1
|
Conway PJ, De La Peña Avalos B, Dao J, Montagnino S, Kovalskyy D, Dray E, Mahadevan D. Aurkin-A, a TPX2-Aurora A small molecule inhibitor disrupts Alisertib-induced polyploidy in aggressive diffuse large B cell lymphoma. Neoplasia 2024; 55:101014. [PMID: 38875929 PMCID: PMC11225860 DOI: 10.1016/j.neo.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Chemotherapy induced polyploidy is a mechanism of inherited drug resistance resulting in an aggressive disease course in cancer patients. Alisertib, an Aurora Kinase A (AK-A) ATP site inhibitor, induces cell cycle disruption resulting in polyaneuploidy in Diffuse Large B Cell Lymphoma (DLBCL). Propidium iodide flow cytometry was utilized to quantify alisertib induced polyploidy in U2932 and VAL cell lines. In U2932 cells, 1µM alisertib generated 8n+ polyploidy in 48% of the total cell population after 5 days of treatment. Combination of Aurkin A an AK-A/TPX2 site inhibitor, plus alisertib disrupted alisertib induced polyploidy in a dose-dependent manner with associated increased apoptosis. We generated a stable FUCCI U2932 cell line expressing Geminin-clover (S/G2/M) and cdt1-mKO (G1), to monitor cell cycle progression. Using this system, we identified alisertib induces polyploidy through endomitosis, which was eliminated with Aurkin A treatment. In a VAL mouse xenograft model, we show polyploidy generation in alisertib treated mice versus vehicle control or Aurkin A. Aurkin A plus alisertib significantly reduced polyploidy to vehicle control levels. Our in vitro and in vivo studies show that Aurkin A synergizes with alisertib and significantly decreases the alisertib dose needed to disrupt polyploidy while increasing apoptosis in DLBCL cells.
Collapse
Affiliation(s)
- Patrick J Conway
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA; Department of Biomedical Sciences, Keiser University, 2600 N Military Trl, West Palm Beach, Florida, USA
| | - Bárbara De La Peña Avalos
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Jonathan Dao
- Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Sebastian Montagnino
- Department of Molecular Immunology & Microbiology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA
| | - Eloise Dray
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Dr, San Antonio, Texas, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, USA.
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health Science Center San Antonio, 7979 Wurzbach Rd, San Antonio, Texas, USA.
| |
Collapse
|
2
|
Park C, Lim W, Song R, Han J, You D, Kim S, Lee JE, van Noort D, Mandenius CF, Lee J, Hyun KA, Jung HI, Park S. Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. Analyst 2024; 149:4496-4505. [PMID: 39049608 DOI: 10.1039/d4an00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Collapse
Affiliation(s)
- Chanyong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jeonghun Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medi-cine, Seoul 06351, Korea
| | - Danny van Noort
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Carl-Fredrik Mandenius
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
3
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
4
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
5
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
6
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Ploidy Status of Ovarian Cancer Cell Lines and Their Association with Gene Expression Profiles. Biomolecules 2023; 13:biom13010092. [PMID: 36671477 PMCID: PMC9855421 DOI: 10.3390/biom13010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
As a cancer type potentially dominated by copy number variations, ovarian cancer shows hyperploid karyotypes and large-scale chromosome alterations, which might be promising biomarkers correlated with tumor metastasis and chemoresistance. Experimental studies have provided more information about the roles of aneuploids and polyploids in ovarian cancer. However, ploidy evaluation of ovarian cancer cell lines is still limited, even in some ploidy-related research. Herein, the ploidy landscape of 51 ovarian cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) were analyzed, and the ploidy statuses of 13 human ovarian cancer cell lines and 2 murine cell lines were evaluated using G-banding and flow cytometry. Most human ovarian cancer cell lines were aneuploid, with modal numbers of 52-86 and numerical complexity ranging from 5 to 12. A2780, COV434 and TOV21G were screened as diploid cell lines, with a modal number of 46, a low aneuploid score and a near-diploid ploidy value. Two murine cell lines, both OV2944-HM1 and ID-8, were near-tetraploid. Integrated information on karyotypes, aneuploid score and ploidy value supplied references for a nondiploid model construction and a parallel analysis of diploid versus aneuploid. Moreover, the gene expression profiles were compared between diploid and aneuploid cell lines. The functions of differentially expressed genes were mainly enriched in terms of protein function regulation, TGF-β signaling and cell adhesion molecules. Genes downregulated in the aneuploid group were mainly related to metabolism and protein function regulation, and genes upregulated in the aneuploid group were mainly involved in immune regulation. Differentially expressed genes were randomly distributed on all chromosomes, while chromosome 1 alteration might contribute to immune-related alterations in aneuploid cell lines. Chromosome 19 alteration might be potentially significant for aneuploid ovarian cancer cell lines and patients, which needs further verification in ploidy research.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
- Correspondence: (C.X.); (X.Z.)
