM cells MESO-1 and H226 cell viability and in combination with CDDP (25 μM) significantly enhanced its action. Relative biological effectiveness (RBE) values at 73 keV/μm and 13 keV/μm portion of carbon ion beam was estimated as 2.82-2.93 and 1.19-1.22 at D10 level relative to X-ray, respectively by using colony formation assay. Quantitative real time PCR analysis showed that expression of apoptosis-related BAX and autophagy-related Beclin1 and ATG7 was significantly enhanced by carbon ion beam alone or in combination with CDDP. Apoptosis analysis showed that caspase 3/7 activity and the percentage of apoptotic cells was dose-dependently increased after carbon ion beam and it was further increased when combined with CDDP. Spheroid formation ability of cancer stem like CD44+/CD26+ cells was significantly inhibited by carbon ion beam combined with CDDP. Besides, carbon ion beam combined with cisplatin significantly inhibited cell cycle progression (sub-G1 arrest) and induced more large number of γH2AX foci. In conclusion, carbon ion beam combined with CDDP has superior potential to kill MM cells including CSCs with enhanced apoptosis.
Collapse
Affiliation(s)
- Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Eun Ho Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Gongneung-dong, Nowon-Gu, Seoul, South Korea
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Guillaume Vares
- Okinawa Institute of Science and Technology (OIST), Advanced Medical Instrumentation Unit, Onna-son, Okinawa, Japan
| | - Naoyoshi Yamamoto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Tadaaki Miyamoto
- Chiba Foundation for Health Promotion and Disease Prevention, Chiba, Japan
| |
Collapse
|
11
|
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2017; 413:122-134. [PMID: 29113871 DOI: 10.1016/j.canlet.2017.11.002] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
Abstract
Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Shireen Chikara
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Dalasanur Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Department of Medical Oncology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
12
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
13
|
Facchetti G, Petrella F, Spaggiari L, Rimoldi I. Malignant Pleural Mesothelioma: State of the art and advanced cell therapy. Eur J Med Chem 2017; 142:266-270. [PMID: 28800871 DOI: 10.1016/j.ejmech.2017.07.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/13/2022]
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy, with a response rate of 20% of patients and for this reason an efficient treatment is still a challenge. Platinum-based chemotherapy in association with a third-generation antifolate is the front-line standard of care whereas any second-line treatment was approved for MPM thus making it a pathology that evokes the need for new therapeutic agents. Different platinum-drugs were synthesised and tested as an option for patients who are not candidates to cisplatin-based therapy. Among these, monofunctional cationic antineoplastic platinum compounds received a special attention in the last decade. Alternative strategies to the commonly used combination-therapy resulted from the use of Mesenchymal Stromal Cells (MSC) widely used in the field of regenerative medicine and recently proposed as natural carriers for a selective delivery of chemotherapeutic agents and from the use of immune checkpoint and kinase inhibitors. The present short review shed light on the recent state of art and the future perspectives relative to MPM therapy.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Francesco Petrella
- Department of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Isabella Rimoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Golgi 19, 20133 Milan, Italy.
| |
Collapse
|
14
|
Lawson AP, Bak DW, Shannon DA, Long MJC, Vijaykumar T, Yu R, Oualid FE, Weerapana E, Hedstrom L. Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget 2017; 8:51296-51316. [PMID: 28881649 PMCID: PMC5584250 DOI: 10.18632/oncotarget.17261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/22/2017] [Indexed: 01/14/2023] Open
Abstract
Cruciferous vegetables such as broccoli and kale have well documented chemopreventative and anticancer effects that are attributed to the presence of isothiocyanates (ITCs). ITCs modulate the levels of many oncogenic proteins, but the molecular mechanisms of ITC action are not understood. We previously reported that phenethyl isothiocyanate (PEITC) inhibits two deubiquitinases (DUBs), USP9x and UCH37. DUBs regulate many cellular processes and DUB dysregulation is linked to the pathogenesis of human diseases including cancer, neurodegeneration, and inflammation. Using SILAC assisted quantitative mass spectrometry, here we identify 9 new PEITC-DUB targets: USP1, USP3, USP10, USP11, USP16, USP22, USP40, USP48 and VCPIP1. Seven of these PEITC-sensitive DUBs have well-recognized roles in DNA repair or chromatin remodeling. PEITC both inhibits USP1 and increases its ubiquitination and degradation, thus decreasing USP1 activity by two mechanisms. The loss of USP1 activity increases the level of mono-ubiquitinated DNA clamp PCNA, impairing DNA repair. Both the inhibition/degradation of USP1 and the increase in mono-ubiquitinated PCNA are new activities for PEITC that can explain the previously recognized ability of ITCs to enhance cancer cell sensitivity to cisplatin treatment. Our work also demonstrates that PEITC reduces the mono-ubiquityl histones H2A and H2B. Understanding the mechanism of action of ITCs should facilitate their use as therapeutic agents.
