1
|
Huang X, Zheng D, Liu C, Huang J, Chen X, Zhong J, Wang J, Lin X, Zhao C, Chen M, Su S, Chen Y, Xu C, Lin C, Huang Y, Zhang S. miR-214 could promote myocardial fibrosis and cardiac mesenchymal transition in VMC mice through regulation of the p53 or PTEN-PI3K-Akt signali pathway, promoting CF proliferation and inhibiting its ng pathway. Int Immunopharmacol 2023; 124:110765. [PMID: 37647681 DOI: 10.1016/j.intimp.2023.110765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION This study aimed to investigate the role of miR-214 in the bidirectional regulation of p53 and PTEN and its influence on myocardial fibrosis and cardiac mesenchymal transformation in mice with viral myocarditis (VMC). METHODS The study established a VMC model in BALB/c mice by injecting them with the CVB3 virus intraperitoneally. Techniques such as ELISA, H&E staining, Masson staining, immunohistochemical staining, RT-qPCR, western blot, and dual-luciferase reporter gene assay were used to detect the expression levels of relevant factors in tissues and cells. Isolation and culture of cardiac fibroblasts (CFs) were also conducted. RESULTS The study found that miR-214 bidirectional regulation of p53 and PTEN promotes myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. The expression levels of collagen-related peptides, inflammatory-related factors, miR-214, mesenchymal transformation-related factors, and fibrosis-related factors were significantly increased, while the expression levels of p53, PTEN, and epithelial/endothelial cell phenotype marker factors were significantly decreased. Downregulation of miR-214 or upregulation of p53 and PTEN expression inhibited inflammatory cell and fibroblast infiltration in VMC mouse myocardial tissue. It reduced the proliferation ability while increasing the apoptosis of cardiac fibroblasts. CONCLUSION miR-214 plays a significant role in the bidirectional inhibition of p53 and PTEN, which leads to myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. Downregulation of miR-214 or upregulation of p53 and PTEN expression may provide potential therapeutic targets for treating VMC-induced cardiac fibrosis and mesenchymal transformation.
Collapse
Affiliation(s)
- Xianggui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China
| | - Danling Zheng
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chong Liu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jianxiang Huang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China; College of Pharmacy, Jinan University, Guangzhou 510220, PR China
| | - Xiaoshan Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Jing Wang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Yun Chen
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chengcheng Xu
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China
| | - Chaoxian Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, PR China; Department of Pharmacy, Shantou Chaonan Minsheng Hospital, Shantou 515000, PR China
| | - Yihui Huang
- Department of Pediatrics, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China.
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, PR China.
| |
Collapse
|
2
|
Eslami M, Khazeni S, Khanaghah XM, Asadi MH, Ansari MA, Garjan JH, Lotfalizadeh MH, Bayat M, Taghizadieh M, Taghavi SP, Hamblin MR, Nahand JS. MiRNA-related metastasis in oral cancer: moving and shaking. Cancer Cell Int 2023; 23:182. [PMID: 37635248 PMCID: PMC10463971 DOI: 10.1186/s12935-023-03022-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
Across the world, oral cancer is a prevalent tumor. Over the years, both its mortality and incidence have grown. Oral cancer metastasis is a complex process involving cell invasion, migration, proliferation, and egress from cancer tissue either by lymphatic vessels or blood vessels. MicroRNAs (miRNAs) are essential short non-coding RNAs, which can act either as tumor suppressors or as oncogenes to control cancer development. Cancer metastasis is a multi-step process, in which miRNAs can inhibit or stimulate metastasis at all stages, including epithelial-mesenchymal transition, migration, invasion, and colonization, by targeting critical genes in these pathways. On the other hand, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two different types of non-coding RNAs, can regulate cancer metastasis by affecting gene expression through cross-talk with miRNAs. We reviewed the scientific literature (Google Scholar, Scopus, and PubMed) for the period 2000-2023 to find reports concerning miRNAs and lncRNA/circRNA-miRNA-mRNA networks, which control the spread of oral cancer cells by affecting invasion, migration, and metastasis. According to these reports, miRNAs are involved in the regulation of metastasis pathways either by directly or indirectly targeting genes associated with metastasis. Moreover, circRNAs and lncRNAs can induce or suppress oral cancer metastasis by acting as competing endogenous RNAs to inhibit the effect of miRNA suppression on specific mRNAs. Overall, non-coding RNAs (especially miRNAs) could help to create innovative therapeutic methods for the control of oral cancer metastases.
Collapse
Affiliation(s)
- Meghdad Eslami
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Khazeni
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Xaniar Mohammadi Khanaghah
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Asadi
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Amin Ansari
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hayati Garjan
- Department of oral and maxillofacial surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Saha G, Roy S, Basu M, Ghosh MK. USP7 - a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188903. [PMID: 37127084 DOI: 10.1016/j.bbcan.2023.188903] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Over the course of three decades of study, the deubiquitinase Herpesvirus associated Ubiquitin-Specific Protease/Ubiquitin-Specific Protease 7 (HAUSP/USP7) has gradually come to be recognized as a crucially important molecule in cellular physiology. The fact that USP7 is overexpressed in a number of cancers, including breast, prostate, colorectal, and lung cancers, supports the idea that USP7 is also an important regulator of tumorigenesis. In this review, we discuss USP7's function in relation to the cancer hallmarks described by Hanahan and Weinberg. This post-translational modifier can support increased proliferation, block unfavorable growth signals, stop cell death, and support an unstable cellular genome by manipulating key players in the pertinent signalling circuit. It is interesting to note that USP7 also aids in the stabilization of molecules that support angiogenesis and metastasis. Targeting USP7 has now emerged as a crucial component of USP7 research because pharmacological inhibition of USP7 supports p53-mediated cell cycle arrest and apoptosis. Efficacious USP7 inhibition is currently being investigated in both synthetic and natural compounds, but issues with selectivity and a lack of co-crystal structure have hindered USP7 inhibition from being tested in clinical settings. Moreover, the development of new, more effective USP7 inhibitors and their encouraging implications by numerous groups give us a glimmer of hope for USP7-targeting medications as effective substitutes for hazardous cancer chemotherapeutics.
Collapse
Affiliation(s)
- Gouranga Saha
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Srija Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, University of Calcutta, Kolkata, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, PIN - 700032, India.
| |
Collapse
|
4
|
Zhang Q, Zhu Z, Guan J, Hu Y, Zhou W, Ye W, Lin B, Weng S, Chen Y, Zheng C. Hes1 Controls Proliferation and Apoptosis in Chronic Lymphoblastic Leukemia Cells by Modulating PTEN Expression. Mol Biotechnol 2022; 64:1419-1430. [PMID: 35704163 DOI: 10.1007/s12033-022-00476-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
Abstract
Hairy and enhancer of split homolog-1 (HES1), regulated by the Notch, has been reported to play important roles in the immune response and cancers, such as leukemia. In this study, we aim to explore the effect of HES1-mediated Notch1 signaling pathway in chronic lymphocytic leukemia (CLL). Reverse transcription quantitative polymerase chain reaction and Western blot assay were conducted to determine the expression of HES1, Notch1, and PTEN in B lymphocytes of peripheral blood samples of 60 CLL patients. We used lentivirus-mediated overexpression or silencing of HES1 and the Notch1 signaling pathway inhibitor, MW167, to detect the interaction among HES1, Notch1, and PTEN in CLL MEC1 and HG3 cells. MTT assay and flow cytometry were employed for detection of biological behaviors of CLL cells. HES1 and Notch1 showed high expression, but PTEN displayed low expression in B lymphocytes of peripheral blood samples of patients with CLL in association with poor prognosis. HES1 bound to the promoter region of PTEN and reduced PTEN expression. Overexpression of HES1 activated the Notch1 signaling pathway, thus promoting the proliferation of CLL cells, increasing the proportion of cells arrested at the S phase and limiting the apoptosis of CLL cells. Collectively, HES1 can promote activation of the Notch1 signaling pathway to cause PTEN transcription inhibition and the subsequent expression reduction, thereby promoting the proliferation and inhibiting the apoptosis of CLL cells.