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
- Correspondence: (C.X.); (X.Z.)
| |
Collapse
|
7
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|
8
|
Polyploidy and Myc Proto-Oncogenes Promote Stress Adaptation via Epigenetic Plasticity and Gene Regulatory Network Rewiring. Int J Mol Sci 2022; 23:ijms23179691. [PMID: 36077092 PMCID: PMC9456078 DOI: 10.3390/ijms23179691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.
Collapse
|
9
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Targeting JAK/STAT Signaling Antagonizes Resistance to Oncolytic Reovirus Therapy Driven by Prior Infection with HTLV-1 in Models of T-Cell Lymphoma. Viruses 2021; 13:1406. [PMID: 34372612 PMCID: PMC8310324 DOI: 10.3390/v13071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects at least 10 million people worldwide and is associated with the development of T-cell lymphoma (TCL). The treatment of TCL remains challenging and new treatment options are urgently needed. With the goal of developing a novel therapeutic approach for TCL, we investigated the activity of the clinical formulation of oncolytic reovirus (Reolysin, Pelareorep) in TCL models. Our studies revealed that HTLV-1-negative TCL cells were highly sensitive to Reolysin-induced cell death, but HTLV-1-positive TCL cells were resistant. Consistent with these data, reovirus displayed significant viral accumulation in HTLV-1-negative cells, but failed to efficiently replicate in HTLV-1-positive cells. Transcriptome analyses of HTLV-1-positive vs. negative cells revealed a significant increase in genes associated with retroviral infection including interleukin-13 and signal transducer and activator of transcription 5 (STAT5). To investigate the relationship between HTLV-1 status and sensitivity to Reolysin, we infected HTLV-1-negative cells with HTLV-1. The presence of HTLV-1 resulted in significantly decreased sensitivity to Reolysin. Treatment with the JAK inhibitor ruxolitinib suppressed STAT5 phosphorylation and expression of the key anti-viral response protein MX1 and enhanced the anti-TCL activity of Reolysin in both HTLV-1-positive and negative cells. Our data demonstrate that the inhibition of the JAK/STAT pathway can be used as a novel approach to antagonize the resistance of HTLV-1-positive cells to oncolytic virus therapy.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Daniel O. Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| |
Collapse
|
10
|
Serrano-Del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol 2021; 190:114655. [PMID: 34129859 DOI: 10.1016/j.bcp.2021.114655] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD).