Collapse
Affiliation(s)
- Ann P Lawson
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA
| | - Daniel W Bak
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - D Alexander Shannon
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Marcus J C Long
- Graduate Program in Biochemistry and Biophysics, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Tushara Vijaykumar
- Graduate Program in Molecular and Cellular Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Current address: Sanofi Genzyme, Framingham, MA 01701, USA
| | - Runhan Yu
- Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| | | | - Eranthie Weerapana
- Department of Chemistry, Merkert Center, Boston College, Chestnut Hill, MA 02467-3860, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, MA 02453-9110, USA.,Department of Chemistry, Brandeis University, Waltham, MA 02453-9110, USA
| |
Collapse
|
15
|
Wang H, Xu K. [Advances in Research of Antitumor Mechanisms of Isothiocyanates]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:213-218. [PMID: 28302225 PMCID: PMC5973296 DOI: 10.3779/j.issn.1009-3419.2017.03.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Isothiocyanates (ITCs) are naturally occurring small molecules that are generated by the enzymic hydrolysis of glucosinolate in cruciferous vegetables. Numerous studies showed that ITCs inhibit the growth of tumors by the mechanisms including inducing cell cycle arrest, promoting apoptosis and producing reactive oxygen species in vitro and in vivo. Recent studies showed that ITCs also inhibit metastasis of cancer cells, induce endoplasmic reticulum stress and autophagy. This review summarizes the antitumor mechanisms of ITCs.
Collapse
Affiliation(s)
- Huimin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
16
|
Li Q, Zhan M, Chen W, Zhao B, Yang K, Yang J, Yi J, Huang Q, Mohan M, Hou Z, Wang J. Phenylethyl isothiocyanate reverses cisplatin resistance in biliary tract cancer cells via glutathionylation-dependent degradation of Mcl-1. Oncotarget 2016; 7:10271-82. [PMID: 26848531 PMCID: PMC4891119 DOI: 10.18632/oncotarget.7171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/21/2016] [Indexed: 02/05/2023] Open
Abstract
Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of myeloid cell leukemia 1 (Mcl-1). Phenylethyl isothiocyanate (PEITC), a natural compound found in watercress, could enhance the efficacy of CDDP by degrading Mcl-1. PEITC-CDDP co-treatment also increased the rate of apoptosis of cancer stem-like side population (SP) cells and inhibited xenograft tumor growth without obvious toxic effects. In vitro, PEITC decreased reduced glutathione (GSH), which resulted in decreased GSH/oxidized glutathione (GSSG) ratio and increased glutathionylation of Mcl-1, leading to rapid proteasomal degradation of Mcl-1. Furthermore, we identified Cys16 and Cys286 as Mcl-1 glutathionylation sites, and mutating them resulted in PEITC-mediated degradation resistant Mcl-1 protein. In conclusion, we demonstrate for the first time that CDDP resistance is partially associated with Mcl-1 in BTC cells and we identify a novel mechanism that PEITC can enhance CDDP-induced apoptosis via glutathionylation-dependent degradation of Mcl-1. Hence, our results provide support that dietary intake of watercress may help reverse CDDP resistance in BTC patients.
Collapse
Affiliation(s)
- Qiwei Li
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Benpeng Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kai Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Yi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qihong Huang
- The Wistar Institute, University of Pennsylvania and Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Man Mohan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Institutes of Medical Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Sohn EJ, Won G, Lee J, Yoon SW, Lee I, Kim HJ, Kim SH. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell. Int J Biol Sci 2016; 12:1279-1288. [PMID: 28090191 PMCID: PMC5236005 DOI: 10.7150/ijbs.13453] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Republic of Korea
| |
Collapse
|
18
|
Ranjan A, Fofaria NM, Kim SH, Srivastava SK. Modulation of signal transduction pathways by natural compounds in cancer. Chin J Nat Med 2016; 13:730-42. [PMID: 26481373 DOI: 10.1016/s1875-5364(15)30073-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023]
Abstract
Cancer is generally regarded as the result of abnormal growth of cells. According to World Health Organization, cancer is the leading cause of mortality worldwide. Mother nature provides a large source of bioactive compounds with excellent therapeutic efficacy. Numerous phytochemicals from nature have been investigated for anticancer properties. In this review article, we discuss several natural compounds, which have shown anti-cancer activity. Natural compounds induce cell cycle arrest, activate intrinsic and extrinsic apoptosis pathways, generate Reactive Oxygen Species (ROS), and down-regulate activated signaling pathways, resulting in inhibition of cell proliferation, progression and metastasis of cancer. Several preclinical studies have suggested that natural compounds can also increase the sensitivity of resistant cancers to available chemotherapy agents. Furthermore, combining FDA approved anti-cancer drugs with natural compounds results in improved efficacy. On the basis of these exciting outcomes of natural compounds against several cancer types, several agents have already advanced to clinical trials. In conclusion, preclinical results and clinical outcomes against cancer suggest promising anticancer efficacy of agents from natural sources.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Neel M Fofaria
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Preventive Material Development Research Center, College of Korean Medicine, Department of Pathology, Kyunghee University, Seoul 131-701, South Korea.