Collapse
Affiliation(s)
- Qikai Zhang
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Zongsi Zhu
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Jiaqiang Guan
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yingying Hu
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Wenjin Zhou
- Department of Chemotherapy, Cancer Hospital of The University of Chinese Academy of Science, Wenzhou Campus, Wenzhou, 325000, People's Republic of China
| | - Wanchun Ye
- Department of Chemotherapy, Cancer Hospital of The University of Chinese Academy of Science, Wenzhou Campus, Wenzhou, 325000, People's Republic of China
| | - Bijing Lin
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Shanshan Weng
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Yuemiao Chen
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Cuiping Zheng
- Department of Haematology and Chemotherapy, Wenzhou Central Hospital, Theorem Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
6
|
Boncompagni G, Varone A, Tatangelo V, Capitani N, Frezzato F, Visentin A, Trentin L, Corda D, Baldari CT, Patrussi L. Glycerophosphoinositol Promotes Apoptosis of Chronic Lymphocytic Leukemia Cells by Enhancing Bax Expression and Activation. Front Oncol 2022; 12:835290. [PMID: 35392232 PMCID: PMC8980805 DOI: 10.3389/fonc.2022.835290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
An imbalance in the expression of pro- and anti-apoptotic members of the Bcl-2 family of apoptosis-regulating proteins is one of the main biological features of CLL, highlighting these proteins as therapeutic targets for treatment of this malignancy. Indeed, the Bcl-2 inhibitor Venetoclax is currently used for both first-line treatment and treatment of relapsed or refractory CLL. An alternative avenue is the transcriptional modulation of Bcl-2 family members to tilt their balance towards apoptosis. Glycerophosphoinositol (GroPIns) is a biomolecule generated from membrane phosphoinositides by the enzymes phospholipase A2 and lysolipase that pleiotropically affects key cellular functions. Mass-spectrometry analysis of GroPIns interactors recently highlighted the ability of GroPIns to bind to the non-receptor tyrosine phosphatase SHP-1, a known promoter of Bax expression, suggesting that GroPIns might correct the Bax expression defect in CLL cells, thereby promoting their apoptotic demise. To test this hypothesis, we cultured CLL cells in the presence of GroPIns, alone or in combination with drugs commonly used for treatment of CLL. We found that GroPIns alone increases Bax expression and apoptosis in CLL cells and enhances the pro-apoptotic activity of drugs used for CLL treatment in a SHP-1 dependent manner. Interestingly, among GroPIns interactors we found Bax itself. Short-term treatments of CLL cells with GroPIns induce Bax activation and translocation to the mitochondria. Moreover, GroPIns enhances the pro-apoptotic activity of Venetoclax and Fludarabine in CLL cells. These data provide evidence that GroPIns exploits two different pathways converging on Bax to promote apoptosis of leukemic cells and pave the way to new studies aimed at testing GroPIns in combination therapies for the treatment of CLL.
Collapse
Affiliation(s)
| | - Alessia Varone
- Institute of Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Federica Frezzato
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Daniela Corda
- Department of Biomedical Sciences, National Research Council, Rome, Italy
| | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Bagheri M, Sarabi PZ, Mondanizadeh M. The role of miRNAs as a big master regulator of signaling pathways involved in lymphoblastic leukemia. J Cell Physiol 2022; 237:2128-2139. [PMID: 35315068 DOI: 10.1002/jcp.30720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) belong to small noncoding RNAs, which have long attracted researchers' attention because of their potency in acting either as oncogenes or tumor-suppressors in cancers. acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are two known types of leukemia with high mortality rates in adults and children. On a molecular basis, various signaling pathways are active in both types, making researchers consider the potential role of miRNAs in activating or suppressing these pathways to further hinder cancer development. In this review, we summarized the potential miRNAs, especially circulating ones, involved in essential signaling pathways in the ALL and CLL patients which serve as biomarkers and valuable targets in the treatment fields.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Parisa Zia Sarabi
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
8
|
Wang N, Yang B, Jin J, He Y, Wu X, Yang Y, Zhou W, He Z. Circular RNA circ_0040823 inhibits the proliferation of acute myeloid leukemia cells and induces apoptosis by regulating miR-516b/PTEN. J Gene Med 2021; 24:e3404. [PMID: 34913223 DOI: 10.1002/jgm.3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Endogenous circular RNAs (circRNAs) and microRNAs (miRNAs) have been shown to regulate the pathogenesis of acute myeloid leukemia (AML). The current study aimed to identify the role of circRNA 0040823 (circ_0040823) in AML. METHODS Microarray datasets were analyzed to identify differentially expressed circRNAs in AML patients. Peripheral blood samples were obtained from healthy volunteers and AML patients for the measurement of circ_0040823 and miR-516b levels. The overexpression or knockdown of a target gene in AML cells was achieved by the transfection with lentiviral vectors or small interfering RNAs. BALB/c nude mice were inoculated with AML cells and monitored for tumor growth. Dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay were used to determine the binding relationship between circRNA and miRNA. RESULTS circ_0040823 was significantly downregulated in AML patients and leukemia cells. Overexpression of circ_0040823 inhibited AML cell proliferation, and induced apoptosis and cell cycle arrest. Upregulation of circ_0040823 also repressed the growth of xenograft tumors in vivo. circ_0040823 acted as a miR-516b sponge and regulated key cellular events in leukemia cells via downregulating miR-516b. Moreover, tumor suppressor phosphatase and tensin homolog (PTEN) was a downstream target of miR-516b. The inhibition of miR-516b impaired the proliferation capacity of leukemia cells and induced apoptosis, while PTEN deficiency attenuated these effects. CONCLUSION This study showed that circ_0040823 inhibited proliferation and induced apoptosis of AML cells by sponging miR-516b, thereby diminishing the regulatory effect of miR-516b on PTEN. These findings identified circ_0040823/miR-516b/PTEN as a new therapeutic target for AML.
Collapse
Affiliation(s)
- Nianxue Wang
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Bin Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Jiao Jin
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Yu He
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Xijun Wu
- Department of Clinical Lab, The Second People's Hospital of Guiyang, Guiyang City, Guizhou Province, China
| | - Yichen Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Weijun Zhou
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Zhixu He
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, China
| |
Collapse
|
9
|
Lampson BL, Brown JR. The Evolving Use of Phosphatidylinositol 3-Kinase Inhibitors for the Treatment of Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2021; 35:807-826. [PMID: 34174987 DOI: 10.1016/j.hoc.2021.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
B cells express 4 phosphatidylinositol 3-kinase (PI3K) isoforms and have a dependence on p110δ for survival. The design of isoform-selective inhibitors is possible, and pharmacologic inhibition of p110δ is toxic to neoplastic chronic lymphocytic leukemia (CLL) cells for both cell-intrinsic and cell-extrinsic reasons. Idelalisib is a first-in-class p110δ inhibitor that exhibits efficacy for the treatment of relapsed CLL irrespective of adverse prognostic features. Duvelisib is a p110γ/δ inhibitor with a similar efficacy and safety profile to idelalisib. Recent data indicate that umbralisib, a p110δ/CK-1ε dual inhibitor, is safe and effective when administered to patients with CLL.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, CLL Center, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Roshandel E, Noorazar L, Farhadihosseinabadi B, Mehdizadeh M, Kazemi MH, Parkhideh S. PI3 kinase signaling pathway in hematopoietic cancers: A glance in miRNA's role. J Clin Lab Anal 2021; 35:e23725. [PMID: 33675064 PMCID: PMC8059748 DOI: 10.1002/jcla.23725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic cancers are among the most common malignancies worldwide, which are divided into different types depending on the origin of tumor cells. In recent years, the pivotal role of different signaling pathways in the onset and progression of these cancer types has been well established. One of these pathways, whose role in blood malignancies has been well-defined, is PI3K/mTOR/AKT axis. The signaling pathway involves in a wide variety of important biological events in cells. It is clear that dysregulation of mediators involved in PI3 kinase signaling takes a pivotal role in cancer development. Considering the undeniable role of miRNAs, as one of the well-known families of non-coding RNAs, in gene regulation, we aimed to review the role of miRNAs in regulation of PI3 kinase signaling effectors in hematopoietic cancers.