Collapse
Affiliation(s)
| | - Chantal Reina-Ortiz
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Andrea Benedi
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Alberto Anel
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Javier Naval
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Isabel Marzo
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain.
| |
Collapse
|
11
|
Shapiro JA. What can evolutionary biology learn from cancer biology? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:19-28. [PMID: 33930405 DOI: 10.1016/j.pbiomolbio.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Detecting and treating cancer effectively involves understanding the disease as one of somatic cell and tumor macroevolution. That understanding is key to avoid triggering an adverse reaction to therapy that generates an untreatable and deadly tumor population. Macroevolution differs from microevolution by karyotype changes rather than isolated localized mutations being the major source of hereditary variation. Cancer cells display major multi-site chromosome rearrangements that appear to have arisen in many different cases abruptly in the history of tumor evolution. These genome restructuring events help explain the punctuated macroevolutionary changes that mark major transitions in cancer progression. At least two different nonrandom patterns of rapid multisite genome restructuring - chromothripsis ("chromosome shattering") and chromoplexy ("chromosome weaving") - are clearly distinct in their distribution within the genome and in the cell biology of the stress-induced processes responsible for their occurrence. These observations tell us that eukaryotic cells have the capacity to reorganize their genomes rapidly in response to calamity. Since chromothripsis and chromoplexy have been identified in the human germline and in other eukaryotes, they provide a model for organismal macroevolution in response to the kinds of stresses that lead to mass extinctions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, United States.
| |
Collapse
|
12
|
Miroshnychenko D, Baratchart E, Ferrall-Fairbanks MC, Velde RV, Laurie MA, Bui MM, Tan AC, Altrock PM, Basanta D, Marusyk A. Spontaneous cell fusions as a mechanism of parasexual recombination in tumour cell populations. Nat Ecol Evol 2021; 5:379-391. [PMID: 33462489 DOI: 10.1038/s41559-020-01367-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023]
Abstract
The initiation and progression of cancers reflect the underlying process of somatic evolution, in which the diversification of heritable phenotypes provides a substrate for natural selection, resulting in the outgrowth of the most fit subpopulations. Although somatic evolution can tap into multiple sources of diversification, it is assumed to lack access to (para)sexual recombination-a key diversification mechanism throughout all strata of life. On the basis of observations of spontaneous fusions involving cancer cells, the reported genetic instability of polypoid cells and the precedence of fusion-mediated parasexual recombination in fungi, we asked whether cell fusions between genetically distinct cancer cells could produce parasexual recombination. Using differentially labelled tumour cells, we found evidence of low-frequency, spontaneous cell fusions between carcinoma cells in multiple cell line models of breast cancer both in vitro and in vivo. While some hybrids remained polyploid, many displayed partial ploidy reduction, generating diverse progeny with heterogeneous inheritance of parental alleles, indicative of partial recombination. Hybrid cells also displayed elevated levels of phenotypic plasticity, which may further amplify the impact of cell fusions on the diversification of phenotypic traits. Using mathematical modelling, we demonstrated that the observed rates of spontaneous somatic cell fusions may enable populations of tumour cells to amplify clonal heterogeneity, thus facilitating the exploration of larger areas of the adaptive landscape (relative to strictly asexual populations), which may substantially accelerate a tumour's ability to adapt to new selective pressures.
Collapse
Affiliation(s)
- Daria Miroshnychenko
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Etienne Baratchart
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Meghan C Ferrall-Fairbanks
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert Vander Velde
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Mark A Laurie
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Marilyn M Bui
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aik Choon Tan
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David Basanta
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andriy Marusyk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Department of Molecular Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
13
|
Abstract
Although the first-line rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone regimen (R-CHOP) substantially improved outcomes for patients with diffuse large B-cell lymphoma (DLBCL), 40% of the patients suffered from relapsed/refractory disease and had poor survival outcomes. The detailed mechanism underlying R-CHOP resistance has not been well defined. For this review, we conducted a thorough search for literature and clinical trials involving DLBCL resistance. We discussed DLBCL biology, epigenetics, and aberrant signaling of the B-cell receptor (BCR), phosphatidylinositol 3-kinase (PI3K)/Akt, nuclear factor kappa light chain enhancer of activated B-cells (NF-κB), and the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways as defining mechanisms of DLBCL heterogeneity and R-CHOP resistance. The cell of origin, double- or triple-hit lymphoma and double-protein-expression, clonal evolution, tumor microenvironment, and multi-drug resistance help to contextualize DLBCL resistance in an (epi)genetically and biologically comparative manner. With better understanding of the biological and molecular landscape of DLBCL, a more detailed classification system and tailored treatments will ideally become available to further improve the prognosis of DLBCL patients.