| |
Collapse
|
19
|
Antrodia cinnamomea alleviates cisplatin-induced hepatotoxicity and enhances chemo-sensitivity of line-1 lung carcinoma xenografted in BALB/cByJ mice. Oncotarget 2016; 6:25741-54. [PMID: 26325335 PMCID: PMC4694863 DOI: 10.18632/oncotarget.4348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023] Open
Abstract
Whereas cisplatin (cis-diamminedichloroplatinum II) is a first-line medicine to treat solid cancerous tumors, it often causes serious side effects. New medicines that have an equivalent or even better therapeutic effect but with free or less side effects than cisplatin are highly anticipated in cancer therapy. Recent reports revealed that Antrodia cinnamomea (AC) possesses hepatoprotective activity in addition to anticancer. In this study, we wanted to know whether AC enhances chemo-sensitivity of cisplatin and/or alleviates cisplatin-induced hepatotoxicity, as well as the underlying mechanisms thereof. Our results indicated that AC inhibited proliferation of line-1 lung carcinoma cells and rescued hepatic HepG2 cells from cisplatin-induced cell death in vitro. The fact is that AC and cisplatin synergized to constrain growth of line-1 lung carcinoma cells in BALB/cByJ mice. Quantitative real-time PCR further revealed that AC promoted expression of apoptosis-related genes, while it decreased expression of NF-κB and VEGF in tumor tissues. In liver, AC reduced cisplatin-induced liver dysfunctions, liver inflammation and hepatic apoptosis in addition to body weight restoration. In summary, AC is able to increase cisplatin efficacy by triggering expression of apoptosis-related genes in line-1 lung cancer cells as well as to protect liver from tissue damage by avoiding cisplatin-induced hepatic inflammation and cell death.
Collapse
|
20
|
Zhang T, Shao Y, Chu TY, Huang HS, Liou YL, Li Q, Zhou H. MiR-135a and MRP1 play pivotal roles in the selective lethality of phenethyl isothiocyanate to malignant glioma cells. Am J Cancer Res 2016; 6:957-972. [PMID: 27293991 PMCID: PMC4889712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023] Open
Abstract
Amounting evidence has demonstrated that phenethyl isothiocyanate (PEITC) is a strong inducer of reactive oxygen species (ROS) and functions as a selective killer to various human cancer cells. However, it remains obscure whether PEITC has potential selective lethality to malignant glioma cells. Thus in this study, we performed multiple analysis such as MTT assay, Hoechst 33258 staining, flow cytometry, foci formation, RT-PCR, Western blot, and transfection to explore the selective lethality of PEITC to malignant glioma cells and the underlying mechanisms. We found that PEITC induced a selective apoptosis and suppressed tumorigenicity and migration of malignant glioma cells. Furthermore, we found PEITC significantly induced GSH depletion, ROS production, caspase-9 and caspase-3 activation, and miR-135a upregulation in malignant glioma cells but not in normal cells. Moreover, PEITC activated the miR-135a-mitochondria dependent apoptosis pathway as demonstrated by downregulation of STAT6, SMAD5 and Bcl-xl while upregulation of Bax expression and Cytochrome-C release in malignant glioma cell lines but not in the immortalized human normal glial HEB cells. Correspondingly, the above PEITC-induced activation of the ROS-MiR-135a-Mitochondria dependent apoptosis pathways in malignant glioma was attenuated by pre-transfection with miR-135a inhibitor, pre-treatment with multidrug resistance-associated protein 1 (MRP1) inhibitor Sch B, or combination with glutathione (GSH). These results revealed that PEITC selectively induced apoptosis of malignant glioma cells through MRP1-mediated export of GSH to activate ROS-MiR-135a-Mitochondria dependent apoptosis pathway, suggesting a potential application of PEITC for treating glioma.
Collapse
Affiliation(s)
- Taolan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Yingying Shao
- Institute of Life Sciences, Chongqing Medical University1 Yixueyuan Rd, Yuzhong District, Chongqing 400016, P. R. China
| | - Tang-Yuan Chu
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Hsuan-Shun Huang
- Institute of Medical Sciences, Tzu Chi UniversityHualien 970, Taiwan
| | - Yu-Ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
- IStat Biomedical Co. Ltd.Taipei, Taiwan
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South UniversityChangsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of PharmacogeneticsChangsha 410078, P. R. China
| |
Collapse
|
21
|
Wawruszak A, Luszczki JJ, Grabarska A, Gumbarewicz E, Dmoszynska-Graniczka M, Polberg K, Stepulak A. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis. PLoS One 2015; 10:e0143013. [PMID: 26580554 PMCID: PMC4651465 DOI: 10.1371/journal.pone.0143013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- * E-mail:
| | - Jarogniew J. Luszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Department of Otolaryngology, MSW Hospital, Lublin, Poland
| |
Collapse
|