Collapse
Affiliation(s)
- Elham Roshandel
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Noorazar
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Hossein Kazemi
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
11
|
Katsaraki K, Karousi P, Artemaki PI, Scorilas A, Pappa V, Kontos CK, Papageorgiou SG. MicroRNAs: Tiny Regulators of Gene Expression with Pivotal Roles in Normal B-Cell Development and B-Cell Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13040593. [PMID: 33546241 PMCID: PMC7913321 DOI: 10.3390/cancers13040593] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary The involvement of miRNAs in physiological cellular processes has been well documented. The development of B cells, which is dictated by a miRNA-transcription factor regulatory network, suggests a typical process partly orchestrated by miRNAs. Besides their contribution in normal hematopoiesis, miRNAs have been severally reported to be implicated in hematological malignancies, a typical example of which is B-cell chronic lymphocytic leukemia (B-CLL). Numerous studies have attempted to highlight the regulatory role of miRNAs in B-CLL or establish some of them as molecular biomarkers or therapeutic targets. Thus, a critical review summarizing the current knowledge concerning the multifaceted role of miRNAs in normal B-cell development and B-CLL progression, prognosis, and therapy, is urgent. Moreover, this review aims to highlight important miRNAs in both normal B-cell development and B-CLL and discuss future perspectives concerning their regulatory potential and establishment in clinical practice. Abstract MicroRNAs (miRNAs) represent a class of small non-coding RNAs bearing regulatory potency. The implication of miRNAs in physiological cellular processes has been well documented so far. A typical process orchestrated by miRNAs is the normal B-cell development. A stage-specific expression pattern of miRNAs has been reported in the developmental procedure, as well as interactions with transcription factors that dictate B-cell development. Besides their involvement in normal hematopoiesis, miRNAs are severally implicated in hematological malignancies, a typical paradigm of which is B-cell chronic lymphocytic leukemia (B-CLL). B-CLL is a highly heterogeneous disease characterized by the accumulation of abnormal B cells in blood, bone marrow, lymph nodes, and spleen. Therefore, timely, specific, and sensitive assessment of the malignancy is vital. Several studies have attempted to highlight the remarkable significance of miRNAs as regulators of gene expression, biomarkers for diagnosis, prognosis, progression, and therapy response prediction, as well as molecules with potential therapeutic utility. This review seeks to outline the linkage between miRNA function in normal and malignant hematopoiesis by demonstrating the main benchmarks of the implication of miRNAs in the regulation of normal B-cell development, and to summarize the key findings about their value as regulators, biomarkers, or therapeutic targets in B-CLL.
Collapse
Affiliation(s)
- Katerina Katsaraki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (K.K.); (P.K.); (P.I.A.); (A.S.)
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| | - Sotirios G. Papageorgiou
- Second Department of Internal Medicine and Research Unit, University General Hospital “Attikon”, 12462 Athens, Greece;
- Correspondence: (C.K.K.); (S.G.P.); Tel.: +30-210-727-4616 (C.K.K.); +30-210-583-2519 (S.G.P.)
| |
Collapse
|
12
|
Tibaldi E, Federti E, Matte A, Iatcenko I, Wilson AB, Riccardi V, Pagano MA, De Franceschi L. Oxidation Impacts the Intracellular Signaling Machinery in Hematological Disorders. Antioxidants (Basel) 2020; 9:antiox9040353. [PMID: 32344529 PMCID: PMC7222375 DOI: 10.3390/antiox9040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
The dynamic coordination between kinases and phosphatases is crucial for cell homeostasis, in response to different stresses. The functional connection between oxidation and the intracellular signaling machinery still remains to be investigated. In the last decade, several studies have highlighted the role of reactive oxygen species (ROS) as modulators directly targeting kinases, phosphatases, and downstream modulators, or indirectly acting on cysteine residues on kinases/phosphatases resulting in protein conformational changes with modulation of intracellular signaling pathway(s). Translational studies have revealed the important link between oxidation and signal transduction pathways in hematological disorders. The intricate nature of intracellular signal transduction mechanisms, based on the generation of complex networks of different types of signaling proteins, revealed the novel and important role of phosphatases together with kinases in disease mechanisms. Thus, therapeutic approaches to abnormal signal transduction pathways should consider either inhibition of overactivated/accumulated kinases or homeostatic signaling resetting through the activation of phosphatases. This review discusses the progress in the knowledge of the interplay between oxidation and cell signaling, involving phosphatase/kinase systems in models of globally distributed hematological disorders.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy; (E.T.); (M.A.P.)
| | - Enrica Federti
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
| | - Alessandro Matte
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
| | - Iana Iatcenko
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
| | - Anand B. Wilson
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
| | - Veronica Riccardi
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
| | - Mario Angelo Pagano
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy; (E.T.); (M.A.P.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, 37134 Verona, Italy; (E.F.); (A.M.); (I.I.); (A.B.W.); (V.R.)
- Correspondence: ; Tel.: +39-045-812-4401
| |
Collapse
|
13
|
Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G. Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 2020; 19:69. [PMID: 32228602 PMCID: PMC7104523 DOI: 10.1186/s12943-020-01187-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Collapse
Affiliation(s)
- Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | - Giovanni Martinelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
14
|
Mardani R, Jafari Najaf Abadi MH, Motieian M, Taghizadeh-Boroujeni S, Bayat A, Farsinezhad A, Gheibi Hayat SM, Motieian M, Pourghadamyari H. MicroRNA in leukemia: Tumor suppressors and oncogenes with prognostic potential. J Cell Physiol 2018; 234:8465-8486. [PMID: 30515779 DOI: 10.1002/jcp.27776] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahsa Motieian
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Borujen, Iran
| | - Amir Bayat
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, College of Science, Kish International Campus, University of Tehran, Kish, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahtab Motieian
- Department of Internal Medicine, Montefiore New Rochelle Hospital, Albert Einstein College of Medicine, New York, New York
| | - Hossein Pourghadamyari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
15
|