Collapse
|
14
|
Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chem Rev 2020; 121:3352-3389. [PMID: 33152247 DOI: 10.1021/acs.chemrev.0c00356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drug resistance has profoundly limited the success of cancer treatment, driving relapse, metastasis, and mortality. Nearly all anticancer drugs and even novel immunotherapies, which recalibrate the immune system for tumor recognition and destruction, have succumbed to resistance development. Engineers have emerged across mechanical, physical, chemical, mathematical, and biological disciplines to address the challenge of drug resistance using a combination of interdisciplinary tools and skill sets. This review explores the developing, complex, and under-recognized role of engineering in medicine to address the multitude of challenges in cancer drug resistance. Looking through the "lens" of intrinsic, extrinsic, and drug-induced resistance (also referred to as "tolerance"), we will discuss three specific areas where active innovation is driving novel treatment paradigms: (1) nanotechnology, which has revolutionized drug delivery in desmoplastic tissues, harnessing physiochemical characteristics to destroy tumors through photothermal therapy and rationally designed nanostructures to circumvent cancer immunotherapy failures, (2) bioengineered tumor models, which have benefitted from microfluidics and mechanical engineering, creating a paradigm shift in physiologically relevant environments to predict clinical refractoriness and enabling platforms for screening drug combinations to thwart resistance at the individual patient level, and (3) computational and mathematical modeling, which blends in silico simulations with molecular and evolutionary principles to map mutational patterns and model interactions between cells that promote resistance. On the basis that engineering in medicine has resulted in discoveries in resistance biology and successfully translated to clinical strategies that improve outcomes, we suggest the proliferation of multidisciplinary science that embraces engineering.
Collapse
Affiliation(s)
- Morgan Craig
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, University of Montreal, Montreal, Quebec H3C 3J7, Canada.,Sainte-Justine University Hospital Research Centre, Montreal, Quebec H3S 2G4, Canada
| | - Bumseok Namgung
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Luke P Lee
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| | - Aaron Goldman
- Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02139, United States
| |
Collapse
|
15
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Resistance to histone deacetylase inhibitors confers hypersensitivity to oncolytic reovirus therapy. Blood Adv 2020; 4:5297-5310. [PMID: 33108458 PMCID: PMC7594386 DOI: 10.1182/bloodadvances.2020002297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the promising antilymphoma activity of histone deacetylase (HDAC) inhibitors as a drug class, resistance is a significant clinical issue. Elucidating the molecular mechanisms driving HDAC inhibitor resistance and/or the specific targets that are altered in drug-resistant cells may facilitate the development of strategies that overcome drug resistance and are more effective for refractory patients. We generated novel T-cell lymphoma (TCL) cell line models of acquired resistance to the HDAC inhibitor belinostat to identify potential effective therapies. Belinostat-resistant cells displayed significant cross-resistance to other HDAC inhibitors including romidepsin, panobinostat, and vorinostat. Consistent with a lack of sensitivity to HDAC inhibitors, the resistant cells failed to induce increased acetylated histones. Drug-resistant cells featured significantly decreased expression of the key antiviral mediators IRF1 and STAT1. On the basis of these findings, we investigated the efficacy of the clinical formulation of reovirus (Reolysin) in parental and drug-resistant models. Our investigation revealed that HDAC inhibitor-resistant cells displayed enhanced vulnerability to reovirus replication and cell death in both in vitro and in vivo models compared with their parental counterparts. Importantly, Reolysin also significantly increased the antilymphoma activity of belinostat in HDAC inhibitor-resistant cells. Our data demonstrate that Reolysin alone or in combination with belinostat is a novel therapeutic strategy to treat TCL patients who develop resistance to HDAC inhibitors.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Claudia M Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Daniel O Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ
| | - Jennifer S Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| | - Steffan T Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, and
| |
Collapse
|
16
|
Lu S, Zhou G, Chen M, Liu W, Zhao S. Monomorphic Epitheliotropic Intestinal T-cell Lymphoma of the Stomach: Two Case Reports and a Literature Review. Int J Surg Pathol 2020; 29:410-419. [PMID: 32856508 DOI: 10.1177/1066896920953906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We describe the clinicopathologic and molecular features of 2 cases of gastric monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which were first diagnosed from gastric biopsies, one was primary whereas the other was gastric involvement by MEITL. Both cases were older men with stomach ulcers. Case 1 was admitted for a hemorrhage in the upper digestive tract and case 2 for edema. Histology of both cases showed infiltrated monomorphic and medium-sized lymphocytes with lymphoid epithelial phenomenon. An inflammatory background and vascular hyperplasia were also observed likely due to the ulceration. Neoplastic cells expressed CD2, CD3, CD7, CD8, CD56, TIA-1, and MYC, not CD5, CD4, Granzyme B, CD20, CD30, TdT, or EBER. Both lymphomas showed TCRG gene rearrangement and c-MYC gains. Moreover, we first affirmed polysomy of chromosome 8 in case 2. For correct diagnosis of this rare tumor at the rare location, it is important that pathologists raise the possibility and exclude other differential diagnoses.
Collapse
Affiliation(s)
- Susu Lu
- West China Hospital, 34753Sichuan University, Chengdu, China
| | - Gang Zhou
- 462489Dachuan District People's Hospital, Dazhou, China
| | - Min Chen
- West China Hospital, 34753Sichuan University, Chengdu, China
| | - Weiping Liu
- West China Hospital, 34753Sichuan University, Chengdu, China
| | - Sha Zhao
- West China Hospital, 34753Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Cancer regeneration: Polyploid cells are the key drivers of tumor progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188408. [PMID: 32827584 DOI: 10.1016/j.bbcan.2020.188408] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
In spite of significant advancements of therapies for initial eradication of cancers, tumor relapse remains a major challenge. It is for a long time known that polyploid malignant cells are a main source of resistance against chemotherapy and irradiation. However, therapeutic approaches targeting these cells have not been appropriately pursued which could partly be due to the shortage of knowledge on the molecular biology of cell polyploidy. On the other hand, there is a rising trend to appreciate polyploid/ multinucleated cells as key players in tissue regeneration. In this review, we suggest an analogy between the functions of polyploid cells in normal and malignant tissues and discuss the idea that cell polyploidy is an evolutionary conserved source of tissue regeneration also exploited by cancers as a survival factor. In addition, polyploid cells are highlighted as a promising therapeutic target to overcome drug resistance and relapse.
Collapse
|
18
|
Janus Face of Drug-Induced Tetraploidy in Non-Hodgkin Lymphoma. Trends Cancer 2020; 6:627-630. [PMID: 32291237 DOI: 10.1016/j.trecan.2020.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022]
Abstract
Anticancer agents often cause drug-induced tetraploidy (DIT) in cancer cells. DIT is not only a mechanism of inherited drug resistance, but proliferating DIT cells can produce progeny with increased ploidy or aneuploid genomes that drive aggressive disease. Here, we explore combinatorial therapeutic strategies for either preventing or eliminating DIT cells.