Yang YQ, Tian T, Zhu HY, Liang JH, Wu W, Wu JZ, Xia Y, Wang L, Fan L, Li JY, Xu W. NDRG2 mRNA levels and miR-28-5p and miR-650 activity in chronic lymphocytic leukemia. BMC Cancer 2018; 18:1009. [PMID: 30348117 PMCID: PMC6196416 DOI: 10.1186/s12885-018-4915-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background NDRG2 is identified as a tumor suppressor gene in many tumors, and functions in cell proliferation, differentiation and apoptosis. Recent data indicate that NDRG2 expression is up-regulated by TP53. Moreover, proposed mechanisms of NDRG2 inactivation include epigenetic silencing of the NDRG2 promoter and down-regulation by microRNAs (miRNAs). However, few studies have ever been done on the role of NDRG2 and the NDRG2-regulating miRNAs interference in chronic lymphocytic leukemia (CLL). Methods NDRG2 and microRNAs mRNA levels in CLL subjects were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was performed to determine NDRG2-related miRNAs. Low expression of mature exogenous miRNAs in CLL cells was established by transient transfection. NDRG2 protein levels in CLL cells were detected by western blot. In addition, flow cytometry was conducted to examine the apoptosis of CLL cells. Results Lower expression of NDRG2 was found in the B-cells from 102 CLL patients compared the 40 normal subjects (P < 0.001). Patients with advanced Binet stage (P = 0.001), high lactate dehydrogenase (LDH) level (P = 0.036), un-mutated immunoglobulin heavy chain variable region gene (IGHV) (P = 0.004) and those with p53 aberrations (P < 0.001) had a markedly lower levels of NDRG2 mRNA. This decrease was associated with briefer time-to-treatment (P = 0.001) and poorer survival (P < 0.001). High expression of miR-28-5p and miR-650 was associated with Binet B/C stage (P = 0.044) and IGHV un-mutated (P = 0.011), as well as Binet B/C stage (P = 0.013) and p53 aberrations (P = 0.037), respectively. Inhibition of miR-28-5p or miR-650 could induce more apoptosis in CLL cells with germline TP53. Conclusions NDRG2 mRNA levels might be a useful prognostic variable for patients of CLL and up-regulating NDRG2 transcription may be a therapy approach in CLL without p53 aberrations. Electronic supplementary material The online version of this article (10.1186/s12885-018-4915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Qiong Yang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Tian Tian
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
16
|
Pezeshki SMS, Asnafi AA, Khosravi A, Shahjahani M, Azizidoost S, Shahrabi S. Vitamin D and its receptor polymorphisms: New possible prognostic biomarkers in leukemias. Oncol Rev 2018; 12:366. [PMID: 30405894 PMCID: PMC6199555 DOI: 10.4081/oncol.2018.366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/13/2018] [Indexed: 12/28/2022] Open
Abstract
Several factors such as chromosomal translocations, gene mutations, and polymorphisms are involved in the pathogenesis of leukemia/lymphoma. Recently, the role of vitamin D (VD) and vitamin D receptor (VDR) polymorphisms in hematologic malignancies has been considered. In this review, we examine the possible role of VD levels, as well as VDR polymorphisms as prognostic biomarkers in leukemia/lymphoma. Relevant English language literature were searched and retrieved from Google Scholar search engine (1985-2017). The following keywords were used: vitamin D, vitamin D receptor, leukemia, lymphoma, and polymorphism. Increased serum levels of VD in patients with leukemia are associated with a better prognosis. However, low VD levels are associated with a poor prognosis, and VDR polymorphisms in various leukemias can have prognostic value. VD biomarker can be regarded as a potential prognostic factor for a number of leukemias, including acute myeloblastic leukemia (AML), chronic lymphoblastic leukemia (CLL), and diffuse large B-cell lymphoma (DLBCL). There is a significant relationship between different polymorphisms of VDR (including Taq I and Fok I) with several leukemia types such as ALL and AML, which may have prognostic value.
Collapse
Affiliation(s)
- Seyed Mohammad Sadegh Pezeshki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Khosravi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
17
|
Fang Y, Qiu J, Jiang ZB, Xu SR, Zhou ZH, He RL. Increased serum levels of miR-214 in patients with PCa with bone metastasis may serve as a potential biomarker by targeting PTEN. Oncol Lett 2018; 17:398-405. [PMID: 30655780 DOI: 10.3892/ol.2018.9522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are identified to serve key functions in the progression of various tumors. miR-214 is aberrantly expressed in various types of cancer. In the present study, the function of miR-214 and its feasibility as a potential non-invasive biomarker for patients with prostate cancer (PCa) in a hyperplasia group and a control group were investigated. First, RNA was isolated from the serum of 75 patients with PCa with bone metastasis, 65 patients with PCa with no bone metastasis and 70 healthy controls. The level of miR-214 expression was significantly upregulated in the serum of the bone metastasis group compared with the healthy control and non-bone metastasis groups. Expression levels of alkaline phosphatase (ALP), bone sialoprotein (BSP), collagen type I pyridine crosslinking peptide (ICTP) were also evaluated. The results indicated that serum levels of BSP, ALP and ICTP were increased in the bone metastasis group compared with that in the non-bone metastasis group, hyperplasia group and the control group (P<0.05). The expression level of miR-214 is positively associated with poorly differentiated tumors in patients with PCa with a Gleason score >7 (P<0.05). Western blot analysis demonstrated that phosphatase and tensin homolog (PTEN) was a target gene of miR-214. Additionally, silencing of PTEN significantly increased the invasive ability of PC3 cells even when miR-214 expression was inhibited. In summary, serum miR-214 expression may serve as a potential novel non-invasive biomarker for PCa screening through targeting PTEN.
Collapse
Affiliation(s)
- Yi Fang
- Department of Anesthesiology, Changsha Central Hospital, Changsha, Hunan 410000, P.R. China
| | - Jun Qiu
- Oncology Department Two, Mawangdui Hospital of Hunan People's Hospital, Changsha, Hunan 410016, P.R. China
| | - Zong-Bin Jiang
- Department of Pain Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Sheng-Rong Xu
- Department of Pain Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Zeng-Hua Zhou
- Department of Pain Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Rui-Lin He
- Department of Pain Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
18
|
Qi J, Liu Y, Hu K, Zhang Y, Wu Y, Zhang X. MicroRNA-26a inhibits hyperplastic scar formation by targeting Smad2. Exp Ther Med 2018; 15:4332-4338. [PMID: 29731824 PMCID: PMC5920963 DOI: 10.3892/etm.2018.5984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic scar (HS) is a fibrotic disease in which excessive extracellular matrix forms due to the response of fibroblasts to tissue damage. Novel evidence suggests that microRNAs (miRNAs or miRs) may contribute to hypertrophic scarring; however, the role of miRNAs in HS formation remains unclear. In the present study, miR-26a was significantly downregulated in HS tissues and human HS fibroblasts (hHSFs) was detected by reverse transcription-quantitative analysis. TargetScan was used to predict that mothers against decapentaplegic homolog 2 (Smad2) is a potential target gene of miR-26a and a dual-luciferase reporter assay confirmed that Smad2 was a target gene of miR-26a. The expression of Smad2 was upregulated in HS tissues and hHSFs. Cell Counting Kit-8 and flow cytometry analyses demonstrated that the overexpression of miR-26a significantly suppressed the proliferation ability of hHSFs and the apoptotic rate of hHSFs was significantly upregulated in response to miR-26a mimic transfection. Furthermore, the expression of B-cell lymphoma-2 (Bcl-2)-associated X protein was increased and Bcl-2 expression was decreased following miR-26a mimic transfection. The expression of collagens I and III was significantly inhibited following treatment with miR-26a mimics in hHSF cells. Conversely, miR-26a inhibitors served an opposing role in hHSFs. Furthermore, Smad2 overexpression enhanced the expression of collagens I and c III; however, Smad2 silencing inhibited the expression of collagens I and c III. In conclusion, the results of the present study indicate that miR-26a inhibits HS formation by modulating proliferation and apoptosis ad well as inhibiting the expression of extracellular matrix-associated proteins by targeting Smad2.