Collapse
|
19
|
Rødland GE, Melhus K, Generalov R, Gilani S, Bertoni F, Dahle J, Syljuåsen RG, Patzke S. The Dual Cell Cycle Kinase Inhibitor JNJ-7706621 Reverses Resistance to CD37-Targeted Radioimmunotherapy in Activated B Cell Like Diffuse Large B Cell Lymphoma Cell Lines. Front Oncol 2019; 9:1301. [PMID: 31850205 PMCID: PMC6897291 DOI: 10.3389/fonc.2019.01301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
The CD37 targeting radioimmunoconjugate 177Lu-lilotomab satetraxetan (Betalutin) is currently being evaluated in a clinical phase 2b trial for patients with follicular lymphoma (FL) and in a phase 1 trial for patients with diffuse large B-cell lymphoma (DLBCL). Herein we have investigated the effect of 177Lu-lilotomab satetraxetan in seven activated B-cell like (ABC) DLBCL cell lines. Although the radioimmunoconjugate showed anti-tumor activity, primary resistance was observed in a subset of cell lines. Thus, we set out to identify drugs able to overcome the resistance to 177Lu-lilotomab satetraxetan in two resistant ABC-DLBCL cell lines. We performed a viability-based screen combining 177Lu-lilotomab satetraxetan with the 384-compound Cambridge Cancer Compound Library. Drug combinations were scored using Bliss and Chou-Talalay algorithms. We identified and characterized the dual-specific CDK1/2 and AURA/B kinase inhibitor JNJ-7706621 as compound able to revert the resistance to RIT, alongside topoisomerase and histone deacetylases (HDAC) inhibitors.
Collapse
Affiliation(s)
- Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Katrine Melhus
- Research and Development, Nordic Nanovector ASA, Oslo, Norway
| | - Roman Generalov
- Research and Development, Nordic Nanovector ASA, Oslo, Norway
| | - Sania Gilani
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Jostein Dahle
- Research and Development, Nordic Nanovector ASA, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Research and Development, Nordic Nanovector ASA, Oslo, Norway
| |
Collapse
|
20
|
Xu C, Cao H, Shi C, Feng J. The Role Of Circulating Tumor DNA In Therapeutic Resistance. Onco Targets Ther 2019; 12:9459-9471. [PMID: 31807023 PMCID: PMC6850686 DOI: 10.2147/ott.s226202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The application of precision medicine in cancer treatment has partly succeeded in reducing the side effects of unnecessary chemotherapeutics and in improving the survival rate of patients. However, with the long-term use of therapy, the dynamically changing intratumoral and intertumoral heterogeneity eventually gives rise to therapeutic resistance. In recent years, a novel testing technology (termed liquid biopsy) using circulating tumor DNAs (ctDNAs) extracted from peripheral blood samples from patients with cancer has brought about new expectations to the medical community. Using ctDNAs, clinicians can trace the heterogeneity pattern to duly adjust individual therapy and prolong overall survival for patients with cancer. Technological advances in detecting and characterizing ctDNAs (eg, development of next-generation sequencing) have provided clinicians with a valuable tool for genotyping tumors individually and identifying genetic and epigenetic alterations of the entire tumor to capture mutations associated with therapeutic resistance.