Collapse
Affiliation(s)
- Jun Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kesu Hu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yangyang Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xia Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
19
|
Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, Volante M, Morena D, Lingua MF, Brancaccio M, Guerrasio A, Pandolfi PP, Saglio G, Taulli R, Morotti A. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget 2018; 8:35508-35522. [PMID: 28418900 PMCID: PMC5482594 DOI: 10.18632/oncotarget.16348] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Guido Parvis
- Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Marco Volante
- Division of Pathology, San Luigi Hospital, Orbassano, Italy.,Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| |
Collapse
|
20
|
Abstract
微小RNA(microRNAs, miRNAs)是一类由20个-22个核苷酸组成的小片段非编码RNA,通过靶向结合基因mRNA的3’非翻译区(3’-UTR)调控其表达。许多研究报道miRNAs参与肿瘤的发生发展。MiR-26a在不同的肿瘤中发挥不同的作用,在肿瘤增殖、转移侵袭、血管形成、生物代谢及诊断预后中都有作用。本文就miR-26a与肿瘤关系的研究进展进行综述。
Collapse
Affiliation(s)
- Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
21
|
Gan XN, Gan TQ, He RQ, Luo J, Tang RX, Wang HL, Zhou H, Qing H, Ma J, Hu XH, Chen G. Clinical significance of high expression of miR-452-5p in lung squamous cell carcinoma. Oncol Lett 2018; 15:6418-6430. [PMID: 29616113 PMCID: PMC5876433 DOI: 10.3892/ol.2018.8088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
The role of microRNA (miRNA)-452-5p in lung squamous cell carcinoma (LUSC) remains unclear. Therefore, the present systematic study was performed to investigate the clinical significance and the rudimentary mechanism of the function of miR-452-5p in LUSC. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to confirm the expression level and clinical value of miR-452-5p in LUSC. Using online databases and bioinformatic software, gene ontology (GO), pathway and protein-protein interaction (PPI) analyses of miR-452-5p target genes were performed to examine the molecular mechanism of miR-452-5p. The association between the expression of miR-452-5p and that of its hub genes was verified using TCGA. Based on TCGA data on 387 clinical specimens, the expression of miR-452-5p in LUSC was significantly increased compared with adjacent lung tissues (7.1525±1.39063 vs. 6.0885±0.35298; P<0.001). The expression levels of miR-452-5p were significantly correlated with age (P=0.001) and tumor-node metastasis stage (P=0.028). Furthermore, the increased expression of miR-452-5p in LUSC compared with non-cancerous tissue [standard mean deviation (SMD), 0.372; 95% confidence interval (CI), 0.020–0.724; z=2.07; P=0.038] was validated by a meta-analysis of 720 clinical samples. The GO and pathway analyses revealed that miR-452-5p target genes were mainly enriched in the ‘regulation of transcription’, ‘nucleoplasm’, ‘protein binding’ and ‘cell cycle’ pathways. A total of 10 hub genes were identified by PPI analysis, and 5 hub genes (SMAD4, SMAD2, CDKN1B, YWHAE and YWHAB) were significantly enriched in the ‘cell cycle’ pathway. The expression of CDKN1B was negatively correlated with miR-452-5p (P=0.003). It was concluded that miR-452-5p may serve an essential role in the occurrence and progression of LUSC by targeting CDKN1B, which is involved in the cell cycle.
Collapse
Affiliation(s)
- Xiao-Ning Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ting-Qing Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rui-Xue Tang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Zhou
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hui Qing
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
22
|
Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 2018; 419:167-174. [PMID: 29366802 DOI: 10.1016/j.canlet.2018.01.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Proliferating cancer cells reprogram their metabolic circuitry to thrive in an environment deficient in nutrients and oxygen. Cancer cells exhibit a higher rate of glucose metabolism than normal somatic cells, which is achieved by switching from oxidative phosphorylation to aerobic glycolysis to meet the energy and metabolites demands of tumour progression. This phenomenon, which is known as the Warburg effect, has generated renewed interest in the process of glucose metabolism reprogramming in cancer cells. Several regulatory pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. Non-coding (nc)RNAs are a class of functional RNA molecules that are not translated into proteins but regulate target gene expression. NcRNAs have been shown to be involved in various biological processes, including glucose metabolism. In this review, we describe the regulatory role of ncRNAs-specifically, microRNAs and long ncRNAs-in the glycolytic switch and propose that ncRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells.
Collapse
|
23
|
Xu S, Wang T, Yang Z, Li Y, Li W, Wang T, Wang S, Jia L, Zhang S, Li S. miR-26a desensitizes non-small cell lung cancer cells to tyrosine kinase inhibitors by targeting PTPN13. Oncotarget 2018; 7:45687-45701. [PMID: 27285768 PMCID: PMC5216753 DOI: 10.18632/oncotarget.9920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors (TKIs) have emerged as first-line drugs for non-small cell lung cancers (NSCLCs). However, the resistance to TKIs represents the key limitation for their therapeutic efficacy. We found that miR-26a was upregulated in gefitinib-refractory NSCLCs; miR-26a is downstream of EGFR signaling and directly targets and silences protein tyrosine phosphatase non-receptor type 13 (PTPN13) to maintain the activation of Src, a dephosphorylation substrate of PTPN13, thus reinforcing EGFR pathway in a regulatory circuit. miR-26a inhibition significantly improved NSCLC responses to gefitinib. These data revealed a novel mechanism of NSCLC resistance to TKI treatment.
Collapse
Affiliation(s)
- Shudi Xu
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Respiratory Medicine, 9th Hospital of Xi'an, Xi'an, China
| | - Tao Wang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhiwei Yang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
| | - Ying Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Respiratory Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, China
| | - Weijie Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Ting Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Shan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, China
| | - Shengqing Li
- Department of Respiratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Zeng X, Hu Z, Ke X, Tang H, Wu B, Wei X, Liu Z. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle 2017; 16:2212-2219. [PMID: 28881158 DOI: 10.1080/15384101.2017.1361072] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Recently, long non-coding RNAs (lncRNAs) have emerged as new gene regulators and prognostic markers in several types of cancer, including renal cell carcinoma (RCC). In this study, we identified an upregulated lncRNA, DLX6-AS1, in RCC tumor tissues compared with normal kidney tissues. Our data suggested that DLX6-AS1 promoted RCC cell growth and tumorigenesis via targeting miR-26a. In addition, we observed that PTEN overexpression restored the renal cancer cell growth and also rescued the RCC tumorigenesis. In summary, we conclude that DLX6-AS1 promotes renal cell carcinoma development via regulation of miR-26a/PTEN axis.
Collapse
Affiliation(s)
- Xing Zeng
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhiquan Hu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xinwen Ke
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Huake Tang
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Bolin Wu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Xian Wei
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- a Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
25
|
Fan FY, Deng R, Yi H, Sun HP, Zeng Y, He GC, Su Y. The inhibitory effect of MEG3/miR-214/AIFM2 axis on the growth of T-cell lymphoblastic lymphoma. Int J Oncol 2017; 51:316-326. [PMID: 28534937 DOI: 10.3892/ijo.2017.4006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 11/06/2022] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is an aggressive malignancy with poor prognosis and high recurrence rate. Long non-coding RNA (lncRNA)-MEG3 is an important tumor suppressor in various cancers. The present study investigated the potential role of maternally expressed gene 3 (MEG3) in the progression of T-LBL. Suppressed expression of MEG3 was detected in T-LBL tissues compared with adjacent histologically normal tissues. Down-regulated level of MEG3 was also found in three T-LBL cell lines (CCRF-CEM, Jurkat and SUP-T1) compared with human T-cell line H9. The proliferation of T-LBL cells was inhibited and cell apoptosis rate was largely promoted when MEG3 was upregulated by a lentiviral vector. Further research revealed that microRNA (miRNA)-214 is a direct target of MEG3. The expression of miR-214 was increased in T-LBL tissues and cell lines compared with control groups. Besides, decreased level of miR-214 was elevated adding miR-214 mimic in SUP-T1 cells transfected with LncRNA-MEG3. Similarly, upregulated level of miR-214 was downregulated adding miR-214 inhibitor in SUP-T1 cells transfected with MEG3 siRNA. Luciferase activity assay further confirmed the targeting relationship between MEG3 and miR-214. Moreover, AIFM2 protein was predicted as a target of miR-214. The expression of AIFM2 was increased by MEG3 and was downregulated by miR-214 mimic. miRNA-214 reversed the effect of MEG3 on inhibiting cell proliferation and inducing cell apoptosis and cell cycle arrest in SUP-T1 cells. Moreover, relative expression of AIFM2 had a positive correlation with the expression of MEG3 and was negatively affected by miR-214. In vivo, MEG3 effectively suppressed tumor growth and the expression of proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA). Taken together, our research revealed that MEG3 worked as an anti-oncogene in T-LBL, and the MEG3-miR-214-AIFM2 pathway regulated the growth of T-LBL, providing potential prognosis markers as well as new potential targets for T-LBL treatment.
Collapse
Affiliation(s)
- Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Hai Yi
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Hao-Ping Sun
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yan Zeng
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Guang-Cui He
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yi Su
- Department of Hematology and Hematopoietic Stem Cell Transplantation and Cell Immunotherapy Center, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
26
|
Tibaldi E, Pagano MA, Frezzato F, Trimarco V, Facco M, Zagotto G, Ribaudo G, Pavan V, Bordin L, Visentin A, Zonta F, Semenzato G, Brunati AM, Trentin L. Targeted activation of the SHP-1/PP2A signaling axis elicits apoptosis of chronic lymphocytic leukemia cells. Haematologica 2017; 102:1401-1412. [PMID: 28619847 PMCID: PMC5541874 DOI: 10.3324/haematol.2016.155747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/14/2017] [Indexed: 01/07/2023] Open
Abstract
Lyn, a member of the Src family of kinases, is a key factor in the dysregulation of survival and apoptotic pathways of malignant B cells in chronic lymphocytic leukemia. One of the effects of Lyn’s action is spatial and functional segregation of the tyrosine phosphatase SHP-1 into two pools, one beneath the plasma membrane in an active state promoting pro-survival signals, the other in the cytosol in an inhibited conformation and unable to counter the elevated level of cytosolic tyrosine phosphorylation. We herein show that SHP-1 activity can be elicited directly by nintedanib, an agent also known as a triple angiokinase inhibitor, circumventing the phospho-S591-dependent inhibition of the phosphatase, leading to the dephosphorylation of pro-apoptotic players such as procaspase-8 and serine/threonine phosphatase 2A, eventually triggering apoptosis. Furthermore, the activation of PP2A by using MP07-66, a novel FTY720 analog, stimulated SHP-1 activity via dephosphorylation of phospho-S591, which unveiled the existence of a positive feedback signaling loop involving the two phosphatases. In addition to providing further insights into the molecular basis of this disease, our findings indicate that the PP2A/SHP-1 axis may emerge as an attractive, novel target for the development of alternative strategies in the treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Italy
| | - Mario Angelo Pagano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Federica Frezzato
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | - Valentina Trimarco
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | - Monica Facco
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Giovanni Ribaudo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Valeria Pavan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Luciana Bordin
- Department of Molecular Medicine, University of Padua, Italy
| | - Andrea Visentin
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences, University of Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | | | - Livio Trentin
- Department of Medicine, University of Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| |
Collapse
|
27
|
Gan XN, Luo J, Tang RX, Wang HL, Zhou H, Qin H, Gan TQ, Chen G. Clinical value of miR-452-5p expression in lung adenocarcinoma: A retrospective quantitative real-time polymerase chain reaction study and verification based on The Cancer Genome Atlas and Gene Expression Omnibus databases. Tumour Biol 2017; 39:1010428317705755. [PMID: 28488527 DOI: 10.1177/1010428317705755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Ning Gan
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Jie Luo
- 2 Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Rui-Xue Tang
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Han-Lin Wang
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Hong Zhou
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Hui Qin
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Ting-Qing Gan
- 2 Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Gang Chen
- 1 Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
28
|
Functional screen analysis reveals miR-3142 as central regulator in chemoresistance and proliferation through activation of the PTEN-AKT pathway in CML. Cell Death Dis 2017; 8:e2830. [PMID: 28542127 PMCID: PMC5520737 DOI: 10.1038/cddis.2017.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/30/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
Chronic myeloid leukemia (CML) is caused by the constitutively active BCR-ABL tyrosine kinase. Although great progress has been made for improvement in clinical treatment during the past decades, it is common for patients to develop chemotherapy resistance. Therefore, further exploring novel therapeutic strategies are still crucial for improving disease outcome. MicroRNAs (miRNAs) represent a novel class of genes that function as negative regulators of gene expression. Recently, miRNAs have been implicated in several cancers. Previously, we identified 41 miRNAs that were dysregulated in resistant compared with adriamycin (ADR)-sensitive parental cells in CML. In the present study, we reported that miR-3142 are overexpressed in ADR-resistant K562/ADR cells and CML/multiple drug resistance patients, as compared with K562 cells and CML patients. Upregulation of miR-3142 in K562 cells accelerated colony formation ability and enhanced resisitance to ADR in vitro. Conversely, inhibition of miR-3142 expression in K562/ADR cells decreased colony-formation ability and enhanced sensitivity to ADR in vitro and in vivo. Significantly, our results showed miR-3142-induced ADR resistance through targeting phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which led to downregulation of PTEN protein and activation of PI3 kinase (PI3K)/Akt pathway. Inhibition of Akt using Akt inhibitor or introduction of PTEN largely abrogated miR-3142-induced resistance. These findings indicated that miR-3142 induces cell proliferation and ADR resistance primarily through targeting the PTEN/PI3K/Akt pathway and implicate the potential application of miR-3142 in cancer therapy.
Collapse
|
29
|
Affiliation(s)
- Rosa Bernardi
- Division of Experimental Oncology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Ghia
- Division of Experimental Oncology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
30
|
Ding K, Wu Z, Wang N, Wang X, Wang Y, Qian P, Meng G, Tan S. MiR-26a performs converse roles in proliferation and metastasis of different gastric cancer cells via regulating of PTEN expression. Pathol Res Pract 2017; 213:467-475. [PMID: 28242043 DOI: 10.1016/j.prp.2017.01.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Gastric cancer is the second leading cause of cancer-related death in the world. The exact molecular pathways in gastric cancer need for further study. We herein indicated miR-26a performed converse roles on oncogenicity in different gastric cancer cells. In gastric cancer cells MKN-28, miR-26a promoted cell proliferation, migration and invasion. However, in gastric cancer cells AGS, miR-26a reduced cell proliferation and metastasis. PTEN was identified as a direct target of miR-26a. In MKN-28 cells, PTEN was suppressed by miR-26a through 3'-UTR, and PTEN mediated miR-26a promoting oncogenicity including cell proliferation and metastasis. On the other hand, in AGS cells, the expression of PTEN was enhanced by miR-26a, and PTEN mediated miR-26a reducing oncogenicity. The mechanism in AGS cells may be the indirect regulation of PTEN by miR-26a overcame the direct targeting regulation. The model like MKN-28 cells was concordant with patients with a high level of miR-26a and a low level of PTEN and patients with a low level of miR-26a and a high level of PTEN which showed lower overall survival (OS); the model like AGS cells was concordant with patients with both high level of miR-26a and PTEN and both low level of miR-26a and PTEN which showed higher OS. These findings will facilitate a better understanding of the functions and mechanisms about miR-26a, miR-26a and PTEN are potential combined biomarkers in patients with gastric cancer.