Collapse
Affiliation(s)
- Chenxin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Shi
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
21
|
Yang X, Cao Z, Wu P, Li Z. Effect and Mechanism of the Bruton Tyrosine Kinase (Btk) Inhibitor Ibrutinib on Rat Model of Diabetic Foot Ulcers. Med Sci Monit 2019; 25:7951-7957. [PMID: 31644524 PMCID: PMC6822560 DOI: 10.12659/msm.916950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Diabetes causes damage to the soft tissue and bone structure of the foot, referred to as "diabetic foot". Ibrutinib is a Bruton tyrosine kinase (Btk) inhibitor, and the role and mechanism of ibrutinib on the diabetic foot have not been elucidated. MATERIAL AND METHODS Male Wister rats were randomly divided into 3 groups: control group, model group, and ibrutinib group. After 14 days, the ulcer wound size of each group was measured, and the ulcer healing rate was calculated. The level of inflammatory factors interleukin (IL)-1ß, tumor necrosis factor (TNF)-alpha, and IL-6 was detected by enzyme-linked immunosorbent assay (ELISA). Real-time polymerase chain reaction (PCR) was used to analyze the changes of Toll-like receptor 2 (TLR2) and TLR4. The expression of vascular endothelial growth factor (VEGF) and the RAGE (receptor for advanced glycation end product/NF-kappaB (nuclear factor-kappa B) pathway was detected by western blot. RESULTS Blood glucose, blood lipids, serum creatinine, and urea nitrogen (BUN) levels were increased in the model group, together with increased levels of IL-1ß, TNF-alpha, IL-6, as well as TLR2 and TLR4 expression, and there were significant differences compared with the control group (P<0.05). Meanwhile, the model group showed decreased VEGF expression and increased expression of RAGE and NF-kappaB. However, ibrutinib reduced blood sugar, blood lipids, creatinine, and urea nitrogen levels, inhibited the secretion of inflammatory factors, promoted ulcer healing, improved ulcer healing rate, decreased the expression of TLR2, TLR4, RAGE, and NF-kappaB, and increased VEGF expression; there were significant differences in the ibrutinib group compared with the model group (P<0.05). CONCLUSIONS The Btk inhibitor ibrutinib can upregulate VEGF expression, inhibit the expression of TLRs, inhibit the secretion of inflammatory factors, and promote the healing of diabetic foot ulcer possibly by regulating the RAGE/NF-kappaB pathway.
Collapse
Affiliation(s)
- Xuedong Yang
- Department of Hand and Foot Orthopedic Surgery, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Zhenhao Cao
- Department of Hand and Foot Orthopedic Surgery, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Peigang Wu
- Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Zhong Li
- Department of Hand and Foot Orthopedic Surgery, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
22
|
Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal 2019; 12:12/595/eaas8779. [PMID: 31431543 DOI: 10.1126/scisignal.aas8779] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastable phenotypic state transitions in cancer cells can lead to the development of transient adaptive resistance or tolerance to chemotherapy. Here, we report that the acquisition of a phenotype marked by increased abundance of CD44 (CD44Hi) by breast cancer cells as a tolerance response to routinely used cytotoxic drugs, such as taxanes, activated a metabolic switch that conferred tolerance against unrelated standard-of-care chemotherapeutic agents, such as anthracyclines. We characterized the sequence of molecular events that connected the induced CD44Hi phenotype to increased activity of both the glycolytic and oxidative pathways and glucose flux through the pentose phosphate pathway (PPP). When given in a specific order, a combination of taxanes, anthracyclines, and inhibitors of glucose-6-phosphate dehydrogenase (G6PD), an enzyme involved in glucose metabolism, improved survival in mouse models of breast cancer. The same sequence of the three-drug combination reduced the viability of patient breast tumor samples in an explant system. Our findings highlight a convergence between phenotypic and metabolic state transitions that confers a survival advantage to cancer cells against clinically used drug combinations. Pharmacologically targeting this convergence could overcome cross-drug tolerance and could emerge as a new paradigm in the treatment of cancer.
Collapse
Affiliation(s)
- Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Sachin Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Dhawan
- School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Biswanath Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA.,Mitra Biotech, 7, Service Road, Pragathi Nagar, Electronic City, Bengaluru, Karnataka 560100, India
| | - Jayanta Mondal
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Elliot Eton
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ragini Medhi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - M Mamunur Rahman
- Medical and Biological Laboratories International, Woburn, MA 01801, USA
| | - Takaharu Ichimura
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kodaganur S Gopinath
- Department of Surgical Oncology, HCG Bangalore Institute of Oncology Specialty Center, Bengaluru, Karnataka 560027, India
| | - Pradip Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
23
|
Goldman A. Drug-induced resistance: nipping it in the 'budding'. Oncotarget 2018; 9:35873-35874. [PMID: 30543207 PMCID: PMC6267594 DOI: 10.18632/oncotarget.26328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Aaron Goldman
- Aaron Goldman: Department of Medicine, Harvard Medical School, Boston, MA, USA; Division of Engineering in Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|