Collapse
Affiliation(s)
- Keshuo Ding
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhengsheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Nana Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Xiaonan Wang
- Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yuejun Wang
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China; Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, People's Republic of China
| | - Pengxu Qian
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Gang Meng
- Department of Pathology, Anhui Medical University, Hefei, Anhui, People's Republic of China.
| | - Sheng Tan
- Laboratory of Molecular Tumor Pathology, School of Life Science, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
31
|
Gagez AL, Duroux-Richard I, Leprêtre S, Orsini-Piocelle F, Letestu R, De Guibert S, Tuaillon E, Leblond V, Khalifa O, Gouilleux-Gruart V, Banos A, Tournilhac O, Dupuis J, Jorgensen C, Cartron G, Apparailly F. miR-125b and miR-532-3p predict the efficiency of rituximab-mediated lymphodepletion in chronic lymphocytic leukemia patients. A French Innovative Leukemia Organization study. Haematologica 2017; 102:746-754. [PMID: 28126961 PMCID: PMC5395115 DOI: 10.3324/haematol.2016.153189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The underlying in vivo mechanisms of rituximab action remain incompletely understood in chronic lymphocytic leukemia. Recent data suggest that circulating micro-ribonucleic acids correlate with chronic lymphocytic leukemia progression and response to rituximab. Our study aimed at identifying circulating micro-ribonucleic acids that predict response to rituximab monotherapy in chronic lymphocytic leukemia patients. Using a hierarchical clustering of micro-ribonucleic acid expression profiles discriminating 10 untreated patients with low or high lymphocyte counts, we found 26 micro-ribonucleic acids significantly deregulated. Using individual real-time reverse transcription polymerase chain reaction, the expression levels of micro-ribonucleic acids representative of these two clusters were further validated in a larger cohort (n=61). MiR-125b and miR-532-3p were inversely correlated with rituximab-induced lymphodepletion (P=0.020 and P=0.001, respectively) and with the CD20 expression on CD19+ cells (P=0.0007 and P<0.0001, respectively). In silico analyses of genes putatively targeted by both micro-ribonucleic acids revealed a central role of the interleukin-10 pathway and CD20 (MS4A1) family members. Interestingly, both micro-ribonucleic acids were negatively correlated with MS4A1 expression, while they were positively correlated with MS4A3 and MSA47 Our results identify novel circulating predictive biomarkers for rituximab-mediated lymphodepletion efficacy in chronic lymphocytic leukemia, and suggest a novel molecular mechanism responsible for the rituximab mode of action that bridges miR-125b and miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier: 01370772).
Collapse
Affiliation(s)
- Anne-Laure Gagez
- CNRS UMR 5235, University of Montpellier, France.,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Isabelle Duroux-Richard
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | | | - Rémi Letestu
- Department of Biological Hematology, APHP, GHUPSSD, Avicenne Hospital, Bobigny, France
| | - Sophie De Guibert
- Department of Clinical Hematology, Pontchaillou Hospital, Rennes, France
| | - Edouard Tuaillon
- Department of Bacteriology-Virology, University Hospital Montpellier, France
| | - Véronique Leblond
- Department of Hematology, La Pitié Salpétrière Hospital, Paris, France
| | - Olfa Khalifa
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France
| | | | - Anne Banos
- Department of Hematology, Cote Basque Hospital, Bayonne, France
| | - Olivier Tournilhac
- Department of Clinical Hematology, University Hospital Estaing, Clermont-Ferrand, France
| | - Jehan Dupuis
- Unit of Lymphoid Hematologic Malignancies, Henri Mondor Hospital, Créteil, France
| | - Christian Jorgensen
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| | - Guillaume Cartron
- CNRS UMR 5235, University of Montpellier, France .,Department of Clinical Hematology, University Hospital Montpellier, France
| | - Florence Apparailly
- INSERM, U1183, Institute of Regenerative Medicine and Biotherapy, University Hospital Montpellier, France.,Clinical department for Osteoarticular Diseases, University Hospital Lapeyronie, Montpellier, France
| |
Collapse
|
32
|
Wang P, Chen S, Fang H, Wu X, Chen D, Peng L, Gao Z, Xie C. miR-214/199a/199a* cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget 2016; 7:929-45. [PMID: 26498144 PMCID: PMC4808043 DOI: 10.18632/oncotarget.6137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/30/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS To identify the clinical and functional association of miR-214/199a/199a* cluster in human hepatocellular carcinoma (HCC) and to clarify the mechanism of miR-214. METHODS Kaplan-Meier and Cox proportional regression analyses were used to determine the association of miR-214/199a/199a* cluster levels with the survival of HCC patients. The role of miR-214 in regulating HCC cell proliferation was studied with miR-214 mimics/inhibitor-treated cells. Furthermore, the inhibition effect of miR-214 on E2F2, cyclin-dependent kinase (CDK) 3 and CDK6 expression was assessed in HCC cell lines with miR-214 mimics/inhibitors to increase/decrease miR-214 expression. Direct binding of miR-214 to the 3'-untranslated regions of E2F2, CDK3, and CDK6 was verified by dual-luciferase reporter assay. RESULTS In analyzing HCC clinical specimens and cell lines, we discovered a uniform decrease in miR-214/199a/199a* expression in comparison with noncancerous tissue or normal liver epithelial cell lines. Higher miR-214 levels were related with improved patient survival. Overexpression of miR-214 in HCC cells inhibited proliferation by inducing G1-S checkpoint arrest. Conversely, RNA interference-mediated silencing of miR-214 promoted cell-cycle progression and accelerated the proliferation of HCC cells. E2F2, CDK3 and CDK6 were each directly targeted for inhibition by miR-214, and restoring their expression reversed miR-214 inhibition of cell-cycle progression. The relationship between expression of miR-214 and its targets was confirmed in HCC tumor xenografts and clinical specimens. CONCLUSIONS Our results demonstrate that miR-214 has tumor-suppressive activity in HCC through inhibition of E2F2, CDK3 and CDK6.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Song Chen
- Department of Radiology, Guangzhou Red Cross Hospital/The Fourth Affiliated Hospital of Jinan University Medical College, Guangzhou, Guangdong Province, China
| | - He Fang
- Department of Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojuan Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dabiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
33
|
Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1579490. [PMID: 27642589 PMCID: PMC5013215 DOI: 10.1155/2016/1579490] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/28/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
As a special form of noncoding RNAs, circular RNAs (circRNAs) played important roles in regulating cancer progression mainly by functioning as miRNA sponge. While the function of circular RNA-ITCH (cir-ITCH) in lung cancer is still less reported, in this study, we firstly detected the expression of cir-ITCH in tumor tissues and paired adjacent noncancer tissues of 78 patients with lung cancer using a TaqMan-based quantitative real-time PCR (qRT-PCR). The results showed that the expression of cir-ITCH was significantly decreased in lung cancer tissues. In cellular studies, cir-ITCH was also enhanced in different lung cancer cell lines, A549 and NIC-H460. Ectopic expression of cir-ITCH markedly elevated its parental cancer-suppressive gene, ITCH, expression and inhibited proliferation of lung cancer cells. Molecular analysis further revealed that cir-ITCH acted as sponge of oncogenic miR-7 and miR-214 to enhance ITCH expression and thus suppressed the activation of Wnt/β-catenin signaling. Altogether, our results suggested that cir-ITCH may play an inhibitory role in lung cancer progression by enhancing its parental gene, ITCH, expression.
Collapse
|
34
|
Upregulation of MicroRNA-214 Contributes to the Development of Vascular Remodeling in Hypoxia-induced Pulmonary Hypertension Via Targeting CCNL2. Sci Rep 2016; 6:24661. [PMID: 27381447 PMCID: PMC4933872 DOI: 10.1038/srep24661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/03/2016] [Indexed: 11/08/2022] Open
Abstract
Hypoxia-induced pulmonary hypertension (PH), which is characterized by vascular remodeling of blood vessels, is a significant complication of chronic obstructive pulmonary disease (COPD). In this study, we screened 13 candidate miRNAs in pulmonary artery smooth muscle cells (PASMCs) harvested from COPD patients with PH (n = 18) and normal controls (n = 15) and found that the expression of miR-214 was differentially expressed between these two groups. Additionally, cyclin L2 (CCNL2) was validated as a target of miR-214 in PASMCs using a luciferase assay. Based on real-time PCR, immunohistochemistry and western blot, the expression of CCNL2 was substantially downregulated in PASMCs from COPD patients with PH compared with those from normal controls. Moreover, the relationship between miRNA and mRNA expression was confirmed using real-time PCR and western blot in PASMCs transfected with miR-214 mimics. Furthermore, the introduction of miR-214 significantly promoted the proliferation of PASMCs by suppressing cell apoptosis, and this effect was mediated by the downregulation of CCNL2. Exposure of PASMCs to hypoxia significantly increased the expression of miR-214, decreased the expression of CCNL2, and promoted cell proliferation. However, these effects were significantly attenuated by the introduction of miR-214 inhibitors, which significantly downregulated miR-214 expression and upregulated CCNL2 expression.
Collapse
|
35
|
Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget 2016; 6:18631-40. [PMID: 26087181 PMCID: PMC4621915 DOI: 10.18632/oncotarget.4072] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022] Open
Abstract
In order to determine the diagnostic and prognostic value of miR-26a in Cholangiocarcinoma (CCA), we compared miR-26a levels in serum from 66 CCA patients and 66 healthy controls, which was followed by serum analysis between the pre-operative serum and post-operative serum of these CCA patients. We found the concentration levels of miR-26a in serum of CCA patients were significantly higher than that from healthy controls (P < 0.01). Furthermore, the concentration levels of miR-26a in the post-operative serum were significantly reduced when compared to the pre-operative serum (P < 0.001). High miR-26a in serum was correlated significantly with clinical stage, distant metastasis, differentiation status, and poor survival of CCA patients. More importantly, serum miR-26a was an independent prognostic marker for CCA. In conclusion, our results suggested that miR-26a in serum might be a potential and useful noninvasive biomarker for the early detection of CCA.
Collapse
|
36
|
Chen J, Zhang K, Xu Y, Gao Y, Li C, Wang R, Chen L. The role of microRNA-26a in human cancer progression and clinical application. Tumour Biol 2016; 37:7095-108. [PMID: 27039398 DOI: 10.1007/s13277-016-5017-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs, a class of endogenous, small (18-25 nucleotides) noncoding RNAs, regulate gene expression by directly binding to the 3'-untranslated regions of target messenger RNAs. Evidence has shown that alteration of microRNAs is involved in cancer initial and progression. MicroRNA-26a is commonly dysregulated in diverse cancers and is involved in various biological processes, including proliferation, migration, invasion, angiogenesis, and metabolism by targeting multiple mRNAs. This review summarizes current research on the physiology and pathological functions of miR-26a and its applications for clinical therapy.
Collapse
Affiliation(s)
- Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Yuejuan Xu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, People's Republic of China
| | - Yanping Gao
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Li
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China.
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 Zhong Shan Road East, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
37
|
Zhang X, Cheng SL, Bian K, Wang L, Zhang X, Yan B, Jia LT, Zhao J, Gammoh N, Yang AG, Zhang R. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget 2016; 6:2277-89. [PMID: 25537511 PMCID: PMC4385851 DOI: 10.18632/oncotarget.2956] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
Metastasis is the major reason for the death of patients suffering from malignant diseases such as human hepatocellular carcinoma (HCC). Among the complex metastatic process, resistance to anoikis is one of the most important steps. Previous studies demonstrate that microRNA-26a (miR-26a) is an important tumor suppressor that inhibits the proliferation and invasion of HCC cells by targeting multiple oncogenic proteins. However, whether miR-26a can also influence anoikis has not been well established. Here, we discovered that miR-26a promotes anoikis of HCC cells both in vitro and in vivo. With a combinational analysis of bioinformatics and public clinical databases, we predicted that alpha5 integrin (ITGA5), an integrin family member, is a putative target of miR-26a. Furthermore, we provide experimental evidence to confirm that ITGA5 is a bona fide target of miR-26a. Through gain- and loss-of-function studies, we demonstrate that ITGA5 is a functional target of miR-26a-induced anoikis in HCC cells. Collectively, our findings reveal that miR-26a is a novel player during anoikis and a potential therapeutic target for the treatment of metastatic HCC.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shu-Li Cheng
- Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an Shaanxi, China
| | - Ka Bian
- Department of Otolaryngology, Tangdu Hospital, the Fourth Military Medical University, Xi'an Shaanxi, China.,State Key Laboratory of Cancer Biology, Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bo Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin-Tao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Noor Gammoh
- Edinburgh Cancer Research Centre, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, United Kingdom
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
38
|
Ma DN, Chai ZT, Zhu XD, Zhang N, Zhan DH, Ye BG, Wang CH, Qin CD, Zhao YM, Zhu WP, Cao MQ, Gao DM, Sun HC, Tang ZY. MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2. J Hematol Oncol 2016; 9:1. [PMID: 26733151 PMCID: PMC4702409 DOI: 10.1186/s13045-015-0229-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background Our previous study reported that microRNA-26a (miR-26a) inhibited tumor progression by inhibiting tumor angiogenesis and intratumoral macrophage infiltration in hepatocellular carcinoma (HCC). The direct roles of miR-26a on tumor cell invasion remain poorly understood. In this study, we aim to explore the mechanism of miR-26a in modulating epithelial-mesenchymal transition (EMT) in HCC. Methods In vitro cell morphology and cell migration were compared between the hepatoma cell lines HCCLM3 and HepG2, which were established in the previous study. Overexpression and down-regulation of miR-26a were induced in these cell lines, and Western blot and immunofluorescence assays were used to detect the expression of EMT markers. Xenograft nude mouse models were used to observe tumor growth and pulmonary metastasis. Immunohistochemical assays were conducted to study the relationships between miR-26a expression and enhancer of zeste homolog 2 (EZH2) and E-cadherin expression in human HCC samples. Results Down-regulation of miR-26a in HCCLM3 and HepG2 cells resulted in an EMT-like cell morphology and high motility in vitro and increased in tumor growth and pulmonary metastasis in vivo. Through down-regulation of EZH2 expression and up-regulation of E-cadherin expression, miR-26a inhibited the EMT process in vitro and in vivo. Luciferase reporter assay showed that miR-26a directly interacted with EZH2 messenger RNA (mRNA). Furthermore, the expression of miR-26a was positively correlated with E-cadherin expression and inversely correlated with EZH2 expression in human HCC tissue. Conclusions miR-26a inhibited the EMT process in HCC by down-regulating EZH2 expression.
Collapse
Affiliation(s)
- De-Ning Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Zong-Tao Chai
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiao-Dong Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Ning Zhang
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Cancer Hospital, Shanghai, People's Republic of China
| | - Di-Hua Zhan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Bo-Gen Ye
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Cheng-Hao Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Cheng-Dong Qin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Yi-Ming Zhao
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Cancer Hospital, Shanghai, People's Republic of China
| | - Wei-Ping Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Man-Qing Cao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Dong-Mei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Hui-Chuan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China
| | - Zhao-You Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, People's Republic of China.
| |
Collapse
|
39
|
Qu F, Li CB, Yuan BT, Qi W, Li HL, Shen XZ, Zhao G, Wang JT, Liu YJ. MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway. Oncol Lett 2015; 11:1592-1596. [PMID: 26893786 DOI: 10.3892/ol.2015.4073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of highly conserved, small non-coding RNA that are vital to the post-transcriptional regulation of gene expression via base pairing with target mRNA 3'-untranslated regions (3'-UTRs). Several studies have indicated that the abnormal expression of miRNAs occurs frequently in human osteosarcoma (OS). In the present study, the role of miR-26a in the progression and metastasis of OS was investigated using reverse transcription-quantitative polymerase chain reaction, a luciferase activity assay, cell viability assay, in vitro migration and invasion assays, transfection and western blot analysis. miR-26a was upregulated in OS tissues and cell lines, and the expression of miR-26a was indicated to affect the proliferation, migration and invasion of OS Saos-2 cells. At the molecular level, the results showed that glycogen synthase kinase-3β (GSK-3β) was identified as a target of miR-26a, and the ectopic expression of miR-26a inhibited GSK-3β by directly binding to the 3'-UTR. Therefore, the expression of miR-26a was negatively correlated with GSK-3β in the OS tissues. These data suggest that miR-26a is significant in the proliferation of human OS cells due to the direct regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Feng Qu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China; Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Chun-Bao Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Bang-Tuo Yuan
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wei Qi
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Liang Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xue-Zhen Shen
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Gang Zhao
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jiang-Tao Wang
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yu-Jie Liu
